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We perform a multimode treatment of spin squeezing induced by interactions in atomic conden-
sates, and we show that, at finite temperature, the maximum spin squeezing has a finite limit when
the atom number N → ∞ at fixed density and interaction strength. To calculate the limit of the
squeezing parameter for a spatially homogeneous system we perform a double expansion with two
small parameters: 1/N in the thermodynamic limit and the non-condensed fraction 〈Nnc〉/N in
the Bogoliubov limit. To test our analytical results beyond the Bogoliubov approximation, and to
perform numerical experiments, we use improved classical field simulations with a carefully chosen
cut-off, such that the classical field model gives for the ideal Bose gas the correct non-condensed
fraction in the Bose-condensed regime.

PACS numbers: 03.75.Gg, 42.50.Dv, 03.75.Kk, 03.75.Pp, 03.75.Mn.

I. INTRODUCTION

A two-level atom can be described as an effective spin
1/2. Here, to describe an ensemble of atoms in two differ-
ent internal states a and b, that are typically two hyper-
fine states, we use the picture of a “collective spin”. This
spin, of length N/2, is simply the sum of the effective
spins 1/2 that describe the internal degrees of freedom of
each atom. In the second quantized formalism the three
hermitian spin components Ŝx, Ŝy and Ŝz are defined by:

Ŝ+ ≡ Ŝx + iŜy =

∫

d3r ψ̂†
a(r )ψ̂b(r ) (1)

Ŝz =
N̂a − N̂b

2
(2)

where the bosonic field operators ψ̂a,b obey the usual

commutation relations, N̂a =
∫

d3r ψ̂†
a(r )ψ̂a(r ) is the

atom number in component a and the same for b. The
spin operators are dimensionless and obey the commu-
tation relations [Ŝx, Ŝy] = iŜz and cyclic permutations.

Physically Ŝz is the population difference between a and
b states, while Ŝx and Ŝy describe one-body coherence
between them.
Spin squeezing [1] is about creating quantum correla-

tions, in such an ensemble of atoms, that can be useful for
metrology. In particular spin squeezed states can be used
to improve the accuracy of atomic clocks beyond the so
called “standard quantum limit” that has been already
reached in the most precise clocks [2]. The resulting gain
for metrology is quantified by a spin squeezing parameter
ξ2 [3, 4]:

ξ2 =
N∆S2

⊥,min

|〈S 〉|2 , (3)

where N is the total atom number and ∆S2
⊥,min is the

minimal variance of the collective spin orthogonally to

the direction of its mean value 〈S 〉. The state is squeezed
if and only if ξ2 < 1. As explained in [3], in an atomic
clock experiment using Ramsey population spectroscopy,
ξ directly gives the reduction in the statistical fluctua-
tions of the measured frequency ωab with respect to using
uncorrelated atoms (for the same atom number N and
the same Ramsey time T ):

∆ωsq
ab = ξ∆ωunc

ab =
ξ√
NT

(4)

The parameter ξ in Eq.(3) is in fact the properly nor-
malized ratio between the “noise” ∆S⊥,min and the “sig-
nal” |〈S〉|. In experiments ∆S⊥,min is directly measured

by measuring Ŝz after an appropriate state rotation and
|〈S〉| is separately deduced from the Ramsey fringes con-
trast.
Very recently experimental breakthroughs in spin

squeezing have been achieved using either the interac-
tion between atoms and light in an optical cavity [5]
or atomic interactions in bimodal Bose-Einstein conden-
sates [6], [7]. The ultimate limits of the different paths
to spin squeezing are still objects of active studies [8–12].
We address here the issue of non-zero temperature and
of the influence of the non condensed fraction for spin
squeezing schemes using Bose-Einstein condensates.
We face the following physical problem: An interacting

Bose gas, prepared at finite temperature in the internal
state a, is subjected to a sudden π/2 mixing pulse that
puts each atom in a coherent superposition of two dif-
ferent internal states a and b. From this out of equilib-
rium state, with factorized spin and motional variables,
quantum correlations and spin squeezing are created dy-
namically by the atomic interactions [1], [4]. Let us first
sketch how this happens in a simple two-mode picture,
i.e. assuming that all the atoms in a or b share the same
wave function for their motional degrees of freedom. Af-
ter the mixing pulse, the two condensates in a and b
have a well defined relative phase, with a relative phase
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distribution whose width scales as 1/
√
N , and fluctua-

tions in the relative particle number difference scaling
as

√
N . In a two-mode picture, the initial state can be

expanded over Fock states |Na, N − Na〉 with Na par-
ticles in state a and N − Na particles in state b. Due
to atom-atom interactions, each Fock state acquires a
phase in the evolution that is proportional to Na − Nb

[1, 13, 14]. This situation is completely equivalent to the
evolution of a coherent state in a Kerr medium in optics.
During the evolution, due to the different phase shifts of
the different Fock states, the relative phase distribution
starts to spread. At the same time, quantum fluctua-
tions orthogonal to the mean spin direction get distorted
and, before the relative phase distribution has sensibly
spread, spin squeezing is created in the sample. Our aim
is to include the two-mode quantum dynamics that we
just described, and the effect of the thermally excited
non-condensed modes within the same formalism. The
thermal modes also provide a condensate phase spread-
ing [15],[16],[17],[18] and are expected to affect the spin
squeezing generated in the system at non-zero tempera-
ture [9]. For a review of spin squeezing and decoherence
see also [11].

A central issue is the scaling of the squeezing as the
system gets large, i.e. in the thermodynamic limit. Most
studies are based on a two-mode description [1]. In this
frame the squeezing parameter minimized over time ξ2min

tends to zero (infinite metrology gain) for N → ∞ as
ξ2min ∼ N−2/3. Although some studies beyond the two-
mode theory were performed [4, 19, 20] they could not
prove or disprove the two-mode scaling of spin squeezing
in real condensates. Here we can go further. We find
that for realistic atom numbers, the two-mode scaling
ξ2min ∼ N−2/3 is meaningless at finite temperature and
that the spin squeezing parameter ξ2min at the thermody-
namic limit has a finite non-zero value that we calculate
explicitly. In this paper we present a detailed deriva-
tion of the results given in [9] and we present new im-
proved classical field simulations, with a carefully cho-
sen cut-off such that the classical field model gives for
the ideal Bose gas the correct non-condensed fraction in
the Bose-condensed regime. We also present results for
the squeezing that would be measured by detecting only
the condensed particles, which we call the “condensate
squeezing”, and we show that it is much worse than the
squeezing of the total field for reasons that we explain in
the paper.

In section II we formalize the problem and expose our
approach to solve it. In section III we proceed with
two numerical experiments. These experiments show
(i) the existence of a non-zero thermodynamic limit for
the squeezing parameter in contrast with the predictions
of the two-mode theory, and (ii) the universal scaling
with the temperature of the squeezing in the thermody-
namic and weakly interacting limit. Analytical calcula-
tions are performed in section IV. By performing a dou-
ble expansion of ξ2min in terms of two small parameters,
the inverse atom number 1/N controlling the thermody-

namic limit and the non-condensed fraction controlling
the weakly interacting limit, we obtain explicitly the min-
imal squeezing parameter that it is possible to achieve by
this method as a function of the initial temperature and
the interaction strength. A physical interpretation of the
results is given in section V. In that section we also
show that the squeezing defined for the total field and
the squeezing defined for the condensate mode only are
very different and we give a physical explanation. We
conclude in section VI.

II. THE PROBLEM

A. The Quantum Model

We consider a spatially homogeneous system of N
bosons in two internal states that interact with short
range binary interactions. We take for simplicity iden-
tical interactions in components a and b and no crossed
a-b interactions [36]. The system is discretized on a cubic
lattice of lattice spacing l, with periodic boundary condi-
tion of period L along each direction x, y, z. For numer-
ical convenience, L/l = nmax is an even integer. There
are in total N ≡ V/dV lattice points, where V = L3

is the system volume and dV = l3 the unit cell volume.
The Hamiltonian for one separate spin component, e.g.
component a, reads

Ĥa =
∑

k

~
2k2

2m
â†
k
âk +

g0
2
dV
∑

r

ψ̂†
a(r)ψ̂

†
a(r)ψ̂a(r)ψ̂a(r)

(5)
In the kinetic energy term we have expanded the field
operator over plane waves

ψ̂a(r) =
∑

k

âk
eik·r√
V

(6)

and âk annihilates a particle of wave vector k be-
longing to the first Brillouin zone (FBZ) [−π/l, π/l[3
of the lattice, so that along each direction ν, kν ∈
2π
L {−L/(2l), . . . , L/(2l)− 1}. Since we consider a lattice
model, the field operator here obeys the discrete bosonic
commutation relations (A1). The second term in (5) rep-
resents atomic interactions modeled by a purely on-site
interaction with a bare coupling constant on the lattice
g0. In practice, to recover the continuous space physics, l
is taken to be smaller than both the healing length ξ and
the thermal de Broglie wavelength λdB. In the weakly
interacting regime, |a| ≪ ξ, λdB, one can further take
l ≫ |a| so that in the following we will identify g0 with
the effective coupling constant g = 4π~2a/m where a is
the s-wave scattering length [37].
Initially at t < 0, all the N atoms are in the internal

state a in thermal equilibrium described by the canonical
density operator

ρ̂ =
1

Z
e−βĤa (7)
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with β = 1/(kBT ) and T ≪ Tc where Tc is the transition
temperature for Bose-Einstein condensation.
At t = 0 an electromagnetic pulse mixes the states

a and b. The pulse Hamiltonian acting during a time
interval tpulse is

V̂p =
~Ω

2i

∑

r

dV (ψ̂†
aψ̂b − ψ̂†

bψ̂a) (8)

In practice the timescale tpulse is shorter than all the
relevant timescales in the original Hamiltonians Ha,b so
that we can take the limit tpulse → 0, Ω → ∞ with
Ωtpulse = π/2. After integration of the Heisenberg equa-
tions of motion during tpulse, it is found that the fields
are transformed by the π/2 pulse as follows:

ψ̂a(0
+) =

1√
2
[ψ̂a(0

−)− ψ̂b(0
−)] (9)

ψ̂b(0
+) =

1√
2
[ψ̂a(0

−) + ψ̂b(0
−)] (10)

We are interested in the squeezing and quantum correla-
tions that develop during the non-equilibrium dynamics
following the pulse for t > 0.

B. Our Approach

The problem of the scaling of the squeezing forN → ∞
in the multimode case implies the solution of the non-
equilibrium quantum dynamics for a large number of
atoms and a large number of modes. We cannot solve
exactly this problem even numerically. However, what
can be solved exactly on a computer is the “classical field
equivalent” of our problem. We then adopt the strategy
summarized in Table I. We use the classical field model
to (i) perform numerical experiments and (ii) test a per-
turbative solution that we can generalize to the quantum
case. The quantum perturbative solution is then used to
get quantitative predictions on the real physical system.

Quantum field solution Classical field solution

model available ? model available ?

Ĥ[ψ̂a(r), ψ̂b(r)] no H [ψa(r), ψb(r)] yes

l
Perturbative yes Perturbative yes

TABLE I: We cannot solve exactly the problem in the quan-
tum case but we find an analytical perturbative solution. We
check our perturbative approach in the classical case where
we can solve the model exactly (numerically).

C. Classical field model

The classical field model [21, 22] is obtained by re-
placing the quantum fields with classical fields in the

Hamiltonian[38]

ψ̂†
a, ψ̂a, ψ̂

†
b , ψ̂b → ψ∗

a, ψa, ψ
∗
b , ψb. (11)

In the equations of motion the commutators are then
replaced by Poisson brackets. The classical field model
is useful when the interesting physics is given by low-
energy highly populated modes [23–25]. For our classical
field simulations, we assume that this is the case in the
equilibrium state before the pulse, with all the particles

in state a. The initial field ψ
(0)
a then randomly samples

the thermal equilibrium classical field distribution for the
canonical ensemble at temperature T

ρcl =
1

Z
e−βH (12)

where H is the classical Hamiltonian, which is a discrete
version of the Gross-Pitaevskii energy functional:

H =
∑

k

~
2k2

2m
a∗
k
ak +

g

2
dV
∑

r

ψ∗
a(r)ψ

∗
a(r)ψa(r)ψa(r)

(13)
For the initially empty state b, inspired by the Wigner
quasi-probability distribution of the quantum density op-
erator and the truncated Wigner approach [26–29] we

represent the vacuum by a classical field ψ
(0)
b having in

each mode independent Gaussian complex fluctuations
of zero mean and variance 1/2: More precisely, we set

b
(0)
k

= X + iY where the independent real random vari-
ables X and Y have the same Gaussian probability dis-
tribution

P (x) =

√

2

π
e−2x2

(14)

At t = 0 the fields are mixed by the pulse accord-
ing to (9)-(10). At later times, the fields, ψa and ψb

evolve independently according to the discrete non-linear
Schrödinger equation (ν = a, b)

i~ ∂tψν =

[

−~
2∆

2m
+ g|ψν(r, t)|2

]

ψν (15)

where the discrete Laplacian ∆ has the plane waves
exp(ik · r) on the lattice as eigenvectors of eigenval-
ues −k2. The lattice model automatically provides a
momentum cut-off to the classical field model, corre-
sponding to the boundaries of the first Brillouin zone
FBZ=[−π/l, π/l[3. The various observables have a more
or less pronounced dependence on the cut-off. Here,
guided by our analytical results (see section IV) we
choose the cut-off such that, in the thermodynamic limit,
the non-condensed density for an ideal continuous space
gas in the Bose condensed regime (zero chemical poten-
tial) is exactly reproduced by the classical field model:

∫

R3

d3k

(2π)3
1

eβEk − 1
=

∫

FBZ

d3k

(2π)3
kBT

Ek
(16)
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where Ek = ~
2k2/2m is the kinetic energy, the mode

occupation numbers are given by the Bose formula for
the quantum case and by the equipartition formula for
the classical case. The condition (16) is an equation for
l/λdB with the thermal de Broglie wavelength λdB =
[2π~2/(mkBT )]

1/2, as is revealed by the change of in-
tegration variable K = λdBk. The integrals on both
sides of (16) can be calculated analytically, see e.g. [30]
for the integral in the right-hand side, and the usual fac-
tor ζ(3/2) appears in the left-hand side (where ζ is the
Riemann Zeta function). The condition (16) then gives
Emax

k ≃ 2.695kBT with Emax
k is the maximal kinetic en-

ergy on the grid, here Emax
k = 3~2(π/l)2/(2m) [39].

III. NUMERICAL EXPERIMENTS

A. Dimensional analysis

As specified in subsection IIA, when the lattice model
approaches the continuous space physics for the spin
squeezing, the physical parameters of the model are the
atom massm, the effective coupling constant g character-
izing low energy binary interactions between the atoms,
the temperature T , the total atom number N and system
volume V :

~
2

m
, g , kBT , N , V (17)

The spin squeezing parameter optimized over time, ξ2min,
is a dimensionless quantity. It is therefore a function of
the independent dimensionless combinations that we can
form from the ensemble (17):

ξ2min = f(N,
√

ρa3,
kBT

ρg
) (18)

Here
√

ρa3 is the “small parameter” such that
√

ρa3 ≪ 1
characterizes the weakly interacting limit, and ρg is the
mean field chemical potential of the gas (at T = 0). The
same dimensional analysis and the same general form of
ξ2min hold for the classical field model.

B. Existence of a thermodynamic limit for ξ2

We have performed classical field simulations, increas-
ing the system size in the thermodynamic limit

N → ∞ ; V → ∞ ; ρ, g, T = constant , (19)

In Fig.1 we show the result for four different temper-
atures. The squeezing parameter, minimized over time,
converges to a finite value. According to the general form

(18), ξ2min then depends on kBT/ρg and
√

ρa3. The first
parameter kBT/ρg is varied in Fig.1, whereas the pa-

rameter
√

ρa3 defining the weakly interacting regime is
maintained constant in that figure. Note that for curves

10
4

10
5

10
6

10
7

N

10
-3

10
-2

ξ2 m
in

(a)

(b)

(c)

(d)

FIG. 1: (Color online). Minimal squeezing parameter (that
is, minimized over time) for four different temperatures and
increasing system sizes in the thermodynamic limit N → ∞,
ρ, g, T = constant. Squares: classical field simulations re-
sult. kBT/ρg = 1.13(a), 0.78(b), 0.50(c), 0.28(d). For all the

points
√

ρa3 = 1.32 × 10−2. The horizontal dashed lines are
analytical results in the thermodynamic and weakly interact-
ing limit (21) that are the classical field equivalent of (62).
The grid sizes (number of points per direction) are nmax =
12, 16, 20, 32, 36 for (a), nmax = 10, 12, 16, 32, 40 for (b),
nmax = 12, 16, 24, 36, 40 for (c) and nmax = 6, 8, 12, 16, 24, 32
for (d).

(a)-(c) the limit is already almost reached for N = 3×104

while a larger system is needed for the lowest tempera-
ture curve (d).

C. Weakly interacting limit of ξ2

Starting from a point that is already at the thermo-
dynamic limit for each temperature, we have performed
other simulations, going more deeply in the weakly inter-
acting limit ρ → ∞, g → 0, ρg, T = constant [31] [40].

In this limit the small parameter
√

ρa3 tends to zero. In
Fig.2, for a fixed value of kBT/ρg, we show the squeezing

parameter divided by
√

ρa3 as a function of a rescaled

time, for various values of
√

ρa3. It is apparent that the
rescaled minimal squeezing is nearly constant in the fig-

ure. For weak interactions, ξ2min/
√

ρa3 is thus a function
of kBT/ρg only.

D. Spin squeezing as a function of the temperature

From the numerical experiments described in III B and
III C, we conclude that, in the double thermodynamic
plus weakly interacting limit, the squeezing parameter

minimized over time is equal to
√

ρa3 times a universal
function of kBT/ρg:

ξ2min =
√

ρa3 F

(

kBT

ρg

)

(20)
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FIG. 2: (Color online). Squeezing parameter ξ2 divided by
√

ρa3 as a function of a rescaled time, in the weakly inter-
acting limit: ρ → ∞, g → 0 with ρg, T = constant. Solid
lines: classical field simulations. Parameters: kBT/ρg = 0.5
and nmax = 32 for all the curves. (a) N = 3 × 104,
√

ρa3 = 1.32 × 10−2; (b) N = 105,
√

ρa3 = 3.96 × 10−3;

(c) N = 3 × 105,
√

ρa3 = 1.32 × 10−3; (d) N = 6 × 105,
√

ρa3 = 6.59× 10−4. Horizontal line: analytical result (21).

We show the universal scaling of the minimal squeezing
parameter in the thermodynamic limit in Fig.3, where
we collect the results of several simulations for different
temperatures and interaction strengths. In the following
section we shall develop the analytical theory that gives
the explicit expression of the function F appearing in
(20). The analytical result for the classical field theory
is represented as a full line in Fig.3. It reads:

ξ2min =

∫

FBZ

d3k

(2π)3
s4k
2ρ
n
(0)
k

(

(s
(0)
k )2

s4k
+

s4k

(s
(0)
k )2

)

(21)

Here ρ = N/V is the total density, sk = Uk + Vk,

s
(0)
k = U

(0)
k + V

(0)
k are Bogoliubov functions defined in

(30) and (28), n
(0)
k = kBT/ǫ

(0)
k are the equilibrium oc-

cupation numbers of Bogoliubov modes before the pulse

with ǫ
(0)
k = [Ek(Ek+2ρg)]1/2 and the integral is restricted

to the first Brillouin zone FBZ with kν ∈ [−kmax
ν , kmax

ν [
for the three directions ν = x, y, z. We note a very good
agreement between the analytics and the simulations for
all the points. For comparison, we also show the analyt-
ical result for the quantum field (62), in the zero-lattice
spacing limit, as a dashed line. Note how well the clas-
sical results with the cut-off prescription (16) reproduce
the quantum analytical results for kBT > ρg.

IV. ANALYTICAL RESULTS

We want here to address the fully quantum case
and calculate analytically the function F (kBT/ρg) =

0,1 1 10
k

B
T/ρg

0,01

1

100

ξ2 m
in

/(
ρa

3 )1/
2

FIG. 3: Minimal squeezing parameter ξ2min divided by
√

ρa3

as a function of kBT/ρg. Symbols: classical field simulations

with
√

ρa3 = 1.32× 10−2 (squares), 1.94× 10−3 (disks), and
√

ρa3 = 4.17× 10−4 (triangles). Solid line: Analytical classi-
cal field result (21). Dashed line: Quantum result (62). The
grid sizes, for increasing kBT/ρg are nmax = 32, 36, 40, 36 for
squares, nmax = 24, 32, 32 for disks and nmax = 32 for tri-
angles. The initial non condensed fractions in component
a before the pulse are 〈Nnc〉/N = 0.01, 0.02, 0.04, 0.07 for
squares, 〈Nnc〉/N = 0.01, 0.02, 0.04 for disks and 〈Nnc〉/N =
0.01, 0.02, 0.05 for triangles.

ξ2min/
√

ρa3 of (20) using Bogoliubov theory. In IVA we
present a modulus-phase reformulation of the Bogoliubov
theory generalized for a bimodal condensate; in IVB and
IVC we derive the expansion of the spin squeezing pa-
rameter in the thermodynamic limit, and we discuss the
final analytical results in IVD.

A. Modulus-phase Bogoliubov formalism for

bimodal condensates

We generalize here to two-components the U(1)-
symmetry preserving Bogoliubov theory of [31], see also
[4]. As spin squeezing in bimodal condensates is due to
phase dynamics, we rephrase the theory in terms of the
relative phase operator of the a and b condensates. This
is a crucial step that allows us to obtain results by a per-
turbative expansion in powers of that relative phase. The
relative phase is simply the difference of the condensate

phases θ̂a,b introduced as hermitian operators conjugate
to the condensate atom numbers [32, 33]. This is a valid
description in the subspace excluding the vacuum state
(no particles) for the condensate modes, which is suffi-
cient here: as we suppose initially T ≪ Tc, both conden-
sates are highly populated after the mixing pulse with
〈Na〉 = 〈Nb〉 = N/2. Some useful expressions involv-
ing the Bogoliubov amplitudes and some commutation
relations are given in Appendix A.
Within each atomic internal state a or b, we split the

bosonic field operator into the condensate and non con-
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densed modes contributions:

ψ̂a =
â0√
V

+ ψ̂a⊥ , ψ̂b =
b̂0√
V

+ ψ̂b⊥ (22)

For the annihilation operators in the condensate modes
we introduce the modulus-phase representation

â0 = eiθ̂a
√

N̂a0 , [N̂a0, θ̂a] = i (23)

b̂0 = eiθ̂b
√

N̂b0 , [N̂b0, θ̂b] = i , (24)

while for the non condensed modes we introduce the num-
ber conserving fields [31, 34]

Λ̂a == e−iθ̂aψ̂a⊥ ; Λ̂b= e−iθ̂bψ̂b⊥ (25)

that we expand over Bogoliubov modes with amplitudes
ĉak and ĉbk. To perform this expansion, one has to dis-
tinguish the time before the pulse and the time after the
pulse.
Before the pulse, at time t = 0−, all the N atoms are in

the internal state a, with a zero-temperature mean field
chemical potential µ = ρg, and we expand the number
conserving field Λ̂a(t = 0−) over the Bogoliubov modes:

Λ̂(0)
a =

∑

k 6=0

[

U
(0)
k ĉ

(0)
ak + V

(0)
k (ĉ

(0)
a−k

)†
] eik·r√

V
(26)

Here the exponent (0) over the operators indicates that
the operators are considered at time t = 0−. The bosonic

operator ĉ
(0)
ak annihilates a Bogoliubov quasi-particle of

wave vector k, and eigenenergy

ǫ
(0)
k = [Ek(Ek + 2ρg)]1/2 (27)

where we recall that Ek = ~
2k2/(2m) is the kinetic

energy contribution. The corresponding amplitudes of

the Bogoliubov mode, correctly normalized as [U
(0)
k ]2 −

[V
(0)
k ]2 = 1, are given by

s
(0)
k ≡ U

(0)
k + V

(0)
k =

1

U
(0)
k − V

(0)
k

=

(

Ek

Ek + 2ρg

)1/4

(28)
Before the pulse, the field in the b state is in the vacuum
state, so the modal expansion is performed over the usual
single particle plane wave eigenbasis.
After the pulse, at t ≥ 0+, the particles are on average

equally distributed among the two internal states a and
b, 〈Na〉 = 〈Nb〉 = N/2. There are now two condensates,
with interaction constants gaa = gbb = g among atoms of
same internal state, and no interaction (gab = 0) among
atoms of different internal states. Similarly to (26), we
perform after the pulse the modal decomposition of the
number conserving fields in each internal state σ = a, b:

Λ̂σ =
∑

k 6=0

[

Ukĉσk + Vk ĉ
†
σ−k

] eik·r√
V

(29)

where ĉσk annihilates a Bogoliubov quasi-particle of wave
vector k in internal state σ. The Bogoliubov mode am-
plitudes Uk, Vk and the eigenenergies ǫk do not depend
on the internal state and are deduced from the ones at
t = 0− by replacing the mean field term ρg by ρg/2:

sk ≡ Uk + Vk =
1

Uk − Vk
=

(

Ek

Ek + ρg

)1/4

(30)

ǫk = [Ek(Ek + ρg)]1/2 , (31)

Note that this involves an approximation: In principle,
the Bogoliubov modes in internal state σ = a or b de-
pend on the actual number of particles Nσ in that state,
which has small ≈ 1/

√
N relative fluctuations since, after

the pulse, Nσ has a binomial distribution peaked around
N/2. Taking into account this effect changes the math-
ematical structure of the theory, since the Bogoliubov
amplitudes Uk and Vk, and thus the quasi-particle anni-
hilation operators ĉσk, would then depend on the total
number operator N̂σ in state σ, which is beyond the scope
of the present work. We nevertheless verified numerically
on the complete Bogoliubov theory (in the classical field
model) that this fixed-Bogoliubov-mode approximation
is extremely accurate both at short and long times, in-
troducing (for the typical parameters considered in our
figures) a relative error on ξ2 lower than 10−2 compa-
rable to our statistical error bars with 105 realizations.
Another important point is that the Bogoliubov quasi-
particles are not at thermal equilibrium after the pulse,
so that, for example, their mean occupation numbers are
not given by the Bose formula. At the level of the Bogoli-
ubov approximation, the quasi-particles do not interact
and cannot thermalize, the corresponding quasi-particle
creation operators evolve in Heisenberg picture with sim-
ple phase factors:

ĉσk(t) =
t>0

e−iǫkt/~ĉσk(0
+) (32)

for σ = a, b. The validity of this no-thermalization ap-
proximation is discussed in subsection IVD.
To express the evolution of the particle annihilation

operators â0 and b̂0 in the condensate modes, we use the
modulus-phase representation (23, 24). For the modu-
lus, one simply uses the conservation of the total atom
number in each internal state,

N̂σ0 = N̂σ − N̂σ⊥ = N̂σ −
∑

r

dV Λ̂†
σΛ̂σ (33)

so that N̂σ0 can be expressed in terms of the quasi-
particle operators ĉσk. For the phase, we use within each
internal state σ = a, b the equation of motion derived for
a single component in [16] and truncated at the level of
the Bogoliubov approximation:

d

dt
θ̂σ = −χ

(

N̂σ − 1

2

)

− χ

2

∑

r

dV
(

Λ̂2
σ + 2Λ̂†

σΛ̂σ + Λ̂†2
σ

)

(34)



7

where we have introduced χ ≡ g/(~V ). Replacing the

operators Λ̂σ by their modal expansion (29), one gets
contributions that do not oscillate in time, and contri-
butions such as ĉσkĉσ−k that oscillate in time (at the
frequency 2ǫk/~ in the example). As we shall need the
value of the phase operators at long times t (typically
ǫkt/~ ≫ 1) rather than the value of its derivative, we
argue as in [16] that the oscillating terms in (34), after
temporal integration, give a negligible contribution to the
squeezing parameter. We have checked this approxima-
tion analytically: The expression for ξ2 fully including
the oscillating terms in the phase difference operator is
given in the Appendix E, it corrects the approximate ex-
pression (60) of ξ2 by typically a sub-percent effect at
intermediate times, and by a vanishing amount at large

times. These oscillating terms in θ̂a− θ̂b are thus of little
physical relevance for the spin squeezing. Keeping only
the non-oscillating terms gives for the relative phase op-
erator of the two condensates at time t:

(θ̂a − θ̂b)(t) = (θ̂a − θ̂b)(0
+)− χt

[

N̂a − N̂b + D̂
]

(35)

D̂ =
∑

k 6=0

(Uk + Vk)
2(n̂ak − n̂bk)(0

+) (36)

where we have introduced the quasi-particle number op-

erators n̂σk = ĉ†σkĉσk, which are constants of motion in
the Bogoliubov approximation, see (32). The multimode

contribution D̂ (36) to the relative phase (35) will play a
central role in what follows. It is indeed because of this
term (neglected in the usual two-mode models) that the
squeezing parameter is bounded from below by a non-
zero value in the thermodynamic limit.
The last step is to relate the various operators at time

t = 0+ to their values just before the pulse. Since the
state of the system is known at t = 0−, this fully speci-
fies the “initial” conditions for the time evolution of the
operators after the pulse. The derivation and the more
precise results are given in the Appendix B. Here we give
the main conclusions. The initial value of the condensate
phase difference is, in the large N limit:

(θ̂a−θ̂b)(0+) =
i

2

{

(

N̂
(0)
a0

)−1/2

,
(

b̃
(0)
0

− h.c.
)

}

+O

(

1

N3/2

)

(37)

where b̃
(0)
0

≡ e−iθ(0)
a b̂

(0)
0

and { , } stands for the anti-
commutator. This results from the coherent mixing of
the initial condensate amplitude with the vacuum noise
fluctuations in the initially empty internal state b, in the
same spatial mode as the initial condensate in state a,
that is in the plane wave with zero wave vector. Simi-
larly, the quasi-particle annihilation operators just after
the pulse are coherent superpositions of the initial field
fluctuations, mainly thermal fluctuations Â in a and only
vacuum fluctuations B̂ in b. In the large N limit,

cσk(0
+) =

Âk ∓ B̂k√
2

+O

(

1

N1/2

)

(38)

where the − sign is for σ = a and the + sign is for σ = b.
The expression of Âk in terms of t = 0− operators of
the a internal state, and the expression of B̂k in terms of
t = 0− operators of the b internal state, naturally appear
in the calculations of Appendix B:

Âk≡(UkU
(0)
k −VkV (0)

k ) c
(0)
ak + (UkV

(0)
k −VkU (0)

k ) c
(0)†
a−k

(39)

B̂k≡ Uke
−iθ̂(0)

a b̂
(0)
k

− Vke
iθ̂(0)

a b̂
(0)†
−k

(40)

In Appendix C, it is pointed out that these number con-
serving operators obey bosonic commutation relations
and all their second moments are explicitly evaluated.

B. Double expansion method in the

thermodynamic and weakly interacting limit

We shall now apply the Bogoliubov theory developed
in section IVA to the calculation of the time-dependent
squeezing parameter ξ2 defined in (3). For the configu-
ration that we consider, symmetric under the exchange
of a and b, the mean spin is always aligned along x. The
minimum transverse spin variance is then

∆S2
⊥,min =

1

2

[

〈Ŝ2
y〉+ 〈Ŝ2

z 〉

−
√

(〈Ŝ2
y〉 − 〈Ŝ2

z 〉)2 + 〈{Ŝz, Ŝy}〉2
]

, (41)

where { , } is the anticommutator. From the definition

(2) it appears that Ŝz is a constant of motion, its variance
can thus be evaluated just after the pulse, at t = 0+.
According to (9,10), the pulse applies to the collective
spin a rotation of angle π/2 around y axis, so that

Ŝz(t > 0) = −Ŝ(0)
x and 〈Ŝ2

z 〉 =
N

4
(42)

To obtain the spin variance 〈Ŝ2
y〉 and the spin correlation

〈{Ŝy, Ŝz}〉, the challenge is to determine, as a function of

time, the operator Ŝy, or equivalently the antihermitian

part of the operator Ŝ+ introduced in (1) (in its discrete

version for the lattice model), since Ŝy = (Ŝ+−h.c.)/(2i).

In the expression of Ŝ+, one applies the splitting (22)
of the bosonic fields in the condensate and the non-
condensed contributions, one uses the modulus-phase
representation (23, 24) for the condensate part and one

introduces the number-conserving fields Λ̂σ for the non-
condensed part, to obtain:

Ŝ+ = e−i(θ̂a−θ̂b)

(

N

2
+ F̂

)

with (43)

F̂ =

√

(N̂a0 + 1)N̂b0 − N

2
+
∑

r

dV Λ̂†
aΛ̂b (44)

Guided by the numerical experiments in section III, we
have developed a systematic double expansion technique
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to determine 〈Ŝ2
y〉 and 〈{Ŝy, Ŝz}〉. The two small pa-

rameters controlling the large system size limit [i.e. the
thermodynamic limit (19)] and the Bogoliubov limit are

ǫsize =
1

N
and ǫBog ≡ 〈N̂nc〉

N
(45)

where 〈N̂nc〉 = 〈N̂ (0)
a⊥ 〉 is the mean number of non-

condensed particles in the initial state, which is indeed
much smaller than N for a weakly interacting gas at
T ≪ Tc. For the Bogoliubov expansion, we will keep
terms up to order one included in ǫBog; keeping higher
order terms would not be consistent with the use of the
quadratic Bogoliubov Hamiltonian. To determine the re-
quired order of the large system size expansion, we note
that 〈Ŝx〉 in the denominator of (3) remains close to its
t = 0+ value N/2 over the relevant time scales (that are
finite in the thermodynamic limit with ρgt/~ ≪ N1/2),
so that ξ2 ≈ 4∆S2

⊥,min/N . To have a vanishingly small

error on ξ2 in the thermodynamic limit, we will keep in
〈Ŝ2

y〉/N and 〈{Ŝy, Ŝz}〉/N terms up to order zero included
in ǫsize, that is we can neglect the contributions that tend
to zero when ǫsize → 0.
The systematic technique to determine the order of an

operator is to estimate its mean value and its standard
deviation in the quantum state of the system. This is
safer than a simple guess, in particular when the oper-
ator has a vanishing expectation value. A relevant ex-
ample is the operator D̂ defined in (36), that will play a
crucial role in the best achievable squeezing. After a su-
perficial look at (36), one may believe that D̂ scales as N
in the thermodynamic limit, since it involves a sum over
all modes, and that it scales as ǫBog in the Bogoliubov
limit since it involves the quasi-particle number operators
n̂σk. However, it is actually the differences n̂ak−n̂bk that
matter, and for the particular state resulting from a π/2
pulse applied on a gas initially in the a internal state. As
a consequence, the expectation value of D̂ is zero, it is the
variance of D̂ which scales as N , so D̂ scales as N1/2 in
the thermodynamic limit. To determine its scaling with
ǫBog, we keep the leading term (38) in the value of the
quasi-particle annihilation operator just after the pulse,
to obtain

D̂ ≃ −
∑

k 6=0

(Uk + Vk)
2(Â†

k
B̂k + B̂†

k
Âk) (46)

This scales with N as N1/2 since each term has a zero
mean. Intuitively, this scales with ǫBog as ǫ

1/2
Bog: B̂k is

of order unity since it corresponds to vacuum field fluc-
tuations in the initial empty state b, and Âk is of or-

der ǫ
1/2
Bog since it corresponds to the initial non-condensed

field fluctuations in state a. We thus conclude that

D̂ ≈ (NǫBog)
1/2 (47)

This is confirmed by the correlation functions of Â and B̂
given in the Appendix C, that allow an explicit calcula-
tion of 〈D̂2〉/N , which is indeed ≈ ǫBog, see Eqs.(61,62).

The same analysis is applied to the various operators
appearing in the antihermitian part of (43), writing for

simplicity F̂ = F̂R+iF̂I , where F̂R and F̂I are hermitian.
It is found in the Appendix D that

θ̂a − θ̂b ≈ 1

N1/2
(48)

F̂I ≈ (NǫBog)
1/2 (49)

F̂R ≈ NǫBog ± (NǫBog)
1/2 (50)

Contrarily to the first two operators, F̂R has a non-zero
expectation value, and the writing of its estimate respec-
tively corresponds to its mean value and its standard
deviation. It turns out that the fluctuations of F̂R are
negligible so that the operator can be replaced by its
mean value. The weak value of the phase difference op-
erator shows that its exponential in (43) can be expanded
to first order, which substantially simplifies the calcula-
tions. The final result, up to zeroth order included in
ǫsize and up to first order included in ǫBog, is

〈Ŝx〉 =
N

2

(

1 + 2
〈F̂R〉
N

)

(51)

〈Ŝ2
y〉
N

=
〈F̂ 2

I 〉
N

+ 〈(θ̂a − θ̂b)
2〉
(

N

4
+ 〈F̂R〉

)

−1

2
〈{F̂I , θ̂a − θ̂b}〉 (52)

〈{Ŝy, Ŝz}〉
N

= − 1

2N

(

N

2
+ 〈F̂R〉

)

×〈{N̂a − N̂b, θ̂a − θ̂b}〉 (53)

Note that these expressions hold independently of the ap-
proximation performed in the phase difference operator
(that neglects the oscillating terms).

C. Results of the expansion method for ξ2(t)

To obtain an expression for ξ2 in the double thermo-
dynamic and Bogoliubov limit, it remains to explicitly
evaluate (51,52,53) and to insert the result in (3,41). The
required operators have their expression given in useful
form in the Appendix D, and by (35,37,46) for the phase
difference operator.
We have first evaluated (51,52,53) at time t = 0+, and

we have checked that one recovers the exact relations
〈Ŝx〉(0+) = N/2, 〈Ŝ2

y〉(0+) = N/4 and 〈{Ŝy, Ŝz}〉(0+) =
0. At finite time, squaring (35), one realizes that the
crossed term, linear in time, has a zero expectation value
since

〈(θ̂a − θ̂b)(0
+)(N̂a − N̂b)〉 = 〈(θ̂a − θ̂b)(0

+)D̂〉 = 0 (54)

This is due to the fact that the phase difference operator
at t = 0+ is proportional to the antihermitian part iŷ of

e−iθ̂(0)
a b̂

(0)
0

, whereas N̂a − N̂b only involves the hermitian
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part x̂ and D̂ does not depend on that operator. As a
consequence, the spreading of the relative phase is purely
ballistic within our Bogoliubov approximation, that it
ignores the interactions among the quasi-particles

〈(θ̂a − θ̂b)
2〉 = 〈(θ̂a − θ̂b)

2〉(0+) + (χt)2〈(N̂a − N̂b + D̂)2〉
(55)

(the inclusion of these interactions within a quantum ki-
netic framework introduces a diffusive component in the
phase spreading [18]). Another simplification takes place,
for similar reasons,

〈F̂I(N̂a − N̂b + D̂)〉 ∈ iR (56)

so the last term of (52) reduces to its t = 0+ value. Using

(42), and the fact that 〈F̂R〉, 〈D̂2〉 and 〈{Ŝz, D̂}〉 are all
≈ NǫBog, and neglecting contributions in ǫ2Bog, we finally
obtain

〈Ŝ2
y〉 − 〈Ŝ2

z 〉
N

= τ2

(

1 +
〈D̂2〉
N

)

+
〈F̂R〉
N

(57)

〈{Ŝy, Ŝz}〉
N

= τ (58)

where we have introduced a dimensionless “time”

τ(t) ≡ ρgt

2~

(

1 +
2〈F̂R(t)〉 + 〈{Ŝz, D̂}〉

N

)

(59)

that is slightly renormalized by a time dependent contri-
bution of order ǫBog. The expectation values appearing
in (59) are given in the Appendix D, they are respectively
uniformly bounded in time and time independent. Note
that the long-time behaviors of (57,58) were expected: As

the squeezing dynamic occurs, Ŝy indeed grows quadrat-

ically in time while Ŝz stays constant.
Expanding (41) up to order one included in ǫBog at any

fixed τ finally gives the squeezing parameter as a function
of time in the thermodynamic limit (in particular for τ ≪
N1/2):

ξ2(t) ≃ 1− 4 〈F̂R〉
N

(τ +
√
1 + τ2)2

+
2
(

〈D̂2〉
N τ2 + 〈F̂R〉

N

)

(τ +
√
1 + τ2)

√
1 + τ2

(60)

As we show in Fig.4, the squeezing parameter ξ2(t) de-
creases in time essentially as in the two-mode model [this
is the first term in the right hand side of (60) without

the 〈F̂R〉/N term, see e.g. equation (52) in [11])] un-
til a renormalized time τ ≈ 1/

√
ǫBog ≫ 1 is reached,

when the multimode effects [the second term] start lim-
iting the squeezing. At such times, the contribution of
〈D̂2〉/N dominates over the one of 〈F̂R〉/N by a factor

≈ 1/ǫ2Bog, which shows that 〈D̂2〉/N constitutes the real
actor in the process of squeezing limitation.

D. Minimal squeezing and best squeezing time

From the central result (60) of the previous subsection,
it appears that the minimal squeezing ξ2min is reached in

0 20 40 60 80 100
τ

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ξ2

<D
2
> / N

Two-mode model

FIG. 4: (Color online) Black solid line: Squeezing parame-
ter in the thermodynamic and weakly interacting limit (60)
as a function of the renormalized time τ (59). Parameters:

kBT/ρg = 1 and
√

ρa3 = 10−3. Black dashed line: asymp-
totic value (61). Red solid line: two-mode model prediction.

the thermodynamic and Bogoliubov limits at “infinite”
time and it is given by

ξ2min =
〈D̂2〉
N

(61)

As explained above (47), an explicit calculation gives:

ξ2min=

∫

d3k

(2π)3
s4k
2ρ

[

(

n
(0)
k +

1

2

)

(

(s
(0)
k )2

s4k
+

s4k

(s
(0)
k )2

)

− 1

]

(62)
where we have introduced the mean occupation numbers

n
(0)
k = 1/[exp(βǫ

(0)
k )−1] of the Bogoliubov quasi-particles

in the initial (t = 0−) thermal equilibrium gas in internal
state a. The prediction of (62) is shown as a dashed line
in Fig.3 and as a full line in Fig.5. In Fig.5 we show that
the minimal squeezing parameter given by (62) is always
lower than the non condensed fraction 〈Nnc〉/N where

〈Nnc〉 ≡ 〈N̂ (0)
a⊥ 〉 is the mean number of non condensed

atoms in component a before the pulse:

〈Nnc〉 =
∑

k 6=0

[

(

U
(0)
k

)2

+
(

V
(0)
k

)2
]

n
(0)
k +

(

V
(0)
k

)2

(63)

Asymptotically, for kBT ≫ ρg (but always T ≪ Tc)
the minimal squeezing parameter ξ2min reaches the non
condensed fraction. In the opposite limit, for kBT/ρg →
0, the squeezing tends to a constant value.

ξ
2 (T=0)
min
√

ρa3
=

√

8

π

[

19

6

√
2− 3

2
ln(

√
2 + 1)− π

]

≃ 0.02344

(64)

Although non zero, ξ
2 (T=0)
min is very small for practical

purposes. Indeed ρa3 < 10−6 in present squeezing exper-

iments so that (64) predicts ξ
2 (T=0)
min

<∼ 2× 10−5.
The fact that the minimal squeezing is obtained at

infinite time is a limitation of our Bogoliubov approach,
that neglects the interactions between the quasi-particles
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FIG. 5: (Color online). Minimal squeezing (black solid line)
ξ2min and non condensed fraction (red dashed line) 〈Nnc〉/N ,

both divided by
√

ρa3, as a function of kBT/ρg.

and effectively assumes that the corresponding collision
time is diverging, see discussion below. However, since
the numerical squeezing curve ξ2(t) is quite flat around
its minimum (see Fig.8), it suffices in practice to de-
termine a “close to best” squeezing time tη defined as
ξ2(tη) = (1 + η)ξ2min, where η > 0. Then, according to
(60) expanded for large τ up to order τ−2 included, tη is
finite and given for η ≪ 1 by

ρg

~
tη ≃ 1

√

ηξ2min

(65)

The “close to best” squeezing time tη (65) for η = 0.2 is
shown in Fig.6 as a full line and compared to simulations
(filled symbols).
An important issue is that of thermalization that

brings the system back to equilibrium after the pulse.
Thermalization is neglected in the Bogoliubov theory and
in our analytics but it is included in the classical field
simulations. It is thus possible to reach ξ2 = (1 + η)ξ2min

only if tη given by (65) is shorter than the thermalization
time:

tη < ttherm (66)

We show the thermalization times, that we extract from
the classical simulations as explained in [9], as empty
symbols in Fig.6. For the points we considered they are
indeed longer than the close to best squeezing times and
the condition (66) is satisfied. We can also estimate ttherm
from Landau-Beliaev damping rates of Bogoliubov modes
[17, 35]. The damping rate of the mode q is

Γq =
g

2π2~ξ3
(

Γ̌L
q + Γ̌B

q

)

(67)

where the healing length ξ is defined by ρg = ~
2/(2mξ2)

and the rescaled Landau and Beliaev damping rates Γ̌L
q

and Γ̌B
q are dimensionless functions of kBT/ρg only, given

0,1 1 10
k

B
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a3 )1/
4 // h

FIG. 6: Universal scaling of the “close to best” squeezing time
tη with η = 0.2. Filled symbols: classical field simulations

with
√

ρa3 = 1.32 × 10−2 (squares), 1.94 × 10−3 (disks) and
√

ρa3 = 4.317× 10−4 (triangles). Solid line: analytical result
(65) using (21). The empty symbols (squares, circles and
triangles) show the thermalization times ttherm extracted from
the simulations as explained in [9]. Parameters are as in Fig.3.
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FIG. 7: Scaling with (ρa3)−1/2 of the thermalization times

extracted from the classical field simulations.
√

ρa3 = 1.32×
10−2 (squares), 1.94×10−3 (circles) and

√

ρa3 = 4.317×10−4

(triangles).

e.g. in equations (A7) and (A13) of [17]. Concentrating
of the pre-factor in (67), for fixed kBT/ρg, this gives

ρgttherm
~

≃ ρg

~Γq
=

√

π

128

(

Γ̌L
q + Γ̌B

q

)−1 1
√

ρa3
(68)

The scaling with (ρa3)−1/2 of the thermalization time is
shown in Fig.7. On the other hand, the close to best
squeezing time tη scales as

ρgtη
~

∝ 1

(ρa3)1/4
so that

tη
ttherm

∝ (ρa3)1/4 (69)

and (66) is satisfied in the weakly interacting limit.
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V. PHYSICAL INTERPRETATION

A. Limit to the squeezing

In the spin squeezing scheme with condensates that
we consider, the useful quantum correlations are built
through mean field interactions that introduces a phase
shift for each atom that depends on the collective variable
Na −Nb. In the collective spin picture, we can say that
in a given realization of the experiment, the component
Ŝy becomes an enlarged copy of Ŝz so that correlations
build up in the Sy-Sz plane, orthogonally to mean spin.
To explain this fact in a simple reasoning, we can identify

Ŝy with the condensate relative phase: Ŝy ≃ N
2 (θ̂a − θ̂b)

and look at equation (35) that we rewrite here replacing
χ by its expression χ = g/(~V ):

θ̂a − θ̂b = (θ̂a − θ̂b)(0
+)− ρgt

~N

[

N̂a − N̂b + D̂
]

(70)

Initially, at t = 0, the phase difference (θ̂a − θ̂b)(0
+) is

of order 1/
√
N and Na − Nb is of order

√
N . As soon

as ρgt/~ ≫ 1, the time dependent term in (70) domi-
nates over the initial condition. In the absence of the
multimode contribution to the phase difference (i.e. for

D̂ = 0), θ̂a − θ̂b and thus Ŝy become an enlarged copy

of Ŝz = (N̂a − N̂b)/2. This is the scenario in the two-

mode theory. Correlations between Ŝy and Ŝz becomes
perfect in the long time limit. In this case there is no
limit to the squeezing and ξ2min → 0 when N → ∞. On

the other hand, in the presence of D̂ this is not possible.
Looking at squeezing in the long time limit where where
|Ŝy| ≫ |Ŝz| and keeping only the leading (0th) order in
1/t in equation (60), we can write

ξ2(t) ≃ 〈Ŝ2
y〉〈Ŝ2

z 〉 − 〈{Ŝy, Ŝz}/2〉2

〈Ŝ2
y〉〈Ŝ2

z 〉
≃ 〈D̂2〉

N
= ξ2min (71)

The only contribution left in ξ2min is the variance of D̂ that
is the part of θa− θb that is not proportional to Na−Nb.
But what is the physical origin of D̂, given by (36) ? It
comes from the fact that the mean field interaction for
a condensed atom with and another condensed atom or
with an atom in an excited mode is not the same. This is
particularly clear in the Hartree-Fock limit where Vk → 0
and Uk → 1. In this case D̂ reduces to N̂a⊥− N̂b⊥ that is
the non-condensed atom number difference. In this limit
we have

(

θ̂a − θ̂b

)

HF
≃ − ρgt

~N

[

N̂a0 − N̂b0 + 2
(

N̂a⊥ − N̂b⊥

)]

(72)
the factor 2 is the Hartree-Fock factor that doubles the
effective strength of the condensate-non condensate in-
teraction with respect to the condensate-condensate in-
teraction.

B. Squeezing of the condensate mode

In Fig.8 (a) and (b), for two temperatures: kBT ≫ ρg
and kBT < ρg, we compare the squeezing of the total
field ξ2, that we have been considering so far, with the of
the condensate mode ξ20 , constructed with a spin operator

involving the condensate mode only: Ŝ0x + iŜ0y = â†
0
b̂0

and Ŝ0z = N̂a0 − N̂b0:

ξ20 =
Na0∆S

2
0⊥,min

|〈S0 〉|2
, (73)

This is the squeezing that would me obtained by “select-
ing” only the condensed particles for the squeezing mea-
surement. Clearly ξ2 ≪ ξ20 in both graphs. Particularly
striking is the case in Fig.8(b) where ξ20min/ξ

2
min ≃ 60

while the non condensed fraction is only 〈Nnc〉/N = 0.02.
We explain here why this is the case. In order to have
condensate squeezing we need correlations between Ŝ0y,

that is still proportional to θ̂a − θ̂b, and Ŝ0z. In the
Hartree-fock limit, Fig.8 (a), one thus expects ξ20min =
4ξ2min ≃ 4〈Nnc〉/N where 〈Nnc〉 = Var(Na⊥−Nb⊥) is the
non condensed fraction in component a before the pulse.
In the Bogoliubov limit, D̂ 6= N̂a⊥ − N̂b⊥. Then for the
squeezing of the condensate we have

ξ20min =
〈Nnc〉+ 〈D̂2〉+ 〈{D̂, (N̂a⊥ − N̂b⊥)}〉

N
(74)

In practice at low temperature kBT ≪ ρg one can have
〈D̂2〉 ≪ 〈Nnc〉 and ξ20min can exceed ξ2min by more than
one order of magnitude although the non-condensed frac-
tion is very small. This is illustrated in Fig.8 (b). Be-
sides the classical field simulations, in Fig.8 (a) and (b)
we also show as dashed curves results obtained in the Bo-
goliubov approximation as follows. Before the pulse, we
start with a thermalized field sampling (12). After the
pulse, we evolve the condensate phase with the classical
equivalent of (34), also performing in that equation the
approximation of neglecting the oscillating terms, and
the Bogoliubov amplitudes with (32). The condensate
atom numbers are obtained by the classical equivalent of
(33). Note that, for an accurate the condensate squeez-
ing, it is important to keep the oscillating terms inNa⊥(t)
and Nb⊥(t).

VI. CONCLUSION

We have shown that, in a multimode theory, the spin
squeezing that can be obtained dynamically using inter-
actions in condensates is finite in the thermodynamic
limit. This is contrary to the results of the currently used
two-mode theory that predicts an infinite metrology gain
for N → ∞. Using a convenient reformulation of the Bo-
goliubov theory, we could calculate the temperature and
interactions dependent limit of the spin squeezing param-
eter analytically for a spatially homogeneous system. We



12

0 20 40 60 80 100
ρgt//h

10
-4

10
-3

10
-2

10
-1

10
0

ξ2    
an

d 
  ξ

02

(a)

0 50 100 150 200 250
ρgt//h

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ξ2    
an

d 
  ξ

02

(b)

FIG. 8: (Color online). Condensate squeezing ξ20 (blue up-
per curves) and squeezing of the total field ξ2 (red mid-
dle curves) as a function of time. Full lines: classical field
simulation, Dashed lines: Bogoliubov (see text), The two-
mode result (black lowest dotted lines) is shown for com-
parison. Upper graph: kBT/ρg = 7.83, 〈Nnc〉/N = 0.05,

N = 983040, ρg = 693.6~2/mV 2/3,
√

ρa3 = 4.17 × 10−4.
Lower graph: kBT/ρg = 0.5, 〈Nnc〉/N = 0.02, N = 2733750,

ρg = 13715.9~2/mV 2/3,
√

ρa3 = 1.32× 10−2.

performed non perturbative classical field simulations to
test our analytical results including interactions among
Bogoliubov modes and thermalization that are neglected
in the perturbative treatment.

At temperatures kBT ≪ ρg the limit that we find for
the squeezing parameter optimized over time, ξ2min, is
very small and in particular much smaller than what is
currently measured in present experiments. Neverthe-
less it represent the fundamental limit of this squeez-
ing scheme and we hope that the temperature dependent
limitation to spin squeezing will be soon within reach
of experiments. We explained that the physical origin
to this limit of the squeezing lies in the difference of
mean field interactions between condensate-condensate
and condensate-non condensed atoms.
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Appendix A: Some useful relations

Here we collect useful commutation relations and recall
the expression of the Bogoliubov quasi-particle annihila-
tion operators ĉσk after the mixing pulse in terms of the
atomic annihilation and creation operators.
Commutation relations: In our lattice model, the field
operators obey discrete bosonic commutation relations:

[ψ̂σ(r), ψ̂
†
σ′ (r

′)] =
δr,r′ δσ,σ′

dV
∀σ, σ′ = a, b (A1)

The hermitian condensate number and phase operators
obey, for σ, σ′ = a, b:

[N̂σ0, θ̂σ′ ] = iδσ,σ′ (A2)

The fields of the non-condensed modes, orthogonal to the
condensate wavefunction, obey

[ψ̂σ⊥(r), ψ̂
†
σ′⊥(r

′)] =
δσ,σ′δr,r′

dV
− δσ,σ′

V
(A3)

The non-condensed fields do not commute with the the
total atom number but they commute with all the con-
densate operators:

[N̂σ0, ψ̂σ′⊥(r)] = [θ̂σ, ψ̂σ′⊥(r)] = 0 (A4)

The number-conserving operators Λ̂σ obey the same com-
mutation relations (A3) as the non-condensed fields, e. g.

[Λ̂σ(r), Λ̂
†
σ(r

′)] =
δr,r′

dV
− 1

V
∀σ = a, b (A5)

but, contrarily to them, they commute with the total
atom number operators in each component:

[

Λ̂σ(r), N̂σ′

]

= 0 ∀σ, σ′ = a, b (A6)

Their commutation relations with the condensate opera-
tors are, for σ, σ′ = a, b:

[

Λ̂σ(r), θ̂σ′

]

= 0 ,
[

Λ̂σ(r), N̂σ′0

]

= −Λ̂σ(r) δσ,σ′

(A7)

Finally, from the relation e−iθ̂af(N̂a0) e
iθ̂a = f(N̂a0 − 1)

resulting from (A2), for a generic function f , we have in

the large N , and thus large N̂a0 limit:

[
√

N̂a0, e
iθ̂a

]

= −eiθ̂a 1

2
√

N̂a0

+O

(

1

N3/2

)

(A8)
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Bogoliubov transformations: By projecting (29) over
the plane waves, we obtain after the pulse (t > 0):

âk = eiθ̂a
(

ĉak Uk + ĉ†a−k
Vk

)

(A9)

b̂k = eiθ̂b
(

ĉbk Uk + ĉ†b−k
Vk

)

(A10)

where âk and b̂k annihilate an atom with internal state
a, b and wave vector k. The inverse relations are useful:

ĉak = e−iθ̂a âk Uk − â†−k
eiθ̂aVk (A11)

ĉbk = e−iθ̂b b̂k Uk − â†−k
eiθ̂bVk (A12)

with Uk, Vk given by (30).

Appendix B: After-pulse values of the condensate

phases and quasi-particle annihilation operators

To determine the condensate phase operator for the
internal state σ at time t = 0+ in terms of operators
at t = 0−, we use the fact resulting from (9,10) that

a0(0
+) = [a

(0)
0

− b
(0)
0

]/
√
2 and b0(0

+) = [a
(0)
0

+ b
(0)
0

]/
√
2.

Then the definition (23) leads to

eiθ̂σ(0
+) = eiθ̂

(0)
a

(
√

N̂
(0)
a0 ∓ b̃

(0)
0

) ∣

∣

∣

∣

√

N̂
(0)
a0 ∓ b̃

(0)
0

∣

∣

∣

∣

−1

(B1)
where the upper sign (−) is for σ = a and the lower sign

(+) for σ = b, the modulus operator of an operator X̂ is

|X̂| ≡
(

X̂†X̂
)1/2

(B2)

and we have introduced the number conserving operator

b̃
(0)
0

= e−iθ̂(0)
a b̂

(0)
0

. By expanding in the large N̂
(0)
a0 limit,

we obtain :

θ̂σ(0
+)− θ̂(0)a = Herm

[

∓ŷ
(

N̂
(0)
a0

)−1/2

−1

2
{x̂, ŷ}

(

N̂
(0)
a0

)−1

+O

(

1

N3/2

)]

(B3)

We have introduced the decomposition b̃
(0)
0

= x̂ + iŷ,
where x̂ and ŷ are hermitian operators, the usual notation
{ , } for the anticommutator and the notation Herm X̂ =

(X̂+X̂†)/2 for the hermitian part of an operator X̂. This
leads to (37).
To determine the quasi-particle annihilation operators

ĉσk at time t = 0+ in terms of operators at time t = 0−,
we use the relations (A11,A12) to express them in terms
of the atomic creation and annihilation operators at time
t = 0+, that are in turn expressed in terms of their values
at 0− thanks to (9,10). One also needs the expansion

exp[iθ̂σ(0
+)] = exp[iθ̂

(0)
a ][1 + i(θ̂σ(0

+)− θ̂
(0)
a ) + O(1/N)]

deduced from (B3) and the Hausdorf formula. With the

short-hand notations ã
(0)
k

= exp(−iθ̂(0)a )â
(0)
k

and b̃
(0)
k

=

exp(−iθ̂(0)a )b̂
(0)
k

:

ĉσk(0
+) =

Ukã
(0)
k
−Vkã(0)†−k√
2

∓Ukb̃
(0)
k
−Vkb̃(0)†−k√
2

−i
[

θ̂σ(0
+)

−θ̂(0)a

]

[

Ukã
(0)
k
+Vkã

(0)†
−k√

2
∓ Ukb̃

(0)
k
+Vk b̃

(0)†
−k√

2

]

+O

(

1

N

)

(B4)

where the upper, − sign is for σ = a and the lower, +
sign if for σ = b. One then introduces the operators

Âk = Ukã
(0)
k
−Vkã(0)†−k

and B̂k = Uk b̃
(0)
k
−Vkb̃(0)†−k

(B5)

This directly gives (40). Expressing ã
(0)
k

and ã
(0)†
−k

in
terms of the pre-pulse quasi-particle annihilation and cre-
ation operators thanks to the t = 0− equivalent of (A9),
gives (39). Restricting the accuracy of (B4) to O(1) in-
cluded, gives (38).

Appendix C: Correlations of Âk and B̂k

Some useful properties of the operators defined in
(39,40) [or equivalently in (B5)] are given here. The com-
mutation relations of these operators are bosonic. This
means that the only non-zero commutators (considered
among all possible values of k) are

[

Âk, Â
†
k

]

=
[

B̂k, B̂
†
k

]

= 1 (C1)

To calculate averages of products of Â and B̂ operators
(here at equal times) one can use the Wick theorem as the

initial density operator for {c(0)ak} and {b(0)
k

} is a Gaus-

sian. All the non-zero correlations involving the Âk can
be deduced from

〈Â†
k
Âk〉 =

1

2

(

n
(0)
k

+
1

2

)

[

s
(0)2
k

s2k
+

s2k

s
(0)2
k

]

− 1

2
(C2)

〈ÂkÂ−k〉 =
1

2

(

n
(0)
k

+
1

2

)

[

s
(0)2
k

s2k
− s2k

s
(0)2
k

]

(C3)

with s
(0)
k and sk defined by (28,30). All the non-zero

correlations involving the B̂k can be deduced from

〈B̂†
k
B̂k〉 = V 2

k =
1

4

(

s2k +
1

s2k

)

− 1

2
(C4)

〈B̂kB̂−k〉 = −UkVk = −1

4

(

s2k −
1

s2k

)

(C5)

All the crossed second moments, for example of the form
〈ÂB̂〉 or 〈Â†B̂〉, are zero.
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Appendix D: Double expansion of some operators

As explained in the main text, to have a vanishing er-
ror on the squeezing parameter ξ2 in the thermodynamic
limit, it suffices to determine the operators Ŝy and Ŝz up

to ≈ N1/2 included.
Case of Ŝz: The operator Ŝz = (N̂a − N̂b)/2 is a con-
stant of motion, it can be evaluated at t = 0+, and re-
lated with (9,10) to the fields at t = 0−. Then one uses
the modulus-phase representation for the condensate op-
erator in a and one introduces the number-conserving

fields Λ̂
(0)
a and e−iθ̂(0)

a ψ
(0)
b⊥ for the non-condensed modes,

whose Fourier components can be expressed in terms of
the operators Âk and B̂k through (B5). The only ap-
proximation is then to neglect the commutator of ŷ with

(N̂
(0)
a0 )1/2, which is O(1/N3/2), to obtain

N̂a − N̂b ≃ −
{

x̂,

√

N̂
(0)
a0

}

−
∑

k 6=0

[

(U2
k + V 2

k )

×(Â†
k
B̂k + ÂkB̂

†
k
) + 2UkVk(Â

†
k
B̂†

−k
+ ÂkB̂−k)

]

(D1)

We recall than x̂ and ŷ are defined below (B3). The

operator Ŝz has a zero expectation value, and a variance
exactly equal to N/4, as already found by a more direct
method in (42), so we reach the estimate

Ŝz ≈ N1/2 (D2)

With more lengthy calculations, we now deduce Ŝy

from the antihermitian part of Ŝ+ written in the form

(43) and we then obtain Ŝ2
y and {Ŝy, Ŝz}.

The phase difference: We first evaluate the scaling of

the phase difference θ̂a − θ̂b in the thermodynamic limit
from the writing (35). The contribution of the phase
difference at time t = 0+ scales as 1/N1/2 according to

(37). The contribution proportional to N̂a − N̂b scales in
the same way, since the total number difference ≈ N1/2

for the binomial distribution after the π/2 pulse. The
same conclusion holds for the contribution proportional
to D̂, see (47). We reach the important conclusion that,
for a finite time t in the thermodynamic limit,

θ̂a − θ̂b ≈
1

N1/2
(D3)

As N
2 + F̂ is O(N), it suffices to expand the exponential

in (43) to first order included in the phase difference to
obtain

Ŝ+ =

[

1− i(θ̂a − θ̂b) +O

(

1

N

)](

N

2
+ F̂R + iF̂I

)

(D4)

where we have split F̂ = F̂R + iF̂I in terms of the hermi-
tian operators F̂R and F̂I .
The antihermitian part of F̂ : The operator F̂I di-
rectly contributes to the antihermitian part of Ŝ+, so it

has to be evaluated up to ≈ N1/2 included. Its exact
expression is

F̂I =
1

2i

∑

r

dV
(

Λ̂†
aΛ̂b − Λ̂†

bΛ̂a

)

=
1

2i

∑

k 6=0

(

ĉ†akĉbk − h.c.
)

(D5)
This corresponds to a complex scalar product between

the bicomponent fields (Λ̂a, Λ̂
†
a) and (Λ̂b, Λ̂

†
b). The Bo-

goliubov equations of motion for spin state σ conserve
this scalar product [31]. Due to the a − b symmetry,
the coefficient of Bogoliubov equations of motion are the
same for the two internal states, and F̂I is a constant
of motion within Bogoliubov theory. We can thus eval-
uate it at time 0+, taking into account the corrections
to ĉkσ(0

+) due to the small condensate phase change in-
duced by the pulse, as in (B4):

F̂I ≃ 1

2i

∑

k 6=0

(Â†
k
B̂k − B̂†

k
Âk)−

1

2







ŷ,
N̂

(0)
a⊥ − N̂

(0)
b⊥

√

N̂
(0)
a0







(D6)

where the operator ŷ is defined below (B3). This correc-
tion involving ŷ is important to ensure that 〈S2

y(0
+)〉 =

N/4 as it should be. The operator F̂I has a zero ex-
pectation value, this is why the same phenomenon as for
the operator D̂ occurs. Calculating its variance, which is
dominated by the contribution of the sum over k in (D5),

〈F̂ 2
I 〉 =

〈N̂ (0)
a⊥ 〉
4

=
1

4

∑

k 6=0

V
(0)2
k + n

(0)
k

[

U
(0)2
k + V

(0)2
k

]

(D7)
we get as in (47) the estimate

F̂I ≈ (NǫBog)
1/2 (D8)

The hermitian part of F̂ : Contrarily to F̂I , the op-
erator F̂R alone cannot contribute to the antihermitian
part of Ŝ+, it has to be multiplied at least once by the

phase difference operator. To obtain Ŝy up to ≈ N1/2

included, we thus need F̂R up to ≈ N included. To this
end we decompose N̂σ0 after the pulse, for σ = a or b, as
follows:

N̂σ0 =
N

2
+ ˆδNσ , ˆδNσ =

(

N̂σ − N

2

)

− N̂σ⊥ (D9)

and we expand the square root in F (44) in the large N
limit to obtain :

√

(N̂a0 + 1)N̂b0 =
N

2
+

1

2
(1 + ˆδNa + ˆδNb)

− (1 + ˆδNa − ˆδN b)
2

4N
+ . . . (D10)

In the second contribution in the right-hand side of

(D10), we can replace N̂a+ N̂b with N . Since ˆδNa− ˆδNb
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scales as N1/2, the third contribution scales as N0 and
is thus negligible at the required order. The terms in the
. . . are of too high order in ǫsize or in ǫBog to be relevant.
We conclude that, for our purposes, we can take

F̂R ≃ −1

2

∑

r

dV (Λ̂†
a − Λ̂†

b)(Λ̂a − Λ̂b) (D11)

By expanding the fields Λ̂a and Λ̂b over the Bogoliubov
modes, we obtain F̂R in terms of the quasi-particle anni-
hilation operators ĉσk at time t > 0. Using (32) we can
relate these operators to their value at time 0+, that we
can replace by the leading order expression (38) to obtain

F̂R ≃ −
∑

k 6=0

{

V 2
k + (U2

k + V 2
k )B̂

†
k
B̂k

+UkVk

[

e−2iǫkt/~B̂kB̂−k + h.c.
]}

(D12)

Its expectation value is

〈F̂R〉 = −
∑

k 6=0

4U2
kV

2
k sin2 ωkt (D13)

with ωk = ǫk/~. Even if the B̂’s correspond to vacuum
fluctuations, we still find (replacing the sum by an inte-
gral over R3, which is convergent, and making the change
of variable k = K/ξ, where ξ is the healing length) that

〈F̂R〉/N scales as (ρa3)1/2, which is O(ǫBog). For sim-
plicity, we shall forget about this detail and consider that
〈F̂R〉 ≈ NǫBog. Using Wick’s theorem we have also de-

termined the variance of F̂R,

Var F̂R =
∑

k 6=0

8U2
kV

2
k sin2 ωkt

(

1 + 4U2
kV

2
k sin2 ωkt

)

(D14)
that scales as NǫBog (with the same subtelty) in the ther-
modynamic limit at finite times (it increases linearly with
time). We summarize these estimates by the writing

F̂R ≈ NǫBog ± (NǫBog)
1/2 (D15)

As we said, we need to estimate F̂R up to ≈ N included.
This means that the fluctuations of F̂R, that are N1/2

times smaller, are negligible and the operator F̂R can be
replaced by its mean value 〈F̂R〉.
Operators Ŝy, etc: From the antihermitian part of
(D4), and from the estimates (D3,D15, D8), we can ap-

proximate Ŝy up to the terms ≈ N1/2 included as

Ŝy ≃ F̂I −
1

2

{

θ̂a − θ̂b,
N

2
+ 〈F̂R〉

}

(D16)

Squaring this expression, and neglecting terms of order
larger than one in ǫBog, we finally obtain the expecta-

tion value 〈Ŝ2
y〉/N with an accuracy up to ≈ ǫ0size and

≈ ǫBog included, see (52). Taking the anticommutator

of (D16) with Ŝz and then the expectation value gives

(53), with the additional simplification that 〈F̂I Ŝz〉 is
purely imaginary and cancels out in the anticommutator
[this results from (D1) and (D6), and in particular from
〈ŷx̂〉 = 1/(4i)].
To conclude this Appendix, we give an expectation

value useful for subsection IVC:

〈{Ŝz, D̂}〉 =
∑

k 6=0

s2k

(

〈Â†
k
Âk〉 − V 2

k

)

(D17)

where the Â†Â expectation value is given by (C2).

Appendix E: With the oscillating terms in θ̂a − θ̂b

As announced above (35), we give here the analytical
result for ξ2(t) (with the double expansion technique)
without performing the approximation used in the main
text of the paper. The temporally oscillating terms in the
phase difference operator are now kept, which amounts
to replacing D̂ in (35) with D̂tot = D̂ + D̂osc with the
oscillating contribution

D̂osc(t) = −
∑

k 6=0

s2k
sinωkt

ωkt

(

e−iωktÂkB̂−k + h.c.
)

(E1)

where ωk = ǫk/~. In the renormalized time (59) one

has also to replace D̂ with D̂tot, which involves the new
expectation value

〈{Ŝz, D̂osc}〉 =
∑

k 6=0

s2k
sin 2ωkt

2ωkt

(

〈ÂkÂ−k〉+ UkVk

)

(E2)

that will thus be added to the contribution (D17) [see

(C2) for the Â†
k
Â−k expectation value]. One can show

that t〈{Ŝz, D̂osc}〉 is uniformly bounded in time, so it
contributes to τ as a time dependent small temporal shift.
The result (60) is replaced by

ξ2tot(t) ≃
1− 4 〈F̂R〉

N

(τ +
√
1 + τ2)2

+
2
(

〈D̂2
tot〉
N τ2 + 〈F̂R〉

N + ζ(t)
)

(τ +
√
1 + τ2)

√
1 + τ2

(E3)

As expected, again, D̂ was replaced by D̂tot. There is also
an extra term, ζ(t), which is simply the value of the last
term of (52) at time t minus its value at time 0+. This
difference is no longer zero, because (56) no longer holds

when D̂ is replaced with D̂tot, since D̂tot has imaginary
components. We find

Nζ(t) = −
∑

k 6=0

sin2 ωkt
ρg

~ωk
s2kU

(0)
k V

(0)
k

(

n
(0)
k +

1

2

)

(E4)

Note that ζ(t) is uniformly bounded in time, as 〈F̂R〉/N ,
it is thus not particularly relevant.
More significant deviations may come from the occur-

rence of 〈D̂2
tot〉 that differs from the original 〈D̂2〉 by the
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two terms

〈{D̂, D̂osc}〉=
∑

k 6=0

sin 2ωkt

2ωkt

(

s
(0)2
k − s8k

s
(0)2
k

)

(n
(0)
k +

1

2
)(E5)

〈D̂2
osc〉=

∑

k 6=0

(

sinωkt

ωkt

)2

s4k

[

(U2
k + V 2

k )〈Â†
k
Âk〉

+U2
k − 2UkVk〈ÂkÂ−k〉 cos 2ωkt

]

(E6)

These two terms however are O(ǫBog/τ
2) in the long time

limit. At the relevant times τ ≈ 1/ǫ
1/2
Bog, where the mul-

timode nature of the field starts limiting the squeezing,
their contributions to ξ2tot are O(ǫ

2
Bog) and negligible.

To summarize, the inclusion of the non-oscillating
terms in the phase difference operator does not change at
all the long time limit of ξ2 (which, importantly, is its in-
fimum in the Bogoliubov approximation): Eq. (61) is un-
changed. At intermediate times, it gives small deviations.
For the extreme case kBT/ρg = 10 and (ρa3)1/2 = 10−3,
where the non-condensed fraction reaches 10%, we find
a maximal relative deviation of 2% between ξ2(t) of (60)
and the more accurate ξ2tot(t), at a time ρgt/~ ≃ 1.5 when
ξ2 is still a factor ≃ 4 above its minimal value ≃ 0.1.
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