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Abstract

The aim of the present study was to predict damage to masonry by com-
bining structural analysis and homogenization methods. In the case of a
masonry structure composed of bricks and mortar, a third material is as-
sumed to exist, which is a mixture of the two materials sandwiched between
the other two. This new layer has a small thickness, a low stiffness and a
given damage ratio. The mechanical problem set by this masonry, which
was initially a 3-D problem, is solved numerically in 2-D terms using finite
element methods and modeling the three materials: brick, mortar and the
interface material defined above. The properties of the third material are
obtained by performing the following three steps: (i) first an exact homoge-
nization of a brick/mortar laminate defining a first homogeneous equivalent
medium (HEM-1) is performed. (ii) Secondly, we assume the HEM-1 to be
damaged and apply the Kachanov model to assess the global behavior of the
damaged HEM-1, thus defining a second equivalent homogeneous medium
denoted HEM-2. (iii) Thirdly, asymptotic analysis is performed to model
HEM-2 as an interface or a joint. The properties of this joint are deduced
from those of the HEM-2 material. This interface is modeled numerically
with connector finite elements.
This method is applied to two cases: a triplet of full bricks and a triplet
of hollow bricks subjected twice to shear loading. The numerical results
obtained are compared with experimental data available in the literature.

Key words: masonry structure, interface damage, homogenization,
asymptotic analysis, finite element method.
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1. Introduction

Traditionally, as in ancient Greece and Egypt, people have always built
their homes with natural materials available nearby, such as stones and
bricks, in particular. Masonry is therefore one of the oldest construction ma-
terials. Masonry is still commonly used nowadays to build houses because
of its qualities of strength, solidity, durability and fire resistance, and its
elegant appearance, etc. However, masonry, which is not generally thought
to be a highly technological material, shows highly complex behaviour, due
in particular to the interactions between the components (mortar, bricks,
concrete blocks and stones) and the anisotropy induced by the direction of
the joints, which are a source of weakness. Masonry structures were classi-
cally designed on the basis of empirical rules. Modern virtual methods of
design developed only quite recently. In particular, the structures built long
ago were extremely stable because they were massive. In modern masonry
buildings the walls are very thick for economic reasons and the stability has
to be studied from the theoretical point of view, especially when wind or
earthquakes are liable to occur. The strength of the masonry then becomes
more critical and it is necessary to study the solidity of the structure using
fine models and numerical simulations as in the case of concrete and steel
structures. Other problems such as cracks are intolerable for the occupants
of buildings, and preventing this problem also requires more detailed studies
on the design of masonry structures.

In this paper, we deal with the resistance of masonry to in-plane shear
forces. It is classically held that the seismic vulnerability of masonry build-
ings depends strongly on their resistance to shear forces. It is therefore of
great interest to model and test the shear responses of building components
subjected to loading of this kind, especially cyclic loading. These responses
have generally been characterized by a peak load, loss of rigidity and energy
dissipation. To summarize considerably, two methods of modeling masonry
structures have been used so far.

The first method involves macroscopic models, in which the wall is as-
sumed to be a single structural element characterized by a non linear response
when it is exposed to shear forces [1, 2, 3, 4, 5, 6, 7, 37]. These models, which
are generally based on the use of homogenization techniques, usually take the
properties of the materials and the bonding between the various components
into account [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

On the other hand, some models have been developed for predicting the
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evolution of damage to the interface between two initially bonded deformable
bodies [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 36, 38]. These
models are based mostly on phenomenological approaches. In this paper, an
original multi-level model for interfaces based on homogenization techniques
is presented, which takes the characteristics of the masonry into account.

The first part of this paper deals with the mechanical modeling approach
used, and in particular with the model developed. The multi-level approach
used is described. This approach takes the mechanical characteristics of the
mortar and bricks, the presence of micro-cracks and the thickness of the
interface into account. In the second part, the numerical procedure used and
implemented using a finite element software program is presented and some
numerical examples are given and compared with experimental data [11, 6].
Details of the computations are given in appendices A and B.

2. The method of analysis proposed

In order to model interface damage to masonry structures, the present
method based on homogenization theories, asymptotic techniques and finite
element methods was developed. The main steps involved in this method will
be described below. Most studies on masonry structures have dealt with only
two materials: brick and mortar. In the present work, we assume the exis-
tence of a third material: a mixture of brick and mortar with a crack density
ρ. To obtain the effective properties of the damaged intermediate material,
three steps are performed. First we calculate the exact effective properties of
the material devoid of cracks using homogenization techniques for laminate
composites, and thus define a first homogeneous equivalent medium, which
will be referred below as HEM-1. In the second step, we attribute the crack
density ρ to the material HEM-1. To model the macroscopic behavior of the
cracked material HEM-1, we use the Kachanov model and then define a new
homogeneous equivalent medium HEM-2. This material sandwiched between
the brick and mortar is taken to have a small thickness, and its mechanical
behavior can therefore be obtained using asymptotic techniques to shift from
the micro to macro level. With this interface law, the masonry structure
problem can be solved using finite element methods.
The following overall scheme (Fig.1) describes the principles underlying the
model proposed:
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Figure 1: Principle of the proposed model

2.1. First step: undamaged stratified composite homogenization
The behavior of brick and mortar is assumed to be isotropic and linear,

as described by the local law:
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εi
jk = Si

jklnσ
i
ln, for j, k, l, n = 1, 2, 3 (1)

Where Si is the compliance tensor of the phase i = b, m. The indexes b and
m denote the brick and mortar phases respectively. Each fourth-order local

homogeneous phase compliance tensor Si reads: Si =
1

3ki
J +

1

2µi
K, where

the compressibility and the shear coefficients are given by: ki =
Ei

3(1− 2νi)

and µi =
Ei

2(1 + νi)
, respectively. Ei and νi are the Young’s modulus and the

Poisson ratio, respectively, of each phase i . The fourth-order tensors J and
K are given by the relations: J = 1

3
i⊗ i and K = I − J , respectively, where

i is the second-order identity tensor and I is the fourth-order one.
The macroscopic behavior law of the laminate brick/mortar reads:

ε̄ = S̃0 : σ̄ where ε̄ =
∑

i=b, m

f iεi =
∑

i=b, m

f iSi : σi (2)

where f i (i = b,m) denotes the volume fractions of the phases, S̃0 is the
effective fourth-order compliance tensor of the transversely isotropic crack-
free laminate. According to the modified Voigt notation [23], the macroscopic
law reads:




ε̄11

ε̄22

ε̄33√
2ε̄23√
2ε̄13√
2ε̄12




=




S̃0
1111 S̃0

1122 S̃0
1133 0 0 0

S̃0
1122 S̃0

2222 S̃0
1133 0 0 0

S̃0
1133 S̃0

1133 S̃0
3333 0 0 0

0 0 0 2S̃0
1313 0 0

0 0 0 0 2S̃0
1313 0

0 0 0 0 0 2S̃0
1212







σ̄11

σ̄22

σ̄33√
2σ̄23√
2σ̄13√
2σ̄12




(3)
The unknown components of the compliance tensor S̃0 are determined in

Appendix A by applying four independent loads: axial tension, axisymmetric
loading, plane traction combined with a plane shear load and a longitudi-
nal shear load. With each loading condition, it is necessary to fulfill two
conditions at the brick/mortar interface as regards: (i) the continuity of the
normal stress vector σ.e3, i.e.:

σb
j3 = σm

j3 for every index j = 1, 2, 3 (4)

5



and (ii) the continuity of the in-plane deformation components

εb
kj = εm

kj for the couplets (k, j) = (1, 1), (2, 2) and (1, 2) (5)

In [39], the macroscopic description of a periodic stratified composite is ob-
tained differently, using the asymptotic expansion technique [40] up to third

order. The expression for the macroscopic elastic tensor C̃0 =
(
S̃0

)−1

is writ-

ten in terms of the elastic properties of the layers and its volume fractions in
the periodic cell.

2.2. Second step: homogenization of the damaged composite

In this section, the material HEM-1 is assumed to contain an arbitrary
crack orientation distribution. Kachanov and Mauge [15] provided an accu-
rate approximation of the effective behaviour of the cracked material HEM-1.
Assuming that cracks are rectilinear and located in the plane (e1, e3), the
initial 3−D problem can be reduced to a 2−D problem. In this case, it has
been established [15] that the overall strain ε̄ in a solid with N cracks can
be written in the form

ε̄ = S̃ : σ̄ = S̃0 : σ̄ +
1

A

N∑

k=1

(n⊗ < b > + < b > ⊗n)(k)l(k) = (S̃0 + ∆S̃) : σ̄

(6)
where S̃ is the effective compliance of the cracked material, S̃0 is the com-
pliance of the crack-free matrix, n(k), 2l(k) and < b >(k) are the normal unit
vector, the length of the kth crack and the average displacement disconti-
nuity (COD) vector at the kth crack; and A is the representative averaging
area.
The potential of the cracked material is therefore the sum of two terms:

f(σ̄) =
1

2
ε̄ : S̃ : ε̄ =

1

2
σ̄ : S̃0 : σ̄ +

1

A

N∑

k=1

(n.σ̄. < b >)(k)l(k) = f 0(σ̄) + ∆f

f 0 is the potential of the crack-free material and ∆f is the change of f due
to the presence of cracks.
The problem of finding the additional compliance ∆S̃ (relation (6)) due to
cracks is reduced to finding the COD tensor B in terms of the average stress
σ̄. The latter is defined by the relation [16, 17]:

< b >= n.σ̄.B (7)
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The components of B depend on the compliance matrix S̃0 and the orien-
tation of the crack with respect to the matrix anisotropy axes. In the crack
coordinate system (t, n), where t is a unit vector which is tangential to the
crack so that:

t = cosφ e1 + sinφ e3

n = −sinφ e1 + cosφ e3

B = Bnnn⊗ n + Bttt⊗ t + Bntn⊗ t + Btnt⊗ n (8)

(e1, e3) are the principal axes of the matrix orthotropy and φ is the angle
between the crack line and the e1-principal axis.
The expressions for the COD tensor (7) and (8) are used to obtain the change
in f due to the presence of a family of non-interacting cracks for which t and
n are the same:

∆f = ρσ̄ : n. {Bnnn⊗ n + Bttt⊗ t + Bnt(n⊗ t + t⊗ n)} .n : σ̄ (9)

where ρ = 1
A

∑
k(l

(k))2 is the conventional scalar crack density parameter.
In the considered case of an orthotropic matrix with one arbitrarily oriented
family of parallel cracks (−π

2
≤ φ ≤ π

2
), B can be expressed in the following

form, using the solution given by Lekhnitsky [19] and Savin [20].





Btt = C(1−Dcos2φ)l
Bnn = C(1 + Dcos2φ)l
Btn = CD(sin2φ)l

(10)

where 



C =
π

4

√
E0

1 +
√

E0
3√

E0
1E

0
3

(
1

G0
13

− 2
ν0

13

E0
1

+
2√

E0
1E

0
3

) 1
2

D =

√
E0

1 −
√

E0
3√

E0
1 +

√
E0

3

(11)

E0
1 , E0

3 , ν0
13 and G0

13 are the elastic engineering constants of the crack-free
material HEM-1. These constants are deduced from the effective elastic
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compliances S̃0 [19] as follows:




S̃0
1111 =

1

E0
1

S̃0
3333 =

1

E0
3

S̃0
1133 = −ν0

13

E0
1

S̃0
1313 =

1

G0
13

(12)

We note here the dependance of the sign of D on the anisotropy ratio
E0

1/E
0
3 .

Substituting B from (10) into (9), we obtain the elastic potential f , and
therefore, all the moduli of the material HEM-2 (i.e. HEM-1 with cracks).
On the principal axes e1, e3, the effective properties of HEM-2 are therefore
given by:





E1

E0
1

=
1

1 + 2ρsin2φ(Bttcos2φ + Bnnsin2φ−Bntsin2φ)E0
1

E3

E0
3

=
1

1 + 2ρcos2φ(Bttsin2φ + Bnncos2φ + Bntsin2φ)E0
3

G13

G0
13

=
1

1 + ρ(Bnnsin22φ + Bttcos22φ−Bntsin4φ)G0
13

ν13

E1

=
ν0

13

E0
1

(13)

The stiffness tensor C̃ of the material HEM−2 is obtained by performing
inversion on the compliance tensor S̃ deduced from the elastic engineering
constants E1, E3, ν13 and G13 (giving a relation similar to (12)). For the
following applications, we assume the cracks to be parallel to the e1-principal
axis, i.e., φ = 0. In this case, the engineering constants defining the behavior
of HEM-2 read:

E1 = E0
1 , E3 = E0

3/(1 + 2ρBnnE
0
3), G13 = G0

13/(1 + ρBttG
0
13) and ν13 = ν0

13

where, in this case, Bnn = C(1 + D)l and Btt = C(1−D)l.

2.3. Third step: asymptotic analysis and interface law

In this section, we consider a thin joint composed of the material defined
above, which is sandwiched between brick and mortar. Since the joint is
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thin and soft, it is natural to use asymptotic techniques, to study the limit
problem (when the thickness is equal to zero) and to replace the joint by
an interface law defined along the limit surface. We take ε to denote the
thickness of the joint, which is assumed to be constant and S to denote the
limit surface of the joint (a line in 2D), corresponding to a thickness equal
to zero. In what follows, we work in 2-dimensional terms (direction 1 and
3) in order to simplify the computations (see fig. 2). The details of the
computations are given in appendix B. We take a to denote the elasticity
tensor of the joint and lim aijkl/ε = āijkl. The limits are assumed to exist.

Figure 2: the principle of the asymptotic techniques in a 2-D case

We take [ ] to denote the jump along S. We obtain

σ0
i3 = āi3i3

[
u0

i

]

We find an interface law which links the stress vector to the jump in
the displacement via a diagonal matrix. In our case, the terms CN and CT

9



in this matrix (corresponding to the normal and tangential jumps in the
displacement) are given by





CN = C̄3333(ε → 0) where C̄3333 =
C̃3333

ε

CT = C̄1313(ε → 0) where C̄1313 =
C̃1313

ε

(14)

Using expressions ((13), (12)) and since the crack density scalar can be
expressed in the form: ρ = l2/ε L0, where L0 denotes the joint length, it can
be established that the normal and tangential joint stiffnesses read:





CN =
L0

2C(1 + Dcos2φ) l3

CT =
L0

4C(1−Dcos2φ) l3

(15)

The present model takes the evolution of the micro-crack into account by
taking a variable crack half length l depending on the load. For the follow-
ing applications and for the sake of simplicity, we first assume that the half
length l depends only on the predominant tangential stress τ and we neglect
its dependance on the normal stress. For its evolution, we assume that l
remains constant (l = ξ1L0, where ξ1 is a scalar such as 0 < ξ1 < 1) until a
certain value τ0 of the shear stress has been reached. From this value, the
crack half length l evolves linearly with respect to the shear stress τ up to a
second value of the crack length ξ2L0 (ξ1 < ξ2 < 1) reached at the maximum
shear stress value τmax. The following figure (Fig. 3) describes the evolution
of the half crack length with respect to the shear stress τ :
The first step (where l is constant) corresponds to a stable state of the in-

terface material in which crack propagation occurs. The second step (where
l evolves linearly as a function of the shear stress τ) includes the crack prop-
agation, which leads to the failure of the interface.
The values of the shear stresses τ0 and τmax are fixed in advance, based on
experimental ’stress-displacement’ diagrams obtained on various masonries
subjected to shear conditions. The values of the crack evolution law param-
eters (ξ1 and ξ2) result from the minimization of the difference between the
numerical and experimental ’stress-displacement’ diagrams.
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Figure 3: Function describing the evolution of the crack half length with respect to the
applied shear stress

3. Results and discussion

The numerical evaluation of the model described above is restricted to
the case of 2D plane stress in masonry structures subjected to shear loading.
The obtained numerical results are then compared with experimental data
available in the literature [36].
In this paper, two cases are considered: a triplet of full bricks and a triplet
of hollow bricks, both subjected twice to the same nominal loading (with
no lateral confinement) as shown in figure (4). Table (1) lists the material
properties of the mortar and full bricks used to simulate a triplet of full bricks
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Young’s moduli (MPa) of full brick 9438
Poisson ratio of full brick 0.13
Young’s moduli (MPa) of hollow brick 6059
Poisson ratio of hollow brick 0.13
Young’s moduli (MPa) of mortar 4000
Poisson ratio of mortar 0.3

Table 1: Mechanical properties of the three-fold masonry constituents [36]

under the shear loading conditions described (Fig. (4)). The properties of
the full bricks given in this table were based on experiments by Fouchal et
al [36]. Those of the hollow bricks were deduced using the self-consistent
estimate [21, 22], based on the fact that the porosity ratio of the bricks
equals 30%. These homogenized properties are in good agreement with the
results of experiments performed in [36].

Case of the triplet of full bricks. The properties of the undamaged material
are those of the equivalent behavior of the mortar and full brick sandwich (see
table 1), assuming the existence of an equal volume fraction between these
two materials (fm = fb = 0.5). In the case of this sandwich configuration,
the constants αi (23, 25), βi (32, 33), γi (37) are equal to:

αb = −0.229, αm = 0.229, βb = −0.884, βm = −0.115, γb = 1.461, γm = 0.538

The compliance tensor S̃0 therefore reads:

10−4




1.478 −0.271 −0.348 0 0 0
−0.271 1.478 −0.348 0 0 0
−0.348 −0.348 1.639 0 0 0

0 0 0 4.444 0 0
0 0 0 0 4.444 0
0 0 0 0 0 3.499




(16)

The engineering constants defining this undamaged homogeneous material
(HEM-1) are therefore:

Ẽ0
1 = Ẽ0

2 = 6762.57 MPa, G̃0
12 = 5714.57 MPa, and ν̃0

12 = 0.183

Ẽ0
3 = 6099.53 MPa, G̃0

13 = G̃0
23 = 4497.12 MPa, and ν̃0

13 = ν̃0
23 = 0.236
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To evaluate the engineering constants defining the homogeneous damaged
material (HEM-2), we need to determine the coefficients C and D (11) which
are independent of the crack length parameter 2 l:

C = 4.223 10−4 and D = 0.0258

Lastly, the normal and tangential stiffness of the interface are given by the
following expressions, respectively:

CN = 242365/l3 (N/mm2) and CT = 255199/2 l3 (N/mm2)

The experimental responses (blue dashed and pink dashed-dotted curves)
are used to identify the parameters ξ1 and ξ2 as follows:

{
for the blue dashed curve: ξ1L0 = 1.47 µm, ξ2L0 = 1.484 µm
for the pink dashed-dotted curve: ξ1L0 = 1.397 µm, ξ2L0 = 1.47 µm

(17)
The shear stresses values taken from the experimental ’stress-displacement’
curves and serving to construct a simplified ’two-slope’ crack evolution law,
as depicted in Figure (3), are:

{
for the blue dashed curve: τ0 = 0.7 MPa, τmax = 0.83 MPa
for the pink dashed-dotted curve: τ0 = 1.26 MPa, τmax = 1.6 MPa

(18)

Case of the triplet of hollow bricks. With this triplet of hollow bricks, the
coefficients αi, βi and γi, i = b, m, are equal to:

αb = −0.168, αm = 0.168, βb = −0.717, βm = −0.282, γb = 1.270, γm = 0.729

The compliance tensor S̃0 of this homogeneous undamaged material HEM-1
is written as follows:

10−4




1.973 −0.396 −0.456 0 0 0
−0.396 1.973 −0.456 0 0 0
−0.456 −0.456 1.985 0 0 0

0 0 0 5.115 0 0
0 0 0 0 5.115 0
0 0 0 0 0 4.740




(19)
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The engineering constants are therefore:

Ẽ0
1 = Ẽ0

2 = 5066.57 MPa, G̃0
12 = 4219.43 MPa, and ν̃0

12 = 0.2

Ẽ0
3 = 5037.2 MPa, G̃0

13 = 3910.1 MPa, and ν̃0
13 = 0.23

The constants C and D (11) used to evaluate the components of the COD
tensor B are:

C = 5.232 10−4 and D = 14.53 10−4

The normal and tangential stiffness of the interface sandwiched between
mortar and hollow brick is given by the following expressions:

CN = 200396/l3 (N/mm2) and CT = 200980/2 l3 (N/mm2)

The blue dashed experimental curve, which shows that failure occurs at
the interface and not across the thickness of the mortar or across the hol-
low brick, makes it possible to identify the following two parameters ξ1 and
ξ2: ξ1L0 = 1.60 µm and ξ2L0 = 1.61 µm, obtained for the shear stresses
τ0 = 0.63 MPa and τmax = 0.67 MPa, respectively. Fig.(4, (a)) shows the
initial geometrical configuration of the three-fold masonry structure. The
deformation and the ’stress-displacement’ relation of the triplet of full bricks
under shear loading conditions are shown in Fig.((4, (b)) and Fig.(5), re-
spectively. The numerical results obtained with the present model match
the experimental data (curves denoted by 1-f and 2-f) and are in good agree-
ment particularly with the test data obtained in 1 (curve 1-f).

Fig.(6) shows the numerical results and the experimental data obtained
on a triplet of hollow bricks under shear loading conditions. In the case of
the experimental data denoted by 1-h, 2-h and 3-h, the failure occurred only
across the mortar phase (figure (7), (b)) or the brick and mortar phases (fig-
ure (7), (a)). These experimental tests (1-h, 2-h and 3-h) do not show the
failure occurring across the brick/mortar interface and were therefore not
used to obtain our numerical results. The experimental data denoted 4-h
show the ability of the present model to predict the failure process across the
brick/mortar interface.

The numerical results provided by the present model accurately describe
the ’stress-displacement’ relationship in a masonry structure where the failure
occurs at the brick-mortar interface.
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Figure 4: Initial geometrical configuration and loading conditions imposed on the triplet of
full bricks (a), deformation of the triplet of full bricks in a shear test (b)

.

4. Conclusion

The multi-scale model presented here was successfully used to simulate
the experimental tests in which failure occurred at the brick/mortar inter-
face presented in [36], which provided the coefficients required to model the
interface, namely the stiffness parameters and the length of the micro-cracks.
The model is sensitive to these characteristics but the results obtained are
in line with the experimental data.

The present method was also tested on a more complex structure pre-
sented in the literature (the case of a full wall subjected to diagonal com-
pression loading [7]). The results obtained show that the model presented
here can be used to describe the behavior of structures of this kind.

From the practical point of view, an optimization routine is needed to sys-
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Figure 5: Stress-displacement diagrams of the triplet of full bricks under shear, numerical
and experimental results.

tematically determine the values of the parameters describing the evolution
of the crack length (ξ1 and ξ2). This idea will be applied to more complex
masonry structures in a future study.

It is proposed in the future to establish an optimization routine for sys-
tematically determining the values of the parameters describing the evolution
of the crack length (ξ1 and ξ2), which have depended up to now only on the
shear stress. In a future study, it is plained to also examine the dependence
on the normal stress.

More complex structures such as modern masonry buildings will also be
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Figure 6: Stress-displacement diagrams of the triplet of hollow bricks under shear loading
conditions: numerical and experimental results.

studied to improve the model presented here, by accounting more efficiently
for the evolution of the micro-cracks more efficiently into account, in partic-
ular.
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Appendix A: Effective properties of the undamaged stratified brick/mortar:
HEM-1

Axial tension. The brick/mortar laminate is subjected to an axial stress:

σ̄ = σ̄33e3 ⊗ e3 (20)

In this case, relation (3) involves the equalities:

ε̄11 = ε̄22 = S̃0
1133σ̄33

ε̄33 = S̃0
3333σ̄33

ε̄23 = ε̄13 = ε̄12 = 0

(21)

In each phase, we assume the local stress induced by the macroscopic loading
to be transversely isotropic with the form:

σi = σ̄33(e3 ⊗ e3 + αi(e1 ⊗ e1 + e2 ⊗ e2)), (22)

where αi (i = b, m) are real constants determined so that (4) and (5) are
fulfilled. The average stress σ̄ =

∑
i=b,m f iσi means that

∑
i=b,m f iαi = 0.

The real constant αm can then be expressed as a function of the primary
constant αb. It reads:

αm = − f b

fm
αb (23)

Under the present loading conditions (20), the local deformation reads

εi
kj = Si

kjlnσi
ln = (Si

kj33 + αi(Si
kj11 + Si

kj22))σ̄33, i = b,m (24)

Applying relations (5) and (24) to the couplet (1, 1) gives the constant αb,
which reads:

αb =
fm(Sm

1133 − Sb
1133)

fb(Sm
1111 + Sm

1122) + fm(Sb
1111 + Sb

1122)
(25)

To identify the effective compliance S̃0
1133 of the material HEM-1, we then

use the relations:
{

ε̄11 = S̃0
1133σ̄33 (a)

ε̄11 =
∑

i=b,m f iεi
11 =

∑
i=b,m f i(Si

1133 + αi(Si
1111 + Si

1122))σ̄33 668ox(b)

(26)
and S̃0

1133 therefore reads:

S̃0
1133 =

∑

i=b,m

f i
[
Si

1133 + αi(S1111 + Si
1122)

]
(27)
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We proceed in a similar way with the macroscopic strain component ε̄33 in
order to determine the compliance component S̃0

3333 as follows:

S̃0
3333 =

∑
i

f i
[
Si

3333 + αi(Si
3311 + Si

3322)
]

(28)

Axisymmetric loading. It is now proposed to subject the laminate to the
following axisymmetric loading

σ̄ = σ̄33(e3 ⊗ e3 − 1

2
(e1 ⊗ e1 + e2 ⊗ e2)) (29)

Based on the overall constitutive relation (3), the macroscopic strain response
components read:





ε̄11 = ε̄22 = (−1
2
(S̃0

1111 + S̃0
1122) + S̃0

1133)σ̄33 (a)

ε̄33 = (−S̃0
1133 + S̃0

3333)σ̄33 (b)
ε̄23 = ε̄13 = ε̄12 = 0

(30)

The local stress induced by the macroscopic stress (29) is assumed to take
the form:

σi = σ̄33(e3 ⊗ e3 + βi(e1 ⊗ e1 + e2 ⊗ e2))) (31)

where βi (i = b, m) are real constants determined so that the conditions
specified above in (4) and (5) are met.

The average stress over the laminate gives the expression:
∑

i=b,m

f iβi = −1

2
.

The constant βm can then be expressed as a function of βb as follows:

βm =
−1/2− f bβb

fm
(32)

It is now only necessary to express the constant βb.
The first continuity condition (4) is ensured by the assumed form of the
local stress (31), whatever are the values of the constants βi. The continuity
condition (5) is used to express βb:

βb =
fm(Sm

1133 − Sb
1133)− 1

2
(Sm

1111 + Sm
1122)

f1(Sm
1111 + Sm

1122) + f2(Sb
1111 + Sb

1122)
(33)

The average strain component ε̄11 given by relations (30, (a)) and (26, (b))
gives a first algebraic equation for the compliance components S̃0

1111 and S̃0
1122:

S̃0
1111 + S̃0

1122 = 2S̃0
1133 − 2

∑

i=b,m

fi

[
Si

1133 + βi(Si
1111 + Si

1122)
]

(34)
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Mixed load: plane traction and plane shear. In this paragraph, the macro-
scopic stress applied to the stratified crack-free composite reads:

σ̄ = σ̄12(e1 ⊗ e2 + e2 ⊗ e1) +
1

2
(σ11 − σ22)(e1 ⊗ e1 − e2 ⊗ e2) (35)

The assumed local stress reads:

σi = γiσ̄, i = b,m (36)

where γi (i = b,m) has to be determined in order to meet the continuity
conditions (4) and (5). The average value of the local stress solution (36)
means that

∑
i=b,m f iγi = 1. The local strain continuity condition (5) can

be used to determine the real primary constant γb, which reads:

γb =
Sm

1212

fbSm
1212 + fmSb

1212

=
Sm

1111 − Sm
1122

fb(Sm
1111 − Sm

1122) + fm(Sb
1111 − Sb

1122)
(37)

Based on Hooke’s law, the local strain reads: εi = Siσi = γiSiσ̄. With this
kind of macroscopic load (35), the couplet (1, 2) in relation (3) can be used
to identify the effective compliance component S̃0

1212 as follows:

S̃0
1212 =

∑

i=b,m

f iγiSi
1212

The average local strain components ε11 and ε22 in the stratified composite
give the following algebraic relations:

S̃0
1111 − S̃0

1122 =
∑

i=b,m fiγ
i(Si

1111 − Si
1122) (a)

S̃0
1122 − S̃0

2222 =
∑

i=b,m fiγ
i(Si

2211 − Si
2222) (b)

(38)

Expressions (34) and (38, (a)) are used to determine the HEM-1 compliance
components S̃0

1111 and S̃0
1122. Relation (38, (b)) is then used to obtain the

compliance component S̃0
2222.

Longitudinal shear loading. In this case, the macroscopic stress applied is:

σ̄ = σ̄13(e1 ⊗ e3 + e3 ⊗ e1) + σ̄23(e2 ⊗ e3 + e3 ⊗ e2)

The local stress solution reads σi = δiσ̄, where δi (i = b,m) are such that
the local stress meets the continuity conditions ((4), (5)). The average stress
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gives the following relation between the constants δi:
∑

i f
iδi = 1. The

continuity of the force vector at the brick/mortar interface (condition (4))
means that: δb = δm = 1. With the couplet (2, 3), relations (3) and (1) are
used to obtain the effective compliance component S̃0

2323, which reads:

S̃0
2323 =

∑

i=b,m

f iSi
2323

Appendix B: asymptotic analysis, elements of proof

The idea underlying matched asymptotic expansions is to find two ex-
pansions of the displacement uε and the stress σε in powers of ε, i.e., an
external expansion in the case of the bodies and an internal one in that of
the joint, and to combine these two expansions in order to obtain the same
limit. In what follows, we work in 2-dimensional terms in order to simplify
the computations. The relations obtained in the internal expansions will be
expressed using values occurring in the external expansions.

External asymptotic expansions. The external expansion is a classical expan-
sion in powers of ε

uε(x1, x3) = u0(x1, x3) + εu1(x1, x3) + ...,
eij(u

ε)(x1, x3) = e0
ij + εe1

ij + ...,

el
ij = 1

2
(

∂ul
i

∂xj
+

∂ul
j

∂xi
),

σε
ij(x1, x2) = σ0

ij(x1, x3) + εσ1
ij(x1, x3) + ...

(39)

Internal asymptotic expansions. In the internal expansions, we perform a
rescaling of the second variable. Let y3 = x3

ε
. The internal expansion gives

uε(x1, x3) = v0(x1, y3) + εv1(x1, y3) + ...,
eij(u

ε)(x1, y3) = ε−1e−1
ij + e0

ij + εe1
ij + ...,

el
11 =

∂vl
1

∂x1
,

el
33 =

∂vl+1
2

∂y3
,

el
13 = 1

2
(

∂vl
2

∂x1
+

∂vl+1
1

∂y3
),

σε
ij(x1, y3) = ε−1τ−1

ij (x1, y3) + τ 0
ij(x1, y3) + ετ 1

ij(x1, y3) + ...,

σε
ij,j =

∞∑
l=−2

εl(
∂τ l

i1

∂x1
+

∂τ l+1
i3

∂y3
).

(40)
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Conventionally
vl = 0, l < 0, τ l = 0, l < −1. (41)

Continuity conditions. The third step in this method consists in combining
the two expansions. We adopted some intermediate lines defined by x3 =
±θεt, 0 < t < 1, θ ∈]0, +∞[. When ε tends to zero, x3 tends to 0± and
y3 = x3/ε tends to ±∞. The principle of the method consists in assuming
that the two expansions both give the same asymptotic limits, that is

(i) v0(x1,±∞) = u0(x1, 0
±),

(ii) τ−1(x1,±∞) = 0,
(iii) τ 0(x1,±∞) = σ0(x1, 0

±).
(42)

At order zero, these conditions give the continuity of the displacements (u0

and v0) and stresses (σ0 and τ 0) along the surface S.

Elasticity of the thin layer. We take a to denote the elasticity tensor of the
joint and lim aijkl/ε = āijkl. This limit is assumed to exist.

τ−1
ij = 0
τ 0
ij = āijkle

−1
kl

(43)

in the thin layer.

Equilibrium. The equilibrium at −2 gives

∂τ−1
i3

∂y3

= 0

The equilibrium at −1 gives

∂τ 0
i2

∂y3

= 0

The stress vector does not depend on the second variable in the thin layer.
We add the connectivity conditions

v0
i = u0

i (x1, 0)

τ 0
i3 = σ0

i3(x1, 0)
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Using the constitutive equations, we have

τ 0
i3 = āi2i2

∂v0
i

∂y3

for i = 1, 3.

By integration (the stress is constant) into [0, 1].

τ 0
i3 = āi3i3

[
v0

i

]

Using the connection method, we obtain

σ0
i3 = āi3i3

[
u0

i

]
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