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Introduction and results

First, let us define the process:

The environment E: Let T 0 a N 0 -ary regular tree rooted at φ. For all vertices x ∈ T 0 we associate a random vector (A(x 1 ), A(x 2 ), • • • , A(x Nx ), N x ) where N x is a non-negative integer bounded by N 0 . We assume that the sequence (A(x 1 ), A(x 2 ), • • • , A(x Nx ), N x ), x ∈ T 0 ) is i.i.d. and that each vector has the same law as (A 1 , A 2 , • • • , A N , N ), we also assume that all A i 's are independent of N . The sub-tree T = {x ∈ T 0 , N (x) = 0} is a Galton-Watson tree (GW), so (x 1 , x 2 , • • • , x Nx ), are the N x children of x, and we denote |x| the generation of x. For all vertex x in T, we denote ← x the parent of x, we also assume that φ has a unique ancestor denoted ← φ. The set of environments denoted E is the set of all sequences (A(x 1 ), A(x 2 ), • • • , A(x Nx ), N x ), x ∈ T 0 ), we denote by P the associated probability measure, and by E the expectation. A random walk on E ∈ E: we define a nearest neighbors random walk (X n , n ∈ N, X 0 = φ) by its transition probabilities,

p(x, x i ) = A(x i )/   Nx j=1 A(x j ) + 1   , p(x, ← x) = 1 - Nx i=1 p(x, x i ), p( ← φ, φ) = 1,
note also that if N x = 0, then p(x, ← x) = 1. We denote by P E the probability measure associated to this walk, the whole system is described under the probability P which is the semi-direct product of measures P and P E . General properties for the environment: Note that by construction the GW is locally bounded, and we also add an ellipticity condition on the A i 's,

P -a.s ∃ 0 < ε 0 < 1, ∀i, ε 0 ≤ A i ≤ 1/ε 0 , (1.1) 
so the moment-generating function ψ we define now, which contains the characteristics of the environment, is defined for all t:

ψ(t) = log E N i=1 A t i .
These assumptions (for the A i 's, 1/A i 's and N ), may be weaken by assuming exponential moments for all of them instead of ellipticity, but we do not think that we could reach easily the even weaker assumptions like in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] for example. Nevertheless, we keep more generalist proofs as often as possible.As mentioned in the abstract we assume that ψ(0) > 0 so our Galton-Watson is super-critical, also that the random environment is non-degenerate.

The recurrence criteria: on a regular tree, they are first due to [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF], in the present settings, we refer to ( [START_REF] Menshikov | On random walks in random environment on trees and their relationship with multiplicative chaos[END_REF]) and the first part of [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked galton-watson trees[END_REF]. Let

χ := inf t∈[0,1] ψ(t),
then the walk is transient if and only if χ > 0. The recurrent case can be specified as follows, if

χ < 0 (1.2)
then the walk is positive recurrent, to determine the other case, we have to take into account the sign of

ψ ′ (1) = e -ψ(1) E N i=1 A i log A i .
If χ = 0 and ψ ′ (1) > 0, (1.3) the walk is positive recurrent, whereas if χ = 0 and ψ ′ (1) = 0, or (1.4) χ = 0 and ψ ′ (1) < 0, (1.5) the walk is null recurrent. In figure [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching branching process[END_REF] we present the shape of ψ for each case, for the last one (1.5) a constant appears naturally:

κ := inf{t > 1, ψ(t) = 0} ∈ (1, +∞].
Asymptotics for the largest visited generation X * n : The asymptotic behavior of X * n := 

ψ(t) 0 Case (1.5) ψ(t) 0 κ < +∞ κ = ∞ ψ(t) Case (1.2) 0 Figure 1: The recurrent cases max 1≤k≤n |X k | is
well known thanks to the works of Y. Hu and Z. Shi [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF], [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] and G. Faraud, Y. Hu and Z. Shi [START_REF] Hu | A subdiffusive behavior of recurrent random walk in random environment on a regular tree[END_REF]. They prove that there is three main different behaviors, the first one ( [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF]) says that the walk is very slow and will never reach a generation larger than log n for an amount of time n, more pricisely

if (1.2) is realized then P a.s. -N , lim n→+∞ max 0≤i≤n |X i | log n = C 1 ,
where P a.s. -N means P almost surely on the set of non-extinction of the Galton Watson tree. Note that in [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF] a regular tree is considered but the result remains true with our hypothesis. In [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF] and [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF], it is proven that

if (1.3) is realized then P a.s. -N , lim n→+∞ max 0≤i≤n |X i | (log n) 3 = C 2 , if (1.4) is realized then P a.s. -N , lim n→+∞ max 0≤i≤n |X i | (log n) 3 = C 3 ,
in this delicate case, there is still a slow movement, but they prove that the environment allows enough regularity to let the walk escape until generation (log n) 3 . Note that in [START_REF] Hu | A subdiffusive behavior of recurrent random walk in random environment on a regular tree[END_REF] they work with a more general setting, a GW tree, weaker hypothesis of regularity than ours, and succeed to determine C 2 and C 3 . Finally, there is also a sub-diffusive case also obtained in ( [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF]) :

if (1.5) is realized then P a.s. -N , lim n→+∞ log max 0≤i≤n |X i | log n = 1 - 1 min (κ, 2)
.

Note also that for large κ [START_REF] Faraud | A central limit theorem for random walk in a random environment on marked galton-watson trees[END_REF] shows the existence of a central limit theorem for this last case.

In this paper we are interested in the largest generation entirely visited by the walk, more precisely we get the asymptotic behavior of

R n := sup{k ≥ 1, ∀|z| = k, L(z, n) ≥ 1},
with L the local time of X defined by L(z, n) := n k=1 1 X k =z . We also need the following constant of law of large number for branching random walks :

J(a) := inf t≥0 {ψ(-t) -at}, γ := sup{a ∈ R, J (a) > 0}, (1.6) 
note that as χ ≤ 0, γ > 0. Our main result shows that, contrary to X * n , there is essentially two cases: Theorem 1.1 Assume (1.1), then if (1.2) or (1.3) or (1.4) are realized, P a.s. -N

lim n→+∞ R n log n = 1 γ , otherwise P a.s. -N lim n→+∞ R n log n = 1 γ min(κ, 2)
.

So the largest generation entirely visited is far smaller than the largest generation visited by these walks except for the slowest case (1.2). In fact there is no difference between the first three cases (which are the slowest ones) and we see appear the characteristic constant κ for the fourth one. In fact, if instead of stopping the walk at a deterministic time n we stop it at n return time to the root, we have no longer any difference. More precisely, for all i ≥ 1 let .

T i φ := inf{k > T i-
(1.2) and (1.3) are obvious given recurrence positivity. The rest of the paper is organized as follows, in Section 2, we prove the result for Rn , it is the upper bound that needs more attention. In Section 3 we move from Rn to R n , also for the sake of completeness we add classical results in an appendix.

To study asymptotical behaviours associated to (X n ) n∈N , a quantity appears naturally: the potential process V associated to the environment which is actually a branching random walk. It is defined by V (φ) := 0 and

V (x) := - z∈ φ,x log A(z), x ∈ T\{φ},
where φ, x is the set of vertices on the shortest path connecting φ to x and φ, x = φ, x \{φ}.

2 Proof of Proposition 1.2

Lower bound

In this first section, we prove that P a.s. -N for n large enough

Rn log n ≥ 1 -ε γ =: c 1 . (2.1)
For this purpose, note that:

P E φ ( Rn < c 1 log n) = P E φ   |z|=c 1 log n {L(z, T n φ ) = 0}   = P E φ (A n )
where

A n := |z|=c 1 log n {T z > T n φ }.
Note that for typographical simplicity, we do not make any difference between a real number and its integer part. Thus, according to strong Markov property:

P E φ (A n ) ≤ |z|=c 1 log n P E φ (T z > T φ ) n ≤ Z c 1 log n max |z|=c 1 log n e n log P E φ (Tz>T φ )
with Z n := Card{|z| = n}, the number of vertices in the n-th generation. With ) , the expected number of offspring at the first generation, it is a classical result that W n := Zn e nψ(0) is a positive martingale an consequently (W n ) n≥0 admits a.s. a limit when n goes to infinity. So, there exists C(ω) and n 0 (ω) such that: ∀n ≥ n 0 (ω), Zn e nψ(0) ≤ C(ω). Consequently ∀n ≥ n 0 (ω), noting that e ψ(0)c 1 log n = n c 1 ψ(0) :

E[Z 1 ] = E[N ] = e ψ(0
P E φ (A n ) ≤ C(ω)n c 1 ψ(0) max |z|=c 1 log n e n log(1-P E φ (Tz <T φ )) . (2.2)
As X is recurrent, P E φ (T z < T φ ) tends to 0 when n goes to infinity and we have to study the asymptotical behaviour of:

ℵ n := max |z|=c 1 log n e -nP E φ (Tz<T φ ) = max |z|=c 1 log n e -np(φ,φz)P E φz (Tz<T φ ) ,
where φ z is the child of φ in φ, z . Recall that, thanks to the ellipticity conditions, ∀u ∈ T, e -V (u) = A(u) > ε 0 , formulas (4.3) yields:

P E φz (T z < T φ ) = e V (φz) u∈ φ,z e V (u) ≥ ε 0 e -V (z) |z| = ε 0 e -V (z) c 1 log n , (2.3) 
where V (z) = max x∈ φ,z V (x). The ellipticity conditions ensure that there is a constant K > 0, such that ∀z ∈ T, K < ε 0 p(φ,φz) /c 1 , then using 2.3:

ℵ n ≤ max |z|=c 1 log n e - nε 0 p(φ,φz ) c 1 log n e -V (z) ≤ e -Kn log n e -max |z|=c 1 log n V (z)
.

(2.4)

At this level, it remains to study V and we need the following:

Lemma 2.1 Assume χ ≤ 0, there exists a constant a > 0 such that P a.s. -N for ℓ large enough :

max |z|=ℓ V (z) ≤ γℓ 1 + a log ℓ ℓ
Let us postpone the proof of this lemma and finish the proof of (2.1): for n large enough, the previous lemma implies:

max |z|=c 1 log n V (z) ≤ γc 1 log n (1 + ε/2) ,
and one can write P a.s. -N for n large enough:

ℵ n ≤ e -Kn 1-c 1 γ(1+ ε 2 ) log n ≤ e -Kn ε 2 log n .
(2.5)

Finally formulas (2.2) and (2.5) give that P almost surely on the set of non-extinction

P E φ (A n ) < ∞, thus (2.1) is established using Borel-Cantelli Lemma.
Proof of lemma 2.1: This result is classical and for the sake of completeness, we give some details below. Let ε ℓ := alog ℓ/ℓ, using the Biggins identity (4.1), we easily obtain:

P max |z|=ℓ V (z) ≥ γℓ(1 + ε ℓ ) = P ∪ ℓ j=1 ∪ |z|=j {V (z) ≥ γℓ(1 + ε ℓ )} ≤ ℓ j=1 E   |z|=j 1 {V (z)≥γℓ(1+ε ℓ )}   = ℓ j=1 e jψ(1) E e S j 1 {S j ≥γℓ(1+ε ℓ )} .
For any b > 0, a simple partition of the event {S j ≥ γℓ(1 + ε ℓ )} gives:

E e S j 1 {S j ≥γℓ(1+ε ℓ )} = +∞ r=0 E e S j 1 {S j ∈[γℓ(1+ε ℓ )+br,γℓ(1+ε ℓ )+b(r+1)[} ≤ +∞ r=0
e γℓ(1+ε ℓ )+b(r+1) P (S j ≥ γℓ(1 + ε ℓ ) + br) .

The ellipticity condition gives e

ψ(-δ) = E[ |x|=1 e δV (x) ] ≤ 1 ε 0 δ E[N ] < ∞ for all δ ∈ R,
so according Biggins identity (4.2), E[e (1+δ)S 1 ] < +∞. Thus, using Markov inequality and the fact that (S i -S i-1 , i ≥ 1) are i.i.d. random variables, ∀c > 0, P(S j ≥ c) ≤ E[e (1+δ)S 1 ] j e (1+δ)c . Collecting the previous inequalities, and taking c = γℓ(1 + ε ℓ ) + br:

P max |z|=ℓ V (z) ≥ γℓ(1 + ε ℓ ) ≤ e b-δγℓ(1+ε ℓ ) r≥0 e -δrb ℓ j=1 E[e (1+δ)S 1 ] j e ψ(1)j = e b 1 -e -δb e -δγℓ(1+ε ℓ ) ℓ j=1 e ψ(-δ)j = e b 1 -e -δb e ψ(-δ) e ψ(-δ) -1 e -δγℓ(1+ε ℓ ) e ψ(-δ)ℓ -1 ≤ M e -δγℓε ℓ e ℓ(ψ(-δ)-δγ ) =: M ∆ ℓ (δ), (2.6) 
for the first equality we use Biggins identity, for the second one the fact that for all δ > 0, e ψ(-δ) > e ψ(0) > 1 and M is a positive constant. Before going any further, according to the definitions of J and γ see (1.6), note that J(γ) = 0. Indeed ψ, as a function of t, is convex moreover by hypothesis ψ(0) > 0 and inf t∈[0,1] ψ(t) ≤ 0, so it reaches its minimum for some t > 0, so J(0) = inf t≥0 ψ(-t) > 0.

Moreover by hypothesis ψ(-t) is finite for every t > 0, and therefore for all t we can find some a, large enough such that -∞ < J(a) ≤ ψ(-t)ta < 0. Then the definition of γ gives effectively that J(γ) = 0. We can now come back to ∆ ℓ , we have two cases, either

• there exists t 0 > 0 such that ψ(-t 0 )-t 0 γ = 0. Then ℓ≥0 ∆ ℓ (t 0 ) = M ℓ≥0 e -t 0 γℓε ℓ < ∞, and we conclude with the Borel-Cantelli Lemma, or

• ψ(-t) ∼ γt when t goes to infinity, note that by convexity of ψ, ψ(t)γt ≥ 0 for all t. Then we can take δ = δ ℓ = 1 ε ℓ , in this case ∆ ℓ (δ ℓ ) ∼ e -ℓγ and we easily conclude with Borel-Cantelli Lemma.

Upper bound

In this section we prove that, for all ε > 0, P a.s.

-N for all n large enough Rn

log n ≤ c 2 := 1 + ε γ . (2.7)
The strategy is the following, we first make a first cut in the tree close to the root at a generation which depends on ε. We denote (z i , i ≤ U ε ) the vertices of this generation of the tree. We show that during the n return time to the root the local time at each of these individuals is not much larger than n (Lemma 2.2). Then we make a second cut in the tree at generation (1 + ε/2) log n. We select at this generation one descendant for each z i called z i satisfying the property to have a large potential V (z i ) (see 2.11). We prove that the local times on these vertices during the return time to z i do not exceed a power of log n almost surely (Lemma 2.3). We finally prove a last technical lemma (Lemma 2.5) which shows that there are very few back and forth movements between z i and its descendant z i . Finally, using the three Lemmata we can extract some parts of the trajectory of the random walk (before the nth visit to the root) which are independent up to a translation in time. Using this independence we finally prove that P E Rn log n > c 2 is summable which leads to the result.

Let u ε a positive integer that will be precised later. Let (z i , i ≤ U ε =: |Z uε |), the individuals of generation u ε . We first prove that before the nth visit to the root each point at generation u ε can not be visited many more times than n. Lemma 2.2 Assuming (1.2), for all positive and increasing sequence of integers (h n , n ∈ N) with lim n→+∞ h n = +∞, P a.s. -N for n large enough

P E φ   1≤j≤Uε L(z j , T n φ ) ≥ h n n   ≤ h n 2 -n .
Proof.

Let us denote 1≤j≤Uε Āj the event in the previous probability. Let q z j > 0 and r z j > 0 two sequences that we define later. Using successively Markov inequality and the strong Markov property:

P E φ (L(z j , T n φ ) ≥ r z j n) ≤ e -qz j rz j n E E φ e qz j L(z j ,T n φ ) = e -qz j rz j n E E φ e qz j L(z j ,T φ ) n . (2.8)
Let us denote w z j := P E z j (T z j > T φ ), v z j := P E φ (T φ > T z j ). Assuming that for all j, e qz j (1w z j ) < 1:

E V φ e qz j L(z,T φ ) = 1 -v z j + v z j e qz j w z j 1 -(1 -w z j )e qz j = 1 + v z j e qz j -1 1 -(1 -w z j )e qz j .
As for all j, 1w z j < 1 we can chose q z j = log(1 + w z j ) which obviously satisfied e qz j (1w z j ) < 1, we obtain:

E E φ e qz j L(z,T φ ) = 1 + v z j w z j .
(2.9)

Replacing this expression in (2.8), as v z j ≤ 1:

P E φ (L(z j , T n φ ) ≥ r z j n) ≤ 1 1 + w z j rz j 1 + 1 w z j n , (2.10) 
finally taking r z j = 2 log(1 + 1/w z j )/ log(1 + w z j ), we get

P E φ   1≤j≤Uε L(z j , T n φ ) ≥ r z j n   ≤ U ε max j≤Uε P E φ (L(z j , T n φ ) ≥ r z j n) ≤ U ε 2 -n .
To finish, we have to estimate r z j and so w z j = p(z j ,

← z j )P E ← z j
(T z j ≥ T φ ). By (4.4) we note that w z j can be small if the potential from the root to z j decreases, but thanks to the hypothesis of ellipticity, P a.s. w z j ≥ c ′ (ε 0 ) Uε , where c ′ > 0 so P a.s. r z j ≤ c ′′ (ε 0 ) -2Uε with c ′′ > 0. By the ellipticity condition for N , P a.s. for n large enough r z j ≤ h n , and

U ε ≤ h n , so P E φ 1≤j≤Uε Āj ≤ P E φ 1≤j≤Uε L(z j , T n φ ) ≥ r z j n ≤ h n 2 -n .
In what follows, for simplicity, we denote z > x if x, z = ∅, in other words x is an ancestor of z. Let (z i , i ≤ U ε ) the individuals of generation a n := (1 + ε/2) log n/γ such that z i < z i and satisfying that for all 1 ≤ i ≤ U ε :

V (z i ) -V ( → z i ) ≥ γa n 1 -b log a n a n , max u∈ z j ,z j V (u) -V (z j ) ≤ γc log a n , (2.11) 
where → z j the descendant of z j on z j , z j . We prove in Lemma 2.4 below that such points exists almost surely. Define also

K n = (log n) 3+cγ /h n n.
We now prove that the probability for the local time, at each points z i until T L(z j ,T n φ ) z j , to be larger than nK n is rather small. Lemma 2.3 Assuming (1.2), there exists a constant c 3 > 0 such that P a.s. -N for n large enough

P E φ   1≤j≤Uε L z j , T L(z j ,T n φ ) z j ≥ K n h n n   ≤ e -c 3 4 (log n) 2 .
Proof.

Let us denote 1≤j≤Uε Bj the event in the previous probability, from (2.8) and (2.9):

A := P E φ   1≤j≤Uε Bj , A j   ≤ U ε max 1≤j≤Uε P E φ (L(z j , T hnn z j ) ≥ K n h n n), ≤ U ε max 1≤j≤Uε 1 1 + wz j Kn 1 + ṽz j wz j nhn ,
where wz j := P E z j (T z j < T z j ) and ṽz j := P E z j (T z j > T z j ). Using Lemma 4.1 and the hypothesis of ellipticity, P a.s.

ṽz j ≤ e -(max u∈ z j ,z j V (u)-V ( → z j )) , wz j ≥ c ′ 0 a n e -(max u∈ z j ,z j V (u)-V (z j )) ,
with c ′ 0 > 0. Note that for all 0 < c ′ < 1, and x small enough (1 + x) -α ≤ (1c ′ αx), taking c ′ = 1/2, x = wj , and α = K n , we get for all n large enough:

A ≤ U ε max 1≤j≤Uε 1 - wz j 2 K n 1 + ṽz j wz j hnn ≤ U ε max 1≤j≤Uε 1 - wz j 2 K n + ṽz j wz j hnn ≤ U ε max 1≤j≤Uε 1 - c ′ 0 K n 2a n e -(max u∈ z j ,z j V (u)-V (z j )) + a n c ′ 0 e -(V (z j )-V ( → z j ))
hnn . Now, assume for the moment that the sequence (z j , j ≤ U ε ) we have defined in (2.11) exists P a.s. -N , then P a.s. -N for n large enough

A ≤ U ε 1 - c ′ 0 2 e -γc log an log n K n + a n c ′ 0 e -γan+γb log an) hnn ≤ U ε 1 - c ′ 0 2 (log n) 2 nh n + 1 c ′ 0 a 1+γb n n (1+ε/2) hnn ≤ U ε e -c ′′ 0 2 (log n) 2 .
To finish just notice that

P E φ 1≤j≤Uε Bj ≤ P E φ 1≤j≤Uε Bj , A j + P E φ 1≤j≤Uε
Āj , use Lemma 2.2 and the ellipticity condition for N .

We are left to prove the following Lemma 2.4 Assume 1.5 then there exist two constants b 0 > 0 and c 0 > 0 such that P almost surely on the set of non extinction, for all l large enough

∃z, |z| = ℓ, V (z) ≥ γℓ 1 -b 0 log ℓ ℓ , V (z) -V (z) ≤ γc 0 log ℓ, (2.12) 
For all integer A > 0, let us denote (z i , 1 ≤ i ≤ U A ) the individuals of the A nth generation, then there exist two constants b > 0 and c > 0 such that P a.s.

-N for all l large enough and all i

≤ U A ∃z i , |z i | = ℓ, V (z i ) -V ( → z i ) ≥ γℓ 1 -b log ℓ ℓ , max u∈ z j ,z j V (u) -V (z i ) ≤ γc log ℓ. (2.

13)

Proof First note that the second part of the Lemma is a simple consequence of the first part of the Lemma the ellipticity condition and the stationarity of the potential V . So if we prove that there exists two constants a > 0 and b > 0 P almost surely on the set of non extinction for n large enough:

max |z|=ℓ V (z) ≤ γℓ(1 + a log ℓ/ℓ); ∃z, |z| = ℓ, V (z) ≥ γℓ(1 -b log ℓ/ℓ)
then we get the first part of the Lemma. We have already proven, in Lemma 2.1, that there exists a constant a > 0 such that P -a.s. on the set of non extinction for ℓ large enough max |z|=ℓ V (z) ≤ γℓ(1 + a log ℓ/ℓ). So we just need that P -a.s. on the set of non extinction for ℓ large enough ∃z, |z| = ℓ, V (z) ≥ γℓ(1b log ℓ/ℓ), for this we use the results of [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF], note that here we are interested in the maximum instead of the minimum so few changes occur. Let F (t) := E |x|=1 1 V (x)≥t , by independence of N and the increments A i , we have F (t) = +∞ j=1 j i=1 P (N = j)P (-log A i ≥ t) and by hypothesis (1.1), for all t ≥log(ε 0 ), F (t) = 0, therefore α := sup{t, F (t) > 0} is finite. In [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF] there is two theorems the first one and the remarks that follow concern the case with a finite α and F (α) ≥ 1 and the second one the case F (α) < 1 and a second hypothesis (E[N 2 ] < +∞) which is satisfied in our work. We use both theorems. Thanks to the hypothesis of existence of ψ (again by the hypothesis of ellipticity), F (γ) ≤ 1 and therefore F (α) ≤ 1. Indeed for all t > 0 F (γ) ≤ E |z|=1 exp(t(V (z)γ)) , which by taking the infimum over all t > 0 in both part of the inequality leads to F (γ) ≤ exp(J(γ)) = 1. Moreover if F (α) > 1, then we should have exp J(γ) > 1 which is absurd. Theorem 1 of [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF], says that there exists a constant c 1 > 0, such that P almost surely on the set of non-extinction max |x|=ℓ V (x) -M ℓ ≥ c 1 log ℓ with M ℓ the median of max |x|=ℓ V (x), moreover if F (α) = 1, then M ℓ ≥ αℓc ′ 1 log ℓ, with c ′ 1 > 0. So we only have to check that α = γ. This is an easy computation, indeed we note that

E   |z|=1 e t(V (z)-α)   ≥ E   |z|=1 e t(V (z)-α) 1 V (z)≥ α  ≥ E   |z|=1 1 V (z)≥ α  = 1,
taking the infimum over all t > 0, we get exp( J(α)) ≥ 1 and as J(a) decreases with a and J(γ) = 0, we get γ ≥ α. The other case is pretty similar, let ε > 0,

E   |z|=1 e t(V (z)-α(1+ε))   = E   |z|=1 e t(V (z)-α(1+ε)) 1 V (z)≤ α  + E   |z|=1 e t(V (z)-α(1+ε)) 1 V (z)> α  ,
as for |z| = 1, V (z) ≤log ε 0 ,, by definition of α the last term is equal to 0, so we get

E   |z|=1 e t(V (z)-α(1+ε))   ≤ e -tαε E   |z|=1 1 V (z)≤ α  ≤ e -tαε e ψ(0)
taking the infimum over all t > 0, we get exp( J (α(1 + ε))) = 0, so γ ≤ α(1 + ε). For the case F (α) < 1 we use Theorem 2 (b) in [START_REF] Mcdiarmid | Minimal position in a branching random walk[END_REF] note that it is the point where we use the hypothesis of second moment for N , it gives that there exists a constant c 2 such that P almost surely max |x|=ℓ V (x) ≥ γℓc 2 log n.

We finally need a last technical Lemma which tells that, the numbers of back and forth movement between z i and z i is small for all i.

Lemma 2.5 For all the recurrent cases, for all ε > 0, P a.s. -N for n large enough

P E φ   1≤j≤Uε    L(z j ,T n φ )-1 l=1 1 L(z j ,T l+1 z j )-L(z j ,T l z j )≥1 ≥ 8/ε      ≤ 1 n 1+ε/4 .
(2.14)

Proof.

Let us denote 1≤j≤Uε Cj , the event in the above probability. We have :

P E φ   1≤i≤Uε { Cj , A j }   ≤ 1≤i≤Uε P E φ (Y hnn (i) ≥ 8/ε) (2.15)
where Y hnn (j) := hnn l=1 1 L(z j ,T l+1 z j )-L(z j ,T l z j )≥1 . By the strong Markov property Y hnn (j) is a binomial with parameters h n n and ṽz j := P E z j (T z j > T z j ). As ṽz j ≤ e -(V (z j )-V ( → z j )) , so thanks to Lemma 2.4, P a.s.

-N for all j ≤ U ε and all n large enough ṽz j ≤ e -log n(1+ε/4) . Moreover as we have no restriction for h n but the fact that it goes to infinity with n, we can take it for example equal to log n, so we get that nh n ṽz j ≤ log n/n ε/4 . We can now use, for example, the result of [START_REF] Cam | An approximation theorem for poisson binomial distribution[END_REF], to get that P a.s.

-N for all j ≤ U ε and all n large enough

P E φ (Y hnn (j) ≥ 8/ε) ≤ e -log n/n ε/4 log n n ε/4 8/ε + 4 log n n 1+ε/2 ,
and we conclude with

P E φ ∪ 1≤j≤Uε Cj ≤ P E φ ∪ 1≤j≤Uε Cj , A j + P E φ ∪ 1≤j≤Uε Āj .
Now we move to the proof of the upper bound for Rn . Let D i := min z>z i L(z, T n φ ) ≥ 1 such that all z belongs to generation (1 + ε) log n. We have Rn log n > c 2 ⊂ Uε i=1 D i . Let us compute an upper bound of the probability

P E ∩ Uε i=1 {A i , B i , C i , D i } , where A i , B i ,

and

C i have been defined in the previous Lemmata. We have

P E Uε i=1 {A i , B i , C i , D i } = Uε j=1 hnn-1 k j =1 8/ε-1 l j =0 Knhnn-1 m j =l j P E Uε i=1 D i , L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , k i -2 l=1 1 L(z i ,T l+1 z i ) =L(z i ,T l z i ) = l i .
In the following expression we add a sum over all the possible sequences (q i 1 , • • • , q i l i ) of the different time of excursions from z i to z i : for this we denote G m i i (q i 1 , • • • , q i l i ) the event that says that during the m i returns to z i , the walk will touch the point z i only between the (q i r -1)nth and q i r nth return time to z i for all r ≤ l i .

P E Uε i=1 {A i , B i , C i , D i } = Uε j=1 hnn-1 k j =1 8/ε-1 l j =0 Knhnn-1 m j =l j q j 1 ,••• ,q j l j P E Uε i=1 D i , L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , G m i i (q i 1 , • • • , q i l i ) . Now on G m i i (q i 1 , • • • , q i l i ), L(z i , T n φ ) = k i , L(z i , T k j z i ) = m i the event D i can be written D i = min z>z i l i -1 s i =0 L(z, T q i s i +1 -1 z i ) -L(z, T q i s i z i ) ≥ 1 = l i -1 s i =0 min z>z i L(z, T q i s i +1 -1 z i ) -L(z, T q i s i z i ) ≥ 1 =: l i -1 s i =0 H i (q i s i ).
We finally get

P E Uε i=1 D i , L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , G m i i (q i 1 , • • • , q i l i ) ≤ Uε j=1 l j -1 s j =0 P E Uε i=1 H(q i s i ), L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , G m i i (q i 1 , • • • , q i l i ) ≤ Uε j=1 l j -1 s j =0 P E Uε i=1 H(q i s i ), L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , Gi (q i s i )
where Gi (q i s i ) := {∀r, T

q i s i +1 -1 z i ≤ r ≤ T q i s i z i , X r > z i }. The next step is to make disappear L(z i , T n φ ) = k i , and L(z i , T k i z i ) = m i carefully, we simply notice that Uε j=1 hnn k j =1 P E Uε i=1 H(q i s i ), L(z i , T n φ ) = k i , L(z i , T k i z i ) = m i , Gi (q s i ) ≤ Uε j=1 hnn k j =1 P E Uε i=1 H(q i s i ), L(z i , T n φ ) = k i , Gi (q s i ) = P E Uε i=1
H(q i s i ), Gi (q s i ) .

We are now ready to apply the strong Markov property, indeed the (T q i s z i , i ≤ U ε ) can now be ordered, and as they are stopping times recursively we finally get:

P E Uε i=1 H(q i s i ), Gi (q s i ) = Uε i=1 P E z i min z>z i L z, T q i s i +1 -1-q i s i z i ≥ 1 ≤ Uε i=1 P E z i min z>z i L z, T Knhnn z i ≥ 1 .
We are left to get an upper bound for the probabilities in the above product, and also to count the number of term we have in the previous product of sums. First about the sums we notice that

8/ε l 1 =0 Knhnn m 1 =l 1 q 1 1 ,••• ,q 1 l 1 l 1 s 1 =0 1 = 8/ε l 1 =0 Knhnn m 1 =l 1 m 1 l 1 (l 1 + 1) ≤ (8/ε + 1)K n h n n 8/ε l 1 =0 Knhnn l 1 ≤ (8/ε + 1) 2 K n h n n(K n h n n) 8/ε , so finally Uε j=1 8/ε l j =0 Knhnn m j =l j q j 1 ,••• ,q j l j l j s j =0 1 ≤ (8/ε + 1) 2 K n h n n(K n h n n) 8/ε Uε ∼ (K n h n n) Uε(8/ε+1) .
Using successively the strong Markov property, (4.4) and the hypothesis of ellipticity for all z > z i :

P E z i min z>z i L z, T Knhnn z i ≥ 1 ≤ P E z i L z, T Knhnn z i ≥ 1 = 1 -P E z i T z i < T z Knhnn ≤ 1 -   1 -p(z i , → z i ) 1 u∈ z i ,z e V (u)-V ( → z i )   Knhnn ≤ 1 -exp -cK n h n ne -max u∈ z i ,z V (u)-V ( → z i ) ,
with c > 0. The stationarity of V gives the following equality in law with respect to P :

max u∈ z i ,z V (u)-V ( → z i ) = max |z|= ε 2γ log n V (z)
, moreover thanks to lemma 2.4, P a.s.-N for all n large enough: max

|z|= ε 2γ log n V (z) ≥ (1 -ε) ε 2 log n.
We finally get that P a.s. -N for all n large enough:

P E z i min z>z i L z, T Knhnn z i ≥ 1 ≤ c ′ K n h n n n ε(1-ε)/2 , implying P E Uε i=1 H(q i s i ), Gi (q s i ) ≤ c ′ K n h n n n ε(1-ε)/2 Uε .
Collecting all what we did above and replacing K n h n n by its value, yields that P a.s. -N for n large enough

P E Uε i=1 {A i , B i , C i , D i } ≤ (K n h n n) Uε(8/ε+2) 1 n ε(1-ε)/2 Uε .
From Kesten-Stigum theorem [START_REF] Kesten | A limit theorem for multidimensional galton-watson processes[END_REF] (here the hypothesis that E(N log + N ) < ∞ is trivially satisfied), we know that P a.s. -N lim ε→0 U ε /e ψ(0)uε = W where W a strictly positive, finite random variable. In particular choosing u ε = 1 e ψ(0) log 1 ε 2 P a.s.

-N for all ε > 0 small enough 4/(1ε)ε ≤ U ε ≤ 1/ε 3 , finally remember that K n is given just after 2.11 so we get P a.s. -N for n large enough

P E Uε i=1 {A i , B i , C i , D i } ≤ (log n) c ′′ ε 4 n 2 ,
with c ′′ > 0. Finally collecting the result of the different Lemmata we get that P a.s. -N , P E Rn log n > c 2 is summable, applying Borel-Cantelli Lemma we get 2.7.

3 Connexion between Rn and R n 3.1 Case ψ(1) = 0, ψ ′ (1) ≥ 0 or inf t∈[0,1] ψ(t) < 0

We have the following Lemma 3.1 Assume 1.2 or 1.3 or 1.4, then for all ε > 0 P a.s.-N for all n large enough

Rn 1-ε ≤ R n ≤ Rn . (3.1) 
Note that only the first inequality needs to be proven, moreover the case (1.2) and (1. From the above Lemma the proof of the first Lemma is straightforward, indeed for n large enough on

A 2 L(φ, n) ≥ L φ, T (log n) 3 α(1+ ε /2) 3
, therefore, for n large enough on A 1 and A 2

L(φ, n) ≥ exp(log n(1 -ε/4)/(1 + ε/2)) ≥ n 1-ε .
So we are left to prove Lemma 3.2, notice that it can be deduced from what is done in [START_REF] Faraud | Almost sure convergence for stochastically biased random walks on trees[END_REF], for completness we give some details here except the proof of the following delicate to prove Lemma Lemma 3.3 ([5]) For all ε > 0 P a.s. -N for all m large enough ρ m ≤ exp(-m 1/3 α 1/3 (1ε/8)), (3.4) where ρ m := P φ (T m < T φ ).

Proof of lemma 3.1 For A 1 (m), the strong Markov property gives P E (L(φ, T m ) ≥ k) = (1ρ m ) k , then Lemma 3.3 yields that P a.s. -N for m large enough

P E L(φ, T m ) ≤ exp(m 1/3 α 1/3 (1 -ε/4)) ≤ exp(-m 1/3 α 1/3 ε/8), (3.5) 
applying Borel-Cantelli Lemma leads to 3.2.

For A 2 (m), from U.A. Rozikov [START_REF] Rozikov | Random walk in random environments on the cayley tree[END_REF], E E [T m ] = γm(φ) ρm , where γ m (φ) is defined in the appendix. Lemma 4.2 and 3.3 imply the existence of a constant c ′ > 0 such that P a.s. -N for m large enough

E E [T m ] ≤ c ′ m exp(m 1/3 α 1/3 (1 + ε/8)), (3.6) 
the Markov inequality together with the above inequality yields that P a.s.

-N P E (T m > m 1/3 α 1/3 (1 + ε/ 4 
)) is summable and we conclude with Borel-Cantelli Lemma.

Finally notice that by Lemma 3.1, (2.1) and (2.7), P a.s. -N for n large enough

1 γ (1 -ε) 2 ≤ R n log n ≤ 1 γ (1 + ε) (3.7) 
we get the Theorem for the first three cases by letting ε go to zero. 

Rn ν ′ -ε ≤ R n ≤ Rn ν ′ +ε ,
where ν ′ := 1/ min(κ, 2).

To prove this Lemma we use the following results of [START_REF] Hu | A subdiffusive behavior of recurrent random walk in random environment on a regular tree[END_REF] that can be extended to a supercritical Galton Watson tree by using the same technics:

Proposition 3.5 ([7]) Under ψ(1) = 0, ψ ′ (1) < 0, we have for all ε > 0, P a.s. -N for all m large enough m -ε E[β m (φ 1 )] ≤ β m (φ 1 ) ≤ m ε E[β m (φ 1 )], (3.8) 
where β m (φ 1 ) :

= P E φ 1 [T m ≤ T φ ]. Moreover if κ ∈ (2, +∞], E[β m (φ 1 )] = O(1/m) and if κ ∈ (1, 2] m -1 κ-1 -ε ≤ E[β m (φ 1 )] ≤ m -1 κ-1 +ε . Also P a.s. -N for all n large enough T n ν(1-ε) ≤ n ≤ T n ν(1+ε) , (3.9) 
with ν := 1 -1/ min{κ, 2}.

Appendix

In this appendix, for completness, we describe and sketch the proof of some classical results. Given a vertex x ∈ T, we denote x 0 := φ, . . . , x n := x the vertices on φ, x with |x i | = i for all 0 ≤ i ≤ n.

Biggins-Kyprianou identities

For any n ≥ 1 and any mesurable function F : R n × R n → [0, +∞), Biggins-Kyprianou identity is given by

E   |x|=n e -V (x)-ψ(1)n F (V (x i ), 1 ≤ i ≤ n)   = E[F (S i , 1 ≤ i ≤ n)] (4.1) 
where (S i -S i-1 ) i≥1 , are i.i.d. random vectors, and the distribution of S 1 is determined by :

E[f (S 1 )] = E   |x|=1 e -V (x)-ψ(1) f (V (x))   , (4.2) 
for any measurable function f : R → [0, +∞). A proof can be found in [START_REF] Biggins | Senata-heyde norming in the branching random walk[END_REF], see also [START_REF] Shi | Random walks and trees[END_REF].

Classical results about birth and death chains

Lemma 4.1 For x ′ ∈ φ, x :

P E x ′ x (T x < T x ′ ) = e V (x ′ x ) z∈ x ′ ,x e V (z) , (4.3) 
P E ← x (T x ′ < T x ) = e V (x) z∈ x ′ ,x e V (z) . (4.4)
where x ′ x is the only children of x ′ in x ′ , x .

Proof: Let (σ n ) n≥0 the family of stopping times defined by σ n = inf{k > σ n-1 , X k ∈ φ, x , X k = X σ n-1 } and define Z n = X σn for n ≥ 0. (Z n ) n≥0 is a birth and death Markov chain on φ, x with transition probabilities given by:

p x i := P E (Z n+1 = x i+1 |Z n = x i ) = A(x i+1 ) 1 + A(x i+1 ) , q x i := P E (Z n+1 = x i-1 |Z n = x i ) = 1 1 + A(x i+1 ) , ∀1 ≤ i ≤ n -1 and p φ = q x = 1, indeed p x i = P E x i (X σ 1 = x i+1 ) = ℓ≥0 P E x i (X T ℓ x i +1 = x i+1 , ∀m < ℓ, X T m x i +1 / ∈ φ, x ) = ℓ≥0 p(x i , x i+1 )P E x i (X 1 / ∈ φ, x ) ℓ = p(x i , x i+1 ) 1 -P E x i (X 1 / ∈ φ, x ) = p(x i , x i+1 ) 1 -k =j p(x i , x (k) 
i ) = A(x i+1 ) 1 + A(x i+1 ) .
Let us introduce:

ξ 0 := 1, ξ ℓ := ℓ k=1 q k p k , ℓ ≥ 1,
and consider f : N → R given by f (φ) = 0 and for 1 ≤ k ≤ n, f (x k ) = k-1 ℓ=0 ξ ℓ . Easily we can see that (f (Z k )) k≥0 is a martingale. With τ i = inf{m ≥, 0, Z m = x i } and for 1 ≤ i < j < k, according to the optional stopping time Theorem, for 1 ≤ i < j < k :

f (x j ) = E E x j [f (X τ i ∧τ k )] = f (x i )P E x j (τ i < τ k ) + f (x k )[1 -P E x j (τ i < τ k )] ⇔ P E x j (τ i < τ k ) = j-1 ℓ=i ξ ℓ k-1 ℓ=i ξ ℓ = z∈ x i ,x j e V (z) z∈ x i ,x k e V (z)
recalling that V (x) = -z∈ φ,x log A(z), x ∈ T\{∅}. Since {τ x < τ x ′ } = {T x < T x ′ } conditionnaly on {X 0 = x ′ x }, thus formula 4.3 is proved.

About (γ n , n)

Let us define:

γ n (x) :=      0 if |x| = n, 1 /p(x, ← x )+ Nx i=1 A(x i )γn(x i ) 1+ Nx i=1 A(x i )βn(x i ) , if 1 ≤ |x| < n, N i=1 p(φ, φ i )γ n (φ i ), if x = φ . (4.5) 
where β n := P E x (T n < T← x ). This result is already proved in the case of a b-ary tree (see for instance [START_REF] Hu | Slow movement of recurrent random walk in random environment on a regular tree[END_REF]). Here, we treat the case of a Galton-Watson tree.

Proof:

First, observe that for all 2 ≤ k ≤ n : where K is a constant satisfying ∀x ∈ T, p(x, ←

x ) -1 ≤ K. The existence of K is provided by assumptions 1.1. As p(φ, φ i ) ≤ A(φ i ), ∀1 ≤ i ≤ N , we deduce from (4.5):

γ n (φ) ≤ N i=1 A(φ i )γ n (φ i ), (4.8) 
and note that formula (4.5) implies :

γ n (x) ≤ K + Nx i=1
A(x i )γ n (x i ), ∀1 ≤ |x| ≤ n. (4.9)

Then from (4.8) and (4.9), we deduce formula (4.7) for k = 2:

γ n (φ) ≤ N i=1
A(φ i )(K +

N φ i j=1
A(φ i,j )γ n (φ i,j ) = K where M j := |x|=j φ;x A(y). (M j ) j≥1 is a positive F j -martingale with M 0 = 1 and F j := σ{(A(x 1 ), • • • , A(x Nx ), N x ) : |x| ≤ j, x ∈ T}:

• obviously we have positivity and for all j ≥ 0, M j ∈ F j ;

• for all x ∈ T , as (A(x 1 ), • • • , A(x Nx ), N x ) is equal in law to the vector (A 1 , • • • , A N , N ):

E[M j+1 |F j ] = M j E[ N i=1 A i ],
and we conclude with M 0 = E[ N i=1 A i ] = 1, since ψ(1) = 0. Consequently, there exists an almost sure limit for (M j ) j≥0 which implies that sup j M j < ∞ almost surely. Thus, (4.10) implying γn(φ) n ≤ K sup j M j , the proof is complete.
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 32 3) follows directly by the fact that the random walks are positive recurrent. In what follows we will always assume that 1.4 is realised and for m ∈ N, we denote T m := inf{k ≥ 0, |X k | = m} the hitting time of the generation m. The key-point is the following Lemma There exists a constant α > 0, such that P a.s. -N for all m large enough A 1 (m) := {L(φ, T m ) ≥ exp ((mα) 1/3 (1ε/4))}, and (3.2) A 2 (m) := {T m ≤ exp ((mα) 1/3 (1 + ε/2))} (3.3) are realized.
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 234 Case ψ(1) = 0, ψ ′ (1) < 0Let us proveLemma Under ψ(1) = 0, ψ ′ (1) < 0, we have for all ε > 0, P a.s. -N for all n large enough
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 42 Assuming ψ[START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching branching process[END_REF] 
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 77 i )A(φ i,j )γ n (φ i,j ) is true for one k ≥ 2 , we prove that it still true for k + 1. Using again (4.9):γ n (φ) ≤ K i )γ n (x i ) to k = n and recalling that γ n (x) = 0 for |x| = n : γ n (φ) ≤ K
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Proof of lemma 3.4 First notice that thanks to the second part of the above proposition, P a.s. -N for all n large enough L(φ, T n ν(1-ε) ) ≤ L(φ, n) ≤ L(φ, T n ν(1+ε) ).

(3.10)

The upper bound we study the asymptotic of L(φ, T m ) for large m, using Markov inequality we have

By definition ρ m = N (φ) i=1 p(φ, φ (i) )β m (φ i ), then by using the fact that the β m (φ (i) ) are i.d. with mean E[β m (φ 1 )], the hypothesis of ellipticity and the first part of the above Proposition we get that there exist positive constants c 1 > 0 and c 2 > 0 such that P a.s.

We deduce from that the convergence of the sum ℓ p ℓ 2/ε , therefore according to Borel Cantelli Lemma P a.s.

-N for all l large enough L(φ, T

in such a way that for ℓ large enough ℓ 2/ε ≤ m 1+ε , we get by using the fact that L(φ, T ℓ ) is increasing in ℓ and β ℓ decreasing in ℓ, that P a.s. 

, therefore for m large enough and by taking λ m = m ε ρ m we get E E e -λmL(φ,Tm) ≤