
HAL Id: hal-00652751
https://hal.science/hal-00652751v1

Submitted on 16 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typhoon : A Middleware for Epidemic Propagation of
Software Updates

Tegawendé F. Bissyandé, Laurent Réveillère, Yérom-David Bromberg,
Jean-Rémy Falleri

To cite this version:
Tegawendé F. Bissyandé, Laurent Réveillère, Yérom-David Bromberg, Jean-Rémy Falleri. Typhoon :
A Middleware for Epidemic Propagation of Software Updates. M-MPAC’2011 colocated with Middle-
ware 2011, Dec 2011, Lisbon, Portugal. pp.1. �hal-00652751�

https://hal.science/hal-00652751v1
https://hal.archives-ouvertes.fr

Typhoon : A Middleware for Epidemic Propagation of
Software Updates

Tegawendé F. Bissyandé
CNRS/LaBRI

University of Bordeaux, France
bissyande@labri.fr

Laurent Réveillère
IPB/LaBRI

University of Bordeaux, France
reveillere@labri.fr

Yérom-David Bromberg
LaBRI

University of Bordeaux, France
bromberg@labri.fr

Jean-Rémy Falleri
IPB/LaBRI

University of Bordeaux, France
falleri@labri.fr

ABSTRACT

Applications for mobiles devices are subject to very frequent
updates for fixing security vulnerabilities, ensuring compat-
ibility with new hardware and APIs or enhancing function-
alities. Getting the new version of an application involves
the download of a significant amount of data, which is not
practical through low-bandwidth/high-cost links. As a con-
sequence, mobile device users often fail to update their ap-
plications.

This paper introduces a collaborative and epidemic updat-
ing scheme to improve software updates distribution. In our
approach, updates are distributed by the surrounding de-
vices, eliminating the need for costly resources. Moreover,
the packaging of these updates, which consists in deliver-
ing binary patches of the difference with a previous version,
dramatically reduces the amount of data to download.

Preliminary experimental results based on real contact
traces show that our approach offers an efficient selection
and recovery of patches, ensuring a fast update for each
participating device.

Keywords

Opportunistic networking, epidemic propagation, software
patch, mobile platform, Android

Categories and Subject Descriptors

C.2.4 [Distributed systems]: [Distributed applications];
K.8.1 [Application packages]: [Data communications]

*This work was partly supported by the Euro-
pean project ALICANTE within the framework of
the EU FP7 in ICT, under grant agreement number
248652//ALICANTE/.http://www.ict-alicante.eu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
M-MPAC’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1065-9/11/12 ...$10.00.

1. INTRODUCTION
Nowadays, personal portable devices, which include the

numerous brands of smartphones on the market, increas-
ingly run more sophisticated software that provide the same
services as desktop applications, thus making their update
as much critical. However, unlike desktop applications such
as Adobe Acrobat Reader and Mozilla Firefox, the majority
of applications for mobile devices do not patch themselves
automatically. Instead, users must regularly download the
entire binary of a new release to replace the outdated one.
This procedure is often bandwidth and time consuming, two
resources that are highly critical in mobile devices. To ad-
dress this issue, a traditional approach consists in delivering
smaller pieces of data, called patches, that consist only in
the differences with the previous version.
The distribution of these patches often rely on a central-

ized model, involving a fixed number of download servers.
However, this approach, even when improved by setting up a
hierarchy of mirror servers, is expensive and cannot measure
up in terms of scale and performance with users’ needs [1].
Moreover, in these cases, bandwidth shortage concerns as
well as cellular network ISP fees can make users less proac-
tive in keeping their software updated. Finally, a centralized
distribution model is actually inefficient from a networking
perspective as it leaves unused the potentially very large
quantity of bandwidth available for data exchange between
mobile devices [13].
An alternate distribution strategy would then be to har-

ness the potential of the many mobile devices that can be
interconnected in a peer-to-peer (P2P) system for spreading
patches. Indeed, since any device that joins the network can
deliver a patch as well as receive some, the system is nat-
urally balanced and self-scalable, in addition of being more
effective than a fixed number of patch servers [15].

This paper. In this paper we propose to exploit the
significant number of opportunities for inter-personal net-
working among mobile device users to distribute software
updates. We leverage on the fact that while users spend a
considerable amount of time together in public places, their
mobile devices are increasingly left switched on [8]. In our
collaborative scheme, each device, based on the history of its
encounters, is able to predict whether it stands a chance to
retrieve a patch required to update one of its applications.

The main contributions of this paper are :

• We first validate our assumption that software patches
can be easily constructed on portable devices and that
their final size is relatively small to be transferred in a
reasonable time window.

• We propose an approach to patch distribution that
exploits the inter-personal networking of mobile device
users. This approach is supported by an algorithm
that has been devised with efficiency in mind so as to
deal with various challenges in mobile networks.

• To validate our approach, we perform simulations us-
ing real traces of people moving in a conference site.
We then show that our prediction scheme enables the
system to be effective in disseminating software up-
dates.

The rest of this paper is organized as follows: Section 2
describes our approach and the different functionalities of
Typhoon. Section 3 details the patch selection algorithm.
Section 4 evaluates our approach through a simulation. Sec-
tion 5 discusses related work and Section 6 concludes.

2. OUR APPROACH
Traditional update systems such as the update systems

for Microsoft Windows and Apple Mac OS Software pro-
duce signed patches and distribute them using known distri-
bution servers. OS-related software are then automatically
upgraded when the patches are installed on the system. In
the absence of update centers for third party applications,
new software releases are entirely downloaded and installed
in loco outdated software.

To leverage on the opportunistic contacts that occur while
mobile device users meet, we have designed a middleware
named Typhoon that enables an epidemic-style dissemina-
tion of software patches. Each participating mobile device
periodically broadcasts in its environment information about
the patches it offers and parses broadcast messages from its
peers to identify patches that might be useful for its updat-
ing process. In the rest of this section, we present the main
characteristics of the Typhoon middleware.

2.1 Typhoon services
Software patch distribution includes the construction of

patches, their advertisement, their selection and the instal-
lation process. In our approach, we assume that, from time
to time, at least one user has access to the Internet via his
mobile device, and initiates the update process for one of
the applications running on this device.

Application installer. The Typhoon middleware inter-
cepts the download of new releases and becomes responsible
for their installation, using an installer that mimics tradi-
tional installers, while being able to perform other tasks such
as creating patches and re-constructing application releases.
Thus, before installing a new version of an application, Ty-
phoon produces a patch that corresponds to the gap between
the running version and the new one, and advertises the ex-
istence of such patch to all devices in its vicinity.

Similarly, when a device recovers a patch, the applica-
tion installer sets off the reconstruction process. Using the
installed version of the application and the stored patches,
Typhoon manages to rebuild an equivalent of the software

release that were initially downloaded from the Internet by
another device.
Patch selector. Considering the rapid evolution in the

design of mobile device hardware and the constant enrich-
ment of APIs, applications software are bound to be regu-
larly renewed so as to fully exploit the capabilities of their
supporting device. This in turn leads to a proliferation of
different application versions being run on users’ devices.
Consequently, a given device in the collaborative scheme can
come across a variety of software patches for the same ap-
plication. While some of these patches may be immediately
dismissed -when they lead to versions that are anterior to
the running version-, the others can either (i) be directly
used by Typhoon to update an existing application, or (ii)
be downloaded in prevision of a future update. For example,
if the broadcasted patch updates from version 2 to 3 and the
device runs version 1, it will not be used until the bridging
patch for updating from 1 to 2 is recovered. The patch can
also (iii) lead to a dead-end, when there is less opportunity
of moving on once it is used. This happens when two ver-
sions of the same software have been released at close dates.
Only a few users had already downloaded the first version.
Their patches are therefore to be avoided.
Typhoon’s Patch selector service mainly takes into ac-

count two challenges :

1. The selection decision must be made quickly to give a
chance of recovering the desired patch before users go
on different ways

2. The selection must be efficient to avoid misuses of
bandwidth and energy in downloading patches that
are less appropriate than other patches that can po-
tentially be recovered in the near future.

Patch propagator. A recovered patch is stored even af-
ter it is no longer needed by the device. Thus, when peers
exchange patches, they increase the number of devices that
make these patches available to others, hence the epidemic

qualifier. However, space limitations can require a purge of
the Typhoon patches’ store to welcome other patches that
are more needed by the device. Nevertheless, in such sit-
uations, Typhoon manages to leave the removal of scarce
patches as an action of last resort. This way, the altruistic

behavior of each peer contributes in improving the efficiency
of the collaboration.

2.2 Construction of software patches
Patches are built on a mobile device by generating binary

diff files between the original software installed on the de-
vice and the newly downloaded release. Typhoon relies on
the algorithm of BSDiff [12] which provides outputs that are
relatively smaller than what competitor algorithms can of-
fer. However, after analyzing about 50 different releases of
a dozen applications for mobile platforms, we have noticed
that, in most cases, changes occur on the executable files but
also as additions/removals of resource files such as images.
Performing a binary diff on the whole software release can
therefore produce output files that are unnecessarily bigger
than what can be gained with a detailed diff on each file
included in the application release. Such a detailed diff is
called hereafter a structural diff in which we compute the
binary diff of the only existing files that have been modified

The experiments have been conducted with Android

in the new release. Resource files that have been added in
the new version are simply copied in the update package.
A manifest file then summarizes the differences between the
two software versions.

Nevertheless, though the update package that is obtained
using the structural diff allows to reconstitute a software
version that has the same size as the target release, it is not
equivalent to the new release due to possible realignment of
bytes. One can check this fact by simply comparing MD5
hash values of both files. To address this issue, Typhoon
creates a correction patch by computing the global diff be-
tween the previously reconstructed release and the true new
release. In the rest of this paper we refer to patches con-
structed by Typhoon as structural patches to differentiate
from the usual global patch produced by BSDiff. The com-
parison of patches for 11 versions of the Android FamilySafe

application showed that with our technique, Typhoon can
yield much smaller patches, between 1/2 and 1/5, than a
straightforward BSDiff.

Authenticity. Security in patch distribution is a crit-
ical issue that is discussed in a large body of the litera-
ture [2]. In our approach, we guarantee the preservation
of the signature of the original application in reconstructed
software releases. Thus, both intentionally and unintention-
ally malformed patches will be rejected when the application
installer fails in the verification of the signature.

3. PATCH DISSEMINATION ALGORITHM
In this section, we give more details on the dissemination

algorithm used by Typhoon to select, transfer, install, store
and remove patches. We assume that all participating mo-
bile devices are equipped with short-range wireless network
interfaces that allow them to regularly broadcast in their en-
vironment information related to all the patches that they
have in storage. From here on, all mentioned devices are
mobiles devices on which Typhoon is operational. Conse-
quently, they all participate in the collaborative scheme for
propagating software updates.

The network of peers is a set of interconnected mobile de-
vices that run each a number of applications. The peers are
referred to as nodes of a P2P network. Let DA

n→p be the
software patch that can be used to update a given appli-
cation A from the version number n to the version number
p > n. Each node maintains a prediction table T where are
stored the prediction values for the node to obtain different
patches. Thus, whenever a node Nx informs N1 that it
carries the patch DA

n→p , peer N1 updates in T the value

PA
n,p , the frequency of occurrences in the past of this DA

n→p

, which equates, in our algorithm, the prediction value for
the node to come across any other peer that can provide this
patch.

Event. At the occurrence of event E(N1 ← N2) , when
node N1 receives a broadcast message containing some in-
formation about the patches stored by node N2 , (1) N1

parses the message and retrieves the list of patches that N2

can provide. Then, (2) N1 updates in T the new frequency
values corresponding to the advertised patches. Finally, (3)
using the information stored in T , node N1 deduces
the highest version number z that can be reached for each
application. This version number does not necessarily rep-
resent the most recent version that application developers
have released, but the highest version N1 has ever heard

of. Similarly, the lowest version number a for which there
are patches to update from can also be computed.

Algorithm 1: Select and recover a patch DX
x1→x2

among
all patches broadcasted by other nodes

Input: {DA
a→b, D

B
a→c , ..., DA

b→d , DB
b→c , ...,DZ

y→z}

listOfPatches ← {DA
a→b, D

B
a→c ,, ..., DA

b→d , DB
b→c , ...,DZ

y→z}
updateTable(T ,listOfPatches)
selectedPatch ← ⊥
A← findApplicationToUpdate(listOfPatches)
selectedPatch ← selectBestPatch(listOfPatches , T , A)
if selectedPatch 6= ⊥ then

∃ (m,n) · DA
m→n ∈ listOfPatches | DA

m→n = selectedPatch

if size_of(DA
m→n) ≥ storeRemainingSpace then

purgeCacheFor(DA
m→n)

download & store DA
m→n

if current version = m ∧ DA
m→n ∈ Store then

do patching
newV ersion← n

while ∃ DA
newV ersion→x ∈ Store | x > newV ersion do

do patching
newV ersion← x

Listening window. Each peer in the network keeps alive
a listening window to record the events that occur during a
delimited time slot. When the listening window closes, all
the patches that have been advertised by neighbouring peers
are processed altogether.
The objective of the update process is to allow all nodes to

reach, for each application, the highest version that is cur-
rently available, or, failing this, a higher version from which
there is more opportunity to get, later on, the highest ver-
sion. For the procedure to be effective in a network where
peers are mobile, the decision on the patch to recover must
be made as quickly as possible. Furthermore, attempting
to retrieve all patches advertised by other peers during the
listening window is an unworkable solution. We propose
an approach that consists in selecting, among advertised
patches, the most appropriate for one of the peer’s appli-
cations. The selection algorithm described in Algorithm 1
gives an overview of the decisions that are taken by a node
in the collaborative network. In the following subsections,
we review the main steps of this algorithm.

3.1 Prediction table update
The selection of a patch strictly depends on the availabil-

ity of all other related patches that are required to complete
the update process. Indeed, when running a given applica-
tion A with version number i, it is unwise to recover a patch
for updating from version number i + 1 to i + 2 if there is
no opportunity for retrieving a patch for updating from i to
i+ 1. Keeping each peer’s prediction table T up to date is
therefore an essential step of the algorithm. For a given node
N1 , it consists in re-computing, for each patch referenced in
T , the prediction value for N1 to be interconnected with a
node that can provide this patch, by updating the frequency
value of its appearance in broadcast messages processed by
the node. In particular, when the size of a given patch is
known to be larger than the memory space that has been
set aside for storage, N1 considers that there is no oppor-
tunity for recovering it by setting the prediction value to 0.
This way, at the occurrence of a subsequent event, N1 dis-
misses any advertised patch that depends on the previously
rejected patch.

3.2 Application selection
Each node, at the end of a listening period, selects an

application to update, depending on the list of available
patches. This selection is based on a scheme with a se-
lection queue containing all applications that are run by the
peer. When an application is chosen, its identifier is moved
to the end of the queue. All applications are therefore given
a chance to be updated at some point. The simplicity of this
procedure also gives a better chance to the peer to recover a
patch. Indeed, using a more sophisticated, hence complex,
algorithm would have introduced more latency between the
reception of a broadcast message and the beginning of the
download, leaving enough time for the two peers to be dis-
connected.

3.3 Patch selection
After selecting an application, N1 must determine which

of its patches is the most appropriate for enabling the update
process to quickly lead to the highest version number. In-
deed, in order to update a given application A from version
number i to the highest version number z, N1 must progres-
sively acquire a sequence of patches, the best sequence being
the one for which the probability to collect all the necessary
patches has the highest value. Considering two version num-
bers x and y, the probability of being able to update from
one to another is obtained by computing the shortest path
through the known intermediate version numbers between
x and y.

The directed graph in Fig. 1 highlights the key possibili-
ties of sequences of patches that can be used by a node N1

running the version i of an application A and that needs to
update to z, the highest version number in T . N1 must
then determine among the advertised patches, those that are
of useful in its current configuration.

i

x y

m n

z

k c

b

PA
x,y

PA
m,n

PA
i,z

P
A

i
,x

P A
i,k

P A
n
,z

P
A
i,
m

P
A
y
,m

P
A
b,
z

P A
y
,z

Figure 1: Subset of possible paths in the case where

a node N1 which runs application A with version

number i while storing a patch DA
x→y comes accross

a node that can offer the patch DA
m→n

We introduce in the following different notations and equa-
tions that formalize the computations that implement the
best patch selection algorithm:

• Seq
i→z

(DA
k→l) : a sequence of known patches that con-

stitute a possible combination to update A from i to

Dijkstra’s algorithm for finding the shortest path produces
the optimal path with minimal costs

z. We call it a possible path.

Seq
i→z

(DA
k→l) =< DA

k0→l0 ,D
A
k1→l1 , ...,D

A
kn→ln >

| k0 = i ∧ ln = z ∧ ∀x ∈]0 : n], kx = lx−1

(1)

• ∪Seq
i→z

(DA
k→l) : the set of all possible paths.

• Prob(Seq
i→z

(DA
k→l)) : the overall prediction value for

N1 to get all the patches in this path. This value is in-
versely proportional to the cost value that is attributed
to the path in Dijkstra’s algorithm.

Prob(Seq
i→z

(DA
k→l)) =

∏
(PA

k,l)

∀(k,l)|DA
k→l

∈Seq
i→z

(DA
k→l

)

(2)

• sPath(T , A, i, z) : the function that computes for a
given node, using the prediction table T , the short-
est path to go from version number i of application A

to version number z. To implement this function we
rely on Dijkstra’s algorithm, using version numbers as
vertices’ identifiers and the inverse of prediction values
as edges’ costs (cf. Fig. 1).

sPath (T , A, i, z) = Seq
i→z

(DA
k→l) ∈ ∪Seq

i→z

(DA
k→l)

| ∀ Seq′
i→z

(DA
k→l) ∈ ∪Seq

i→z

(DA
k→l),

P rob(Seq′

i→z

(DA
k→l)) ≤ Prob(Seq

i→z

(DA
k→l))

(3)

• aPathx,y(T , A, i, z) : the shortest of all paths that in-
clude a given patch DA

x→y.

aPathx,y(T , A, i, z) =

< sPath(T , A, i, x),DA
x→y, sPath(T , A, y, z) >

(4)

Best path computation. The computed best path may
include patches that are in storage, patches that are cur-
rently advertised, and patches that the peer predicts to re-
trieve in the future. It is therefore used as a reference path
necessary to weigh other alternate paths. Thus, while rely-
ing on the prediction table, node N1 takes every concrete
opportunity it gets to recover less popular patches.

Once the utility of a patch has been established, the re-
ceiving node must ensure that there is still enough memory
space to welcome the new patch. In case of a memory deficit,
a few decisions can be taken to purge the store by deleting
progressively that are no longer needed by the node. Nev-
ertheless, since the system is collaborative, the algorithm
adds some intelligence in the purge by removing in priority
patches that are popular in the network. Thus, any other
node needing this patch still have a chance of retrieving it
from other nodes. If the node need more space, it can begin
deleting patches that have been recovered but whose use is
less pressing. These patches include patches that are meant
to update an application from a version j that is much higher
than the current version i run by the node.

4. ASSESSMENT
We have implemented a prototype of the Typhoon mid-

dleware for the Android platform. Spontaneous interconnec-
tions are possible using the zeroconf technology on Android
“development” phones for WiFi networking. However, to
support all devices on the market, our prototype implemen-
tation also integrates a customized Bluetooth OBEX service
which allows to sidestep the lack of broadcast feature in the
Bluetooth standard specifications.

The assessment of our approach has involved tests on pop-
ular software releases to confirm the adequacy of our tech-
nique for patch construction. Due to practical constraints,
we rely on simulations to assess the patch propagation al-
gorithm. Nevertheless, we use well-known human mobility
traces to emulate realistic settings.

4.1 Patch size
Opportunistic networks are by definition volatile. While

users meet and go their ways, their personal devices inter-
connect for a limited amount of time during which patches
must be downloaded completely as a whole. Indeed, in-
stead of resorting to splitting the update package into sev-
eral patches that may be recovered from different peers, thus
introducing security leaks, we focus on making the update
package as small as possible to transfer data between par-
ticipating devices. Using our technique (cf.2.2), we have
produced structural patches for various versions of 12 appli-
cations for the Android platform. Our experiments showed
that for minor updates, i.e. for update packages that have
been constructed from consecutive releases, most patches
have sizes below 100 kB. When we consider all possible com-
binations of versions to build minor as well as major update
packages, the median size value increases to about 300 kB,
which is still significantly less than the usual media files
transfered in opportunistic networks. For instance, McNa-
mara et al have considered MP3 files that are around 5 MB
in size [7].

4.2 Simulation
To validate our approach of software patch dissemina-

tion in opportunistic networks, we conduct a simulation us-
ing real-world datasets of human mobility traces that have
been extensively referenced in the literature [3, 13]. The
Infocom06 [14] trace contains data collected during CRAW-
DAD’s Experiment 6 at the Infocom’06 conference in Barcelona,
Spain. The experiment has recorded the Bluetooth sightings
between iMotes that have been distributed to participants,
students and researchers, attending the student workshop
that was co-located with the conference. In our simulation,
we consider that the 78 valid IDs that have been kept by the
trace’s authors correspond to mobile devices that participate
in our collaborative scheme, and therefore rely on Typhoon.
To eliminate bias, we have added to our simulation variables
a parameter that discards data related to the period of time
when all the participants seem to be stuck together for a sig-
nificant amount time, for example while attending the same
talk. To better understand the used dataset, we perform a
first round of simulation in which each node, at its turn, is
given a patch of size 0 to be transfered to everyone. The

http://www.zeroconf.org
cmwrap, ConnectBot, FamilySafe, FlckrFree, FoxSaveer,

GoogleMaps, ListBuddy, Ringdroid, ScrambledNet, vcardio,
WebSMS, XBMCRemote

null patch size allows all sightings, regardless of their dura-
tion, to be counted as useful. The median propagation curve
in Fig. 2 is closer to the faster than to the slower, indicat-
ing that the majority of nodes in the Infocom06 trace will
contribute to the success of an epidemic distribution model.

Figure 2: Users rarely get isolated in a real-world situation

Simulation settings. In all configurations of our simu-
lation scenarios, we have fixed the value of transfer rate, and
the duration of the listening window. Experiments we have
conducted in our computer laboratory while many members
of the staff had their Bluetooth-enabled devices switched on,
show that interferences among signals can deteriorate the
transfer rate. For our simulations, we consider the worst
case scenario by setting the transfer rate to 25kB/s, so as
to account for all devices with the lowest connectivity.
Simulation results. We consider for the configurations

of our simulation different variables that can have a signifi-
cant impact on the success of the collaborative scheme. For
each variable, we run a scenario that assesses its influence.

Figure 3: The bigger the patch, the slower the propagation.

➊ Impact of patch size: Given the transfer rate and the
mobility of devices, the patch size is bound by the contact
duration. We run a simulation where only one node provides
the patch whose size is varied between 0 KB to 500 kB. Fig. 3
reveals that for the median size value of patches constructed
with Typhoon, which is around 300KB, and with the trans-
fer rate suggested, the epidemic dissemination performs well.

Bluetooth does not support broadcast. We emulate this capability
with a dedicated Bluetooth service. Besides, since our workloads have
been gathered from Bluetooth sightings, we perform the simulation
with Bluetooth properties

➋ Impact of the number of providing peers: An important
factor of propagation in epidemic models is the number of
infected hosts. We run simulations where we vary the num-
ber of peers that have been able to autonomously download
a new release from the Internet and produce a patch. We
consider different cases where peers run a given application
A, with n peers running version v2 while having in storage
the software patch for updating from v1 to v2. The other
peers run A with v1, and consequently must download the
patch v1→ v2 when they get the chance. We vary the value
of n from 5% to 80% of the total number of peers. The graph
of Fig. 4 shows that the propagation is the fastest when there
are many nodes that propose the necessary patch.

Figure 4: The more providers, the better the propagation

➌ Impact of the variety of update levels: Given that mobile
devices may run different versions of the same application,
different patches must be available to allow the update of all
devices. In our simulations all peers run a given application
A with either version v1, v2 or v3. Peers running v1 have
initially no patches in storage. Peers running v2 have ini-
tially patches for updating from v1 to v2 (v1 → v2). Peers
running v3 have v2 → v3 patches. We consider a reference
configuration where there is an equilibrium in the update
level, each third of all peers running A with either v1, v2 or
v3. Then we consider other situations with variations in the
proportions of the different patches. Overall, the graphs of
Fig. 5 show that the algorithm we have implemented suc-
ceeds in balancing these constraints, especially through its
selection algorithm which is aimed at avoiding dead ends.

Figure 5: The more patches, the better the propagation

5. RELATED WORK
Software update distribution is of great interest for soft-

ware providers who face the issue of how to keep the largest
number of software updated on user’s devices. IT companies
mostly rely on centralized solutions that can be ineffective
in terms of load balancing and bandwidth consumption.
Gkantsidis et al. have presented a study of various patch

delivery strategies that can improve the performance of so-
lutions used in the Windows Update system [4]. They show
that if users stay connected to the central server a little
longer after they have downloaded the patches their ma-
chines can be used as caches for other users. Our work is
based on the spontaneous P2P interactions between mobile
devices which can be resource-constrained. We also propose
an heuristic for prioritizing update packages in the occu-
pation of the cache on user’s device. P2P networks have
also been proposed by Shakottai to fight against internet
worms [15]. However, they rely on a pull mechanism that
may submerge nodes with request to process.
Epidemic models. The propagation of computer worms
has lead to an upsurge of interest in the field of epidemic
propagation of content in the Internet. A great deal of work
has gone into analysing scenarios of dissemination of content
using P2P epidemic models [16, 9]. Our work leverages on
the findings that have been recorded in this field.
Opportunistic networking. Human daily activities in-
volve strong patterns of encounters and movements. Bluespots
exploit public transport infrastructures to provide a distri-
bution system to the daily users [5]. However, the central-
ized hubs that are used, in addition of constituting a single
point of failure, can bring out contention issues.
The familiar stranger [11] in big cities is a given individual

that another person regularly meets and stays with in the
same environment for a reasonable amount of time during
which they can exchange information. With the prolifera-
tion of hand-held devices equipped with wireless technolo-
gies, researchers have shown a significant interest in using
inter-personal networking for sharing information among de-
vices [10, 6, 7]. Contrary to what is done in most projects,
the data exchanged by Typhoon must be selected using dif-
ferent criteria. For instance, while in the approach of McNa-
mara et al. a shared media file is selected according to user’s
preferences, an update package is selected not only if there
is an application that needs it, but also if it can effectively
be useful in updating this application to the highest version
possible. The data itself therefore has a significant influence
on the dissemination algorithm.

6. CONCLUSION
In this paper we have presented an approach to distribute

software updates during opportunistic contacts. The ap-
proach is based on a prediction scheme that enables mo-
bile devices to select and recover the best update package
for speeding up the update of all running applications. We
implement in the Typhoon middleware an algorithm that
accounts for different factors which can influence the dis-
semination of patches. The most salient of these variables
are (1) the size of the patch so as to readily transfer to de-
vices that have limited capabilities, (2) the transfer rate so
as to account for the volatility of opportunistic networks,
and (3) the availability of participants willing to share their
data. Using real-world workloads, we have established that

Typhoon’s algorithms are effective in identifying the best
patch, while avoiding any waste of time and resources if
users are expected to recover better patches later.

Future work will involve a thorough assessment of energy
consumption and the support for a best source selection algo-
rithm to leverage on the opportunity of various contacts that
are actually similar in that they propose the same patches.

7. REFERENCES
[1] Serge Abiteboul, Itay Dar, Radu Pop, Gabriel Vasile,

Dan Vodislav, and Nicoleta Preda. Large scale p2p
distribution of open-source software. In VLDB ’07,
pages 1390–1393, Vienna, Austria, 2007.

[2] Anthony Bellissimo, John Burgess, and Kevin Fu.
Secure software updates: disappointments and new
challenges. In HOTSEC ’06, pages 37–43, Vancouver,
Canada, 2006.

[3] Augustin Chaintreau, Pan Hui, Jon Crowcroft,
Christophe Diot, Richard Gass, and James Scott.
Impact of human mobility on opportunistic forwarding
algorithms. IEEE Trans. on Mobile Computing,
6(6):606–620, 2007.

[4] Christos Gkantsidis, Thomas Karagiannis, and Milan
VojnoviC. Planet scale software updates. In
SIGCOMM ’06, pages 423–434, Pisa, Italy, 2006.

[5] Jason LeBrun and Chen-Nee Chuah. Bluetooth
content distribution stations on public transit. In
MobiShare ’06, pages 63–65, Los Angeles, CA, 2006.

[6] Vincent Lenders, Martin May, Gunnar Karlsson, and
Clemens Wacha. Wireless ad hoc podcasting.
SIGMOBILE Mob. Comput. Commun. Rev.,
12(1):65–67, 2008.

[7] Liam McNamara, Cecilia Mascolo, and Licia Capra.
Media sharing based on colocation prediction in urban
transport. In MobiCom ’08, pages 58–69, San
Francisco, CA, USA, 2008.

[8] Eamonn O’Neill, Vassilis Kostakos, Tim Kindberg,
Ava Fatah gen. Schiek, Alan Penn, Danaë Stanton
Fraser, and Tim Jones. Instrumenting the city:
developing methods for observing and understanding
the digital cityscape. In UBICOMP 2008, Seoul,
South Korea, 2006.

[9] Oznur Ozkasap, Mine Caglar, and Ali Alagoz.
Principles and performance analysis of second: A
system for epidemic peer-to-peer content distribution.
J. Netw. Comput. Appl., 32(3):666–683, 2009.

[10] Maria Papadopouli and Henning Schulzrinne. Effects
of power conservation, wireless coverage and
cooperation on data dissemination among mobile
devices. In MobiHoc ’01, pages 117–127, Long Beach,
CA, USA, 2001.

[11] Eric Paulos and Elizabeth Goodman. The familiar
stranger: anxiety, comfort, and play in public places.
In CHI ’04, pages 223–230, Vienna, Austria, 2004.

[12] Colin Percival. Matching with Mismatches and

Assorted Applications. PhD thesis, University of
Oxford, 2006.

[13] Joshua Reich and Augustin Chaintreau. The age of
impatience: optimal replication schemes for
opportunistic networks. In CoNEXT ’09, pages 85–96,
Rome, 2009.

[14] James Scott, Richard Gass, Jon Crowcroft, Pan Hui,
Christophe Diot, and Augustin Chaintreau.
CRAWDAD trace cambridge/haggle/ imote/infocom
(v. 2009-05-29), May 2009.

[15] Srinivas Shakkottai and R. Srikant. Peer to peer
networks for defense against internet worms. In
Interperf ’06, page 5, Pisa, Italy, 2006.

[16] Wei Yang, Wei Ying, Gui-ran Chang, and Zhuo-qun
Zhang. Research on the epidemic model in p2p
file-sharing system. In HIS ’09, pages 386–390, China,
2009.

