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Abstract 

The aim of this work is to apply the homotopy perturbation method for solving the steady 

state equations of the exothermic decomposition of a combustible material obeying Arrhenius, 

Bimolecular and Sensitised laws of reaction rates. These equations are formulated on some 

Class A geometries (an infinite cylinder, an infinite slab and a sphere). We also investigate 

the effect of Frank-Kamenetskii parameter on bifurcation and thermal criticality by means of 

the Domb-Sykes graphical method. 

 

Keywords: Thermal criticality, chemical kinetics, Homotopy perturbation method, Domb 

Sykes method. 
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Nomenclature 

 a     geometry half width 

 A     rate constant 

 C0    initial concentration of the reactant 

 E      activation energy 

 h      Planck’s number  

 j       geometry factor 

k       thermal conductivity of the material 

K      Boltzmann’s constant 

L     linear operator 

m      numerical exponent 

p      embedding parameter 

r       radial distance 

r      dimensionless radial distance 

Q      heat of reaction 

R      universal gas constant 

T      absolute temperature 

T0          wall temperature 

 

 

Greek symbols 

vibration frequency 

      dimensionless temperature 

     dimensionless activation energy 

       Frank-Kamenetskii parameter 

       exponent 

 

 

Subscripts 

cr      critical 

max   maximum 
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1. Introduction 

The safety in transport and storage of combustible materials is a key issue in pyrotechnic 

applications. These materials are often subjected to self-ignition. This internal heating occurs 

when an explosive substance is brought to a sufficient temperature so that the process of 

decomposition begins to produce significant exothermic effects. This involves a thermal 

runaway phenomenon accompanied with an increase of the temperature producing a rapid 

thermal decomposition. The understanding of the factors that control this phenomenon is of 

fundamental importance in many industrial processes. 

This phenomenon was first introduced in the 1930s by Semonov, Zeldovith and Frank-

Kamentskii and their pioneering contributions were summarized in [1]. Furthermore, Frank-

Kamentskii developed the steady-state theory of thermal explosion. In this theory, the Frank–

Kamenetskii approximation allows us to determine the critical values, which constitute limit 

values not to be exceeded to avoid the phenomenon of self-ignition. Some studies deal with a 

chain of several reactions in this phenomenon of self-ignition. Several works in the literature 

have applied this theory to different combustible materials geometries. Boddington et al. [2, 

3, 4] have considered the special case of two-step parallel exothermic reactions for the infinite 

slab where solutions by quadrature were possible. Graham-Eagle and Wake [5] considered a 

system of simultaneous exothermic reactions. They extended the investigations of Boddington 

et al. [2, 3, 4] to the other two geometries of the infinite circular cylinder and the sphere. A 

variational method was used to evaluate the critical values of Frank-Kamentskii parameter 

and the maximum temperature. The same authors [6] extended the treatment of simultaneous 

reactions to the case where one reaction is exothermic and the other endothermic, leading to 

the phenomenon of the disappearance of criticality or transition, which can also happen with a 

single reaction in the case of very low activation energy. In this case, the Frank–Kamenetskii 

approximation is no longer valid. They used a variational method [7] to determine 
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numerically the values of the parameter which characterizes the transition in the parameter 

space. 

Recently Ajadi and Gold’shtein [8] employed a three-step reaction kinetics model (initiation, 

propagation and termination steps). The calculation of the criticality was made by means of a 

variational method for (infinite slab, infinite cylinder, and sphere) under Arrhenuis laws of 

reaction rates by using an effective activation energy approximation. Balakrishnan et al. [9] 

calculated the critical values for some non Class A geometries (infinite square rod and cube). 

Their critical values were found using the finite difference method. 

 

In applied mathematics or engineering problems, numerical methods commonly used such as 

finite difference, finite element or characteristics method, need large size of computational 

works due to discretization and usually the effect of round-off error causes loss of accuracy in 

the results. In addition to this drawback, these methods with limited precision include slow 

runtimes, numerical instabilities and difficulties in handling redundant constraints. 

Analytical traditional methods commonly used for solving these problems can be very useful, 

especially for the calibration of numerical calculations.  Among these approaches, the 

classical perturbation method is based on the existence of small parameters but the 

overwhelming majority of linear and nonlinear problems have no small parameters at all. 

To overcome this shortcoming, the homotopy perturbation method (HPM) was first 

introduced by He [10-13]. The main idea of this method is to introduce an embedding 

parameter p [0,1] to construct a homotopy and give solutions of the deformed problem as 

power series in p . When p = 0 the system of equations is reduced to a simplified form which 

admits exact solutions and at p = 1, the system takes its original form and gives the desired 

solutions. This method has been extensively employed by numerous authors to solve a large 
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variety of linear and nonlinear problems. We can cite the works [14-17], the list is not 

exhaustive. 

In this paper, we examine the steady-state solutions for the strongly exothermic 

decomposition of a combustible material of a symmetric class A geometries, uniformly 

heating, under Arrhenius, Biomolecular and Sensitised kinetics, neglecting the consumption 

of the material. 

The contribution of the present work is twofold. First, we calculate the temperature field using 

the HPM in a symbolic computational language. The second aim is to study the thermal 

criticality conditions of the problem. 

Critical values for different geometries are found by using the Domb- Sykes technique [18] as 

a useful tool to extract singularities and to perform analytic continuation. This method has 

shown to be very accurate and simpler to implement, when compared with variational method 

[6,8] or Hermite-Padé approximants method [19-21]. 

The structure of this paper is as follows. Section 2 presents the boundary value problem 

governing the ignition of a viscous combustible material for symmetric class A geometries. In 

section 3, we will apply the homotopy perturbation method to this nonlinear boundary value 

problem. The fourth section is assigned to a brief description of the Domb and Sykes method 

and its application to calculate the bifurcation points. Section 5 is devoted to the results 

obtained by the proposed method and comparison with other works will be performed. 

Conclusions will appear in Section 6. 

 

2. Mathematical model 

We consider the steady-state solutions for the strongly exothermic
 
decomposition of a viscous 

combustible material. Neglecting the reactant consumption, the equation for the temperature 

T(r) may be written in terms of physical variables together with the boundary conditions, as: 
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with T the absolute temperature, T0 the wall temperature, k the thermal conductivity of the 

material, Q the heat of reaction, A the rate constant, E the activation energy, R the universal 

gas constant, C0 the initial concentration of the reactant species, h the Planck’s number, K the 

Boltzmann’s constant, thevibration frequency, a the geometry half width and r the radial 

distance in the normal direction. m is the numerical exponent, such that 
2

1
,0,2m  

represent numerical exponent for Sensitised Arrhenius, and Bimolecular kinetics (Boddington 

et al. [3], Makinde [20], Bowes [22], Bebernes and Eberly [23], Okoya [24]) and j = 0, 1, 2 is 

the geometry factor representing respectively Slab, Cylindrical and Spherical geometries. 

 

The following dimensionless variables and parameters are introduced in Eq. (1): 
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where ,  represent the Frank Kamenetskii and activation energy parameters respectively. 

Hereafter we will suppress the bar symbol for clarity. 
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3. Homotopy perturbation method solution 

In this section, we will apply the homotopy perturbation method (HPM) to nonlinear ordinary 

differential equation (3). According to this method, we can construct a homotopy as follows: 
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Applying the perturbation technique [25], we can assume that the solution of Eq. (5) can 

be expressed as a series in p 

        ..., 2
2

10  rfprpfrfpr             (7) 

where p   [0,1] is an embedding parameter. When p = 0, we can obtain the initial guesses; 

when p = 1, Eq. (5) turns out to be the original one. 

Setting p = 1, we obtain an approximate solution of (3): 

        ...,lim 210
1




rfrfrfpr
p

         (8) 

One has to substitute relation (7) into the governing equation (5), collect the powers of p and 

obtain a sequence of differential equations and boundary conditions. The solution for the 

temperature field for Sensitised, Arrhenius and Bimolecular reaction rates for different 

geometries are given as 
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4
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         322222 1731
360

1
1

6

1
2,, pOmrrprpjpr       (11) 

According to Eq. (8) we get the solution for the temperature field for the three reaction rates. 
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4. Bifurcation study by Domb Sykes method 

The modelling of physical phenomena often results in nonlinear problems for some unknown 

function, say f() depending on a parameter . Usually, the problems cannot be solved 

exactly. The solutions of these nonlinear systems are dominated by their singularities which 

must be real and positive in order to have a physical sense. 

We suppose that up to the point 0, the solution is analytic in the interval ]-0 , 0 [, then one 

can solve the problem by expanding the solution in a power series 

  n

n

ncf  






0

         (12) 

If an infinite number of cn is known, the radius of convergence, which is the distance from the 

origin to the nearest singularity, limiting the range of validity of the series (12), can be 

calculated using D’Alembert’s ratio.  

However, for most nonlinear problems it is rare to find an unlimited number of terms of the 

power series (12). The nearest singularity cannot therefore be determined precisely. 

Using symbolic calculus codes, it is now possible to calculate a sufficient number of terms in 

the series, to study precisely the solution, and there exist a variety of methods devised for 

extracting the required information of the singularities from a finite number of series 

coefficients. The most frequently used methods are the ratio-like methods, such as the Domb-

Sykes method [26, 27], Neville-Aitken extrapolation [26], and semi numerical approximant 

methods, such as Padé approximants [28] or Hermite- Padé approximants [19-21]. 

 

Herein we are concerned with the bifurcation analysis by analytic continuation as well as with 

the dominant behavior of the solution by using partial sum (7). This may be done calculating 

the nearest singularity to the origin. A useful tool for extracting this singularity is the Domb-

Sykes method. This technique is easier to implement than others and when it is improved, it 
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gives a precise value of the singularity. This method, successfully applied in various problems 

[29-32], is presented here. 

According to Fuchs (Bender and Orszag [27]), there are two possible forms: 
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The radius of convergence 0  of the series (12) may be found by d’Alembert ratio: 
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Of course only a finite number of coefficients cn are known, so that it is difficult to obtain 

precisely the limit. Domb and Sykes have suggested that the inverse ratio 
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Domb and Sykes have pointed out that it is more reliable to plot 
1n

n

c

c
 versus 1/n, i.e. to bring 

n→∞ to the origin, rather than plotting 
n

n

c

c 1  versus n. The plot of 
1n

n

c

c
 versus 1/n is known 

as Domb-Sykes plot. In this plot, the intersection of the straight line (1/ )na h n  with the axis 

1/n = 0 is exactly 
0

1


 and the slope of this line gives the exponent . Unfortunately, 

na  is 

often a slowly converging series. A good way to improve the convergence is to use the 

Richardson extrapolation (Bender and Orszag [27]), which is appropriate for this kind of 

sequences and can be defined as follows.  
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If 
na  can be written in the following form: 
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This new sequence has a quicker convergence to the limit S0. 

5. Results and discussion 

Using a computer algebra system, we obtained the first 30 terms of the solutions series (9)-

(11). 

In order to verify numerically whether the proposed methodology leads to high 

accuracy, we evaluate the numerical solutions using a collocation method proposed by 

Shampine et al. [33]. 

In Figures1-3 below, we have plotted the numerical and the HPM solutions in all class A 

geometries and for all numerical exponent m. These figures show a perfect agreement of both 

solutions. 
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Figure 1. Comparison of slab numerical and HPM results of the boundary value 

problem (3-4) for ε = 0.1,  = 0.5. Solid lines: Numerical solutions; Symbols: HPM 

solutions. 
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Figure 2. Comparison of cylinder numerical and HPM results of the boundary value 

problem (3-4) for ε = 0.1, 1.8. Solid lines: Numerical solutions; Symbols: HPM 

solutions. 



 

 14 

 

Figure 3. Comparison of sphere numerical and HPM results of the boundary value 

problem (3-4) for ε = 0.1, 2.8. Solid lines: Numerical solutions; Symbols: HPM 

solutions. 

 

The obtained solutions, in comparison with the numerical solutions admit a remarkable 

accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides 

highly accurate numerical solutions for nonlinear differential equations. 

For a further information, Figure 4 illustrates a comparison between the exact solutions 

known for the special cases (m = 0,  = 0, j = 0, j = 1) when a closed form is available [8] 

and the series solutions obtained by using the homotopy perturbation method. The 

obtained results are found to be in good agreement with the exact solutions. We can 

notice that the deviation between HPM and exact solution do not exceed 0.2 % for both 

slab and cylindrical geometries. 
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Figure 4. Comparison of HPM results and exact solutions of the boundary value 

problem (3-4) for ε = 0, m = 0 and  = 0.8. 

In the following we will focus on the calculation of radius of convergence cr of the series 

solutions (9)-(11). Up to the point c, the solution  is analytic, and has a real singularity at the 

value cr. It would be interesting to know the exact nature of the singularity, and if this 

singularity corresponds to a bifurcation point. Let the maximum temperature   ,,0max   

be a characteristic quantity which qualifies the solution. We rearrange max  in a series of  to 

write: 

 


30

0
max

n

n
nc             (17) 
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where different coefficient cn for  = 0 are given in table 1. Seeing Figure 5, one can say 

that the ratio 
1


n

n
n

c

c
a  in the simple geometry of infinite circular cylinder converges; 

however, it is extremely difficult to conclude to a precise value of radius of convergence.  It is 

necessary to use some process of convergence acceleration. The Richardson extrapolation is 

appropriate for this kind of convergence. The results of Table 2 show that the radius of 

convergence is 2cr . Two solution branches are therefore identified with a bifurcation 

point at cr .Two solution branches (type I and II) are identified with a bifurcation point at cr  

(i.e. turning point) as shown in a sketch of bifurcation diagram in Figure 6. 

n cn n cn n cn n cn n cn 

1 0.25 7 2.337e-4 13 1.455e-6 19 1.290e-8 25 1.338e-10 

2 4.687 e-2 8 9.588e-5 14 6.515e-7 20 5.978e-9 26 6.310e-11 

3 1.302 e-2 9 4.024e-5 15 2.939e-7 21 2.778e-9 27 2.982e-11 

4 4.272e-3 10 1.720e-5 16 1.334e-7 22 1.296e-9 28 1.412e-11 

5 1.538e-3 11 7.465e-6 17 6.096e-8 23 6.064e-10 29 6.700e-12 

6 5.874e-4 12 3.279e-6 18 2.798e-8 24 2.845e-10 30 3.184e-12 

Table 1. Coefficients cn of 0,max  , m = 0, j = 1. 

. 
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Figure 5. Sykes-Domb plot for 0,max  , m = 0, j = 1. 

 

n m = 1 m = 2 m = 3 m = 4 

20 0.4994 0.4999 0.5 0.4999 

21 0.4994 0.5 0.4999 0.5 

22 0.4995 0.5 0.5 0.4999 

23 0.4995 0.5 0.4999 0.5 

24 0.4995 0.4999 0.5 0.4999 

25 0.4996 0.5 0.4999 0.5 

 

Table 2. Values of the Richardson extrapolation snm for 0, cr , m = 0, j = 1. 

It is possible to calculate the limited series defining max = max () by a division procedure. 

This function is plotted in Figure 7. 
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The graph of 
max , as shown in Figure 6(a), is not compatible with the expected singularity 

(13). The curve 
max  versus should be in the form of Figure 6(b). To analyse the paradox, 

the inverse function (
max ) is considered. Its series is given by inverting the series

max . 

One can see in Figure 7 that this function has a horizontal tangent for the values in the case j = 

1, (
max = 1.38435,  = 1.99984).  

 

(a) 

 

(b) 

Figure 6. max versus ; (a) calculated, (b) expected form. 
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Figure 7. Plot of the function   = (max). 

We summarize the results of all Class A geometries in table 3,4 and 5 while   ,,0 crcr   is 

calculated by improving the series (17) by a suitable Padé approximant [27]. 

j cr cr cr

0 0.87846 0.5 1.18684 

1 2 0.5 1.38629 

2 3.32324 0.5 1.61782 

Table 3. Computation showing criticality for Sensitised, Arrhenius and Bimolecular reactions 

for  = 0 and for all Class A geometries. 

The critical values (cr and cr) were computed using the improved Domb-Sykes applied to the 

temperature field obtained by HPM in all Class A geometries. 

In order to verify the accuracy of this approximate method, we compare the critical values 

obtained using this method with the exact methods [1,2], variational methods [5,8] and 
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Hermite-Padé approach [19-21] for the special case of  = 0.The method used in the present 

work gives results approximately equal to those discussed in literature, as shown in Table 4. 

 Exact method Variational method Hermite-Padé Approach Present work 

Slab cr = 0.87846 

cr = 1.186 

cr = 0.878355 

cr = 1.16716 

cr = 0.87845 

cr = 1.18684 

cr = 0.87846 

cr = 1.18684 

Cylinder  

 

cr = 1.99998 

cr = 1.3801197 

cr = 2 

cr = 1.38629 

cr = 2 

cr = 1.38628 

Sphere  

 

cr = 3.32199 

cr = 1.60746 

 

 

cr = 3.32324 

cr = 1.61782 

Table 4. Comparison of critical values obtained by different methods. 

Tables 5-7 depict the variations of δcr and θcr with  In these tables, we observe that the 

magnitude of thermal criticality conditions for a viscous combustible material with high 

activation energy ( = 0) is lower than the one for moderate values of activation energy ( = 

0.01,  = 0.1). This implies that for moderate values of activation energy, the criticality varies 

from one reaction to another, as shown in Tables 5-7. Explosion in Bimolecular reactions 

seems to occur faster than in Arrhenius and Sensitised reactions. 

m  cr cr

- 2 0.01 0.90624 1.24566 

0.1 1.31389 2.22239 

0 0.01 0.8878 1.19841 

0.1 0.98819 1.52434 

0.5 0.01 0.88331 1.19541 

0.1 0.93221 1.42024 

Table 5. Variation of δcr and θcr with respect to (Slab). 
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m  cr cr

- 2 0.01 2.06415 1.58738 

0.1 3.01620 2.65419 

0 0.01 2.02216 1.45337 

0.1 2.26129 1.80247 

0.5 0.01 2.01192 1.41353 

0.1 2.13219 1.677327 

Table 6. Variation of δcr and θcr with respect to   (Cylinder). 

m  cr cr

- 2 0.01 3.45641 1.67123 

0.1 4.32871 2.1177 

0 0.01 3.42112 1.62756 

0.1 4.22245 2.21856 

0.5 0.01 3.15167 1.63331 

0.1 4.04567 2.23811 

Table 7. Variation of δcr and θcr with respect to  (Sphere). 

 

5. Conclusion 

We studied the problem of exothermic explosion of a viscous combustible in Class A 

geometries under Arrhenius, Bimolecular and Sensitised laws of reaction rates with the 

homotopy perturbation method. The results show that this method provides excellent 

approximation of the solution of this nonlinear system with high accuracy. 

A bifurcation study is performed with the Domb-Sykes graphical method to calculate the 

critical value of this problem. The results show that these critical values increase with the 

activation energy. 
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