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Summary: 

Myelin is critical in maintaining electrical impulse conduction in the central nervous system. The 

oligodendrocyte is the cell type responsible for myelin production within this compartment. The 

mutual supply of trophic support between oligodendrocytes and the underlying axons may 

indicate why demyelinated axons undergo degeneration more readily; the latter contributes to the 

neural decline in multiple sclerosis (MS). Myelin repair, termed remyelination, occurs in acute 

inflammatory lesions in MS and is associated with functional recovery and clinical remittances. 

Animal models have demonstrated that remyelination is mediated by oligodendrocyte progenitor 

cells (OPCs) which have responded to chemotactic cues, migrated into the lesion, proliferated, 

differentiated into mature oligodendrocytes, and ensheathed demyelinated axons. The limited 

remyelination observed in more chronic MS lesions may reflect intrinsic properties of neural 

cells or extrinsic deterrents. Therapeutic strategies currently under development include 

transplantation of exogenous OPCs and promoting remyelination by endogenous OPCs. All 

currently approved MS therapies are aimed at dampening the immune response and are not 

directly targeting neural processes. 
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5.1 Myelin  

The rapid transduction of electrical impulses, termed action potentials, is required for the 

efficient function of the vertebrate nervous system. The conduction velocity of these impulses is 

maximized by the presence of an insulating layer surrounding the axon referred to as the myelin 

sheath [1-3]. In the central nervous system (CNS), the oligodendrocyte is the resident cell type 

responsible for the production of myelin that consists of oligodendroglial plasma membrane 

loops tightly wound concentrically around the axon. Oligodendrocyte progenitor cells (OPCs) 

are generated in the ventral neuroepithelium of the neural tube in early embryonic life, more 

specifically from the motor neuron progenitor (pMN) domain [4-5], and in the dorsal spinal cord 

and hindbrain / telencephalon of the brain in late embryonic development and early post-natal 

life [6-9]. These proliferative cells migrate into the developing white matter [10-12], exit the cell 

cycle, undergo differentiation into mature oligodendrocytes, and begin to express a subset of 

myelin-associated proteins [13-14]. Following the extension of flat oligodendroglial membrane 

sheets, there is recognition and adhesion to axonal targets [15]. Myelin components are then 

synthesized and transported to the appropriate location within the sheath, axons are wrapped, and 

the myelin membrane is compacted such that the cytoplasmic myelin leaflets are practically 

fused and almost devoid of cytoplasm [16-18]. In the CNS, one oligodendrocyte can produce up 

to 40 myelin segments on multiple axons. Consequently, myelinating oligodendrocytes produce 

as much as 5-50 x 103 µm2 of membrane a day [19]. Maintenance of this myelin membrane 

occurs throughout adulthood and comprises of a continual turnover of myelin correlated with a 

high level of expression of myelin genes long after the completion of the myelination process 

[20-21]. 
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Signals derived from electrically active neurons (such as growth facots, neurotrophic factors, and 

electrical activity) regulate cellular events involved in myelination and myelin gene expression in 

oligodendrocytes [22-25]. Oligodendrocytes also reciprocate signals for neurons, by producing 

growth factors and by inducing the organization of the axon into specific sub-domains by 

controlling the distribution of various axonal proteins [26-27]. Gaps of myelin cause the 

formation of the ‘Nodes of Ranvier’, which are axonal segments where the sodium channels that 

regulate electrical impulse conduction are aggregated (Figure 1A). Experimental models of 

demyelination have indicated that the myelin sheath is crucial in maintaining these nodal 

domains over the long term [28]. Myelin also forms the flanking membrane loops, termed the 

paranodes, which serve to separate the nodal sodium channels from the potassium channels 

concentrated in the adjacent juxtaparanodal regions (Figure 1A). Together, the paranodes and 

juxtaparanodes form the myelin segments called the internodes. The importance of reciprocal 

communication between axons and oligodendrocytes is apparent in neurological diseases where 

oligodendrocyte loss and demyelination is associated with a considerable degeneration of axons. 

For instance, in multiple sclerosis (MS), oligodendrocyte loss and demyelination are associated 

with progressive axonal degeneration and neurological decline [29-31]. Recovery from relapses 

in MS (remittances) can reflect a number of mechanisms, including the resolution of the 

exaggerated inflammation response and consequent sparing of neural cells, the functional 

reorganization of nodal components, and myelin repair (remyelination).  

5.2 Role of Remyelination in Functional Neural Recovery 

Remyelination is the default spontaneous process by which demyelinated axons undergo 

ensheathment with new myelin sheaths leading to functional recovery [32-33]. Remyelination of 

demyelinated lesions has been documented to occur in MS by neuropathologic criteria, where 
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completely remyelinated MS lesions are called shadow plaques due to the intermediate levels of 

myelin staining intensity [34-35]. This likely reflects the relative decrease in myelin thickness 

and internodal length in the new myelin sheaths relative to the original parameters of the sheath 

[36]. Remyelination is not only found in inactive lesions but can also be observed in lesions with 

ongoing demyelinating activity [35-37]. Remyelination in MS has also been evidenced by 

magnetic resonance imaging-based criteria of changes in magnetization transfer ratio within 

lesions [38]. The new myelin sheath may either act as a protective physical barrier to damaging 

inflammatory molecules [39], or may restore trophic support to the axon [40-42]. However, some 

patients demonstrate extensive remyelination and yet clinical deterioration proceeds [43], 

suggesting that remyelination alone is not always sufficient in restoring function.  

Demyelination in MS has been associated with a disruption of the paranodal region, resulting in 

altered expression and distribution of proteins such as neurofascin 155, contactin-associated 

protein (Caspr), and paranodin, as well as ion channels [44-46]. Consequently, nodal sodium 

channels are then directly adjacent to juxtaparanodal potassium channels, leading to impaired 

saltatory conduction of action potentials (Figure 1B). The remyelination process is associated 

with a correct re-distribution of paranodal proteins comparable to the developmental sequence of 

nodal assembly [28] (Figure 1C). Studies have demonstrated that sodium channel re-aggregation 

at the nodes of Ranvier is an early event in remyelination that occurs prior to new myelin sheath 

formation [45]. However, this aggregation of sodium channels on a demyelinated axon just prior 

to remyelination may render it more susceptible to injury [33].  

5.3 Role of oligodendrocyte progenitor cells in remyelination 

Animal models of toxin-induced demyelination have designated the remyelination process as 

being mediated by newly infiltrated proliferative OPCs that have differentiated into mature 
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myelinating phenotypes, rather than previously myelinating post-mitotic mature 

oligodendrocytes within the lesion. More specifically, retroviral tracing has indicated that 

proliferative cells eventually give rise to remyelinating oligodendrocytes [47]. OPCs also 

remyelinate efficiently upon transplantation into focal demyelinated lesions [48-50]. 

Additionally, lesions in which there is widespread oligodendrocyte death are characterized by a 

repopulation of OPCs prior to new oligodendrocyte formation [51-53]. The role of OPCs in 

protecting axonal integrity has also been highlighted in an animal model of demyelination where 

depletion of these cells via X-ray irradiation results in increased axonal swellings and decreased 

axonal numbers in white matter tracts that would normally undergo remyelination [54].  

The OPCs with remyelinating potential are believed to be randomly distributed within the CNS. 

However, areas that are distal from progenitor germinal zones, such as the optic nerves, are the 

first to demonstrate impairments in the remyelination process [55]. OPCs have been termed as 

stem cells of sort due to their multi-potentiality, self-renewal potential, and rapid proliferative 

response to injury.  OPCs are highly proliferative, motile, bipolar cells expressing high levels of 

the GT3 ganglioside A2B5, PDGF receptor alpha (PDGFαR), and the CSPG NG2 [19]. The 

expression of these molecules and hence OPC specification are regulated by the basic helix-loop-

helix (bHLH) transcription factors Olig1, Olig2, Mammalian achate schute Homolog 1 (Mash1), 

and the zinc finger transcription factor Myelin transcription factor 1 (MyT1) [52, 56, 57]. OPCs 

are also very responsive to agents that promote their differentiation along the oligodendroglial 

lineage, such as insulin-like growth factor (IGF)-1, ciliary neurotrophic factor (CNTF), and 

thyroid hormone (T3) [58, 59]. Differentiation requires the function of Olig1, Olig2, Nkx2.2, 

Nkx2.6, MyT1, and sex determining region Y box (Sox)-10 [50, 56, 57, 60], likely due to 

interaction of these transcription factors with the promoters of myelin genes [61-63] (Figure 1D). 
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The directed migration of these cells to presumptive white matter has been suggested to be 

mediated by the chemo-attractant PDGF and semaphorin 3F, the chemo-repellents netrin-1, 

semaphorin 3A, and the ephrins, as well as the stop-signals CXCL1 and tenascin C [64-68]. 

OPCs can be identified in the adult human brain, consisting of 5-8% of total glial cells [59]. 

Interestingly, adult OPCs demonstrate slower motility, a prolonged cell cycle, and poorer 

survival relative to developmental OPCs [70-72]. The restriction of these cells to the 

oligodendroglial lineage in vivo is unlikely: these cells were originally termed O-2A cells due to 

their potential to generate both oligodendrocytes and astrocytes in vitro. In addition, they can 

develop into neurons within neurogenic domains of the CNS (i.e. hippocampus) and have the 

capacity to generate Schwann cells following immune-mediated white matter injury [73]. The 

generation of OPCs from differing developmental pathways likely contributes to the 

heterogeneous population of OPCs observed in development [73-75]; whether this heterogeneity 

exists in adulthood is unknown. Subsets of precursors expressing varying levels and 

combinations of markers do exist in adult white matter [76]. Precursors with differential 

responses to growth factors can also be isolated from the adult rat forebrain [77]. These precursor 

subsets may differentially contribute to remyelination and may be under the control of distinct 

regulatory mechanisms. OPCs can mature into pre-oligodendrocytes, expressing an unidentified 

sulfatide recognized by the O4 antibody [78] . Although still proliferative, these cells are non-

motile likely due to the adoption of a multi-processed complex morphology. Once these cells 

have then progressed to differentiation into immature oligodendrocytes, they have undergone cell 

cycle-arrest. They can still be identified by the O4 antibody, yet expression of OPC markers such 

as A2B5 and PDGFαR is repressed (Figure 1D). Arborizations are elaborated and maturity-

associated markers are acquired (galactocerebroside (GalC)) without the formation of myelin 
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(Figure 1D). The subsequent final stage of differentiation into mature oligodendrocytes 

comprises of the acquisition of myelin proteins and axonal contact (Figure 1D).  Interestingly, 

factors that promote survival and differentiation, such as CNTF, are not necessarily sufficient in 

causing myelin formation to occur in vivo [79]. 

Whether mature oligodendrocytes can themselves contribute to remyelination has been a topic of 

great debate. This has been negated by the findings that these cells are post-mitotic, non-

migratory, and unable to remyelinate upon transplantation into lesions [80, 81]. Mature 

oligodendrocytes do re-extend processes following sub-lethal injury; however these processes 

are intercalated between axons and do not ensheath them [82].  

5.4 Requirements for remyelination: inflammation-dependent OPC activation 

The ‘activation’ of OPCs is thought to be required for remyelination to occur. This involves the 

adoption of a hypertrophic morphology, increased expression of genes associated with 

oligodendroglial differentiation (such as the transcription factors Olig2 and NK2 transcription 

factor related locus 2 (Nkx2.2)), and responsiveness to mitogens and chemoattractants that are 

released from glia in the injured tissue [56, 83]. This activation process may be required to 

prevent OPC differentiation in the normal intact white matter [84]. This activation response is 

proportional to the inflammatory reaction that succeeds demyelination and is required for 

successful remyelination to occur in animal model systems [85, 86]. Myelin debris has been 

shown to be inhibitory to OPC differentiation and is phagocytosed by reactive macrophages that 

have entered the lesion area [87]. Furthermore, chemokines and cytokines such as tumor necrosis 

factor (TNF) α, interleukin (IL)-1β, IL-11, and Chemokine C-X-C motif ligand (CXCL)-2 can 

promote OPC proliferation, differentiation, and remyelination [88-91]. Inflammatory cells and 

reactive astrocytes, which can both be found within MS lesions, can release growth factors that 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9 
 

can affect the remyelination process [92-95]. Accordingly, the migration and differentiation of 

transplanted progenitors in the commonly used inflammatory model of MS, experimental 

autoimmune encephalomyelitis (EAE) corresponds to the peak of inflammation [96]. The pro-

inflammatory cytokines IL-1β and TNFα synergistically enhance OPC migration to FGF [97].  

 

5.5 Animal models to study remyelination 

Various animal model systems have been developed to study different aspects of remyelination.  

5.4.1 Lysolecithin and Ethidium Bromide focal injections 

A common model used to study the remyelination process in the absence of concomitant 

demyelination and exaggerated inflammation involves focal injections of toxins such an 

ethidium bromide or lysolecithin either into the spinal cord or white matter tracts of the brain. 

This induces a reproducible demyelination in predefined areas of the central nervous system 

(CNS) by inducing cell death of oligodendrocytes (using ethidium bromide) and myelin 

membrane solubilization (using lysolecithin) at the site of injection [98-100]. These models are 

attractive in their succinct temporal separation between de- and remyelination processes and the 

spontaneous OPC-mediated remyelination that occurs within 4 weeks post-injection. There are, 

however, confounding issues of toxin-induced axonal damage, BBB breakdown, and moderate 

traumatic injury with consequent immune cell infiltration at the injection site [101-103].  

5.4.2 Oral Cuprizone administration 

Another commonly used model involves oral administration of the toxin cuprizone (oxalic acid 

bis (cyclohexylidene hydrazide)) that induces oligodendrocyte cell death, myelin membrane 

vacuolization, and demyelination in specific white matter tracts of the brain (i.e. cerebellar 
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peduncles, corpus callosum, and anterior commissure) [104]. Although the mechanism of 

demyelination of cuprizone is unknown, its copper chelation functions have implicated the 

deregulation of copper-dependent mitochondrial functions and resultant impairment in energy 

production in oligodendrocytes [105]. Interestingly, some areas of white matter are spared from 

cuprizone toxicity (i.e. spinal cord, optic nerve) suggesting regional differences in 

oligodendroglial / myelin energy requirements. Following cessation of cuprizone treatment, 

demyelinated lesions demonstrate robust spontaneous remyelination [106]. OPC proliferation 

and recruitment to lesion areas is initiated during the period of cuprizone-induced demyelination, 

causing an overlap in demyelination and repair processes [107]. This model is characterized by a 

significant lesional infiltration and reactivity of microglia and astrocytes that likely contribute to 

the secretion of remyelination-promoting factors; there is no evidence of T lymphocyte 

involvement or of BBB breakdown [108]. 

 

5.4.3 Inflammatory models  

As previously mentioned, the inflammatory process is critical in inducing OPC activation and 

subsequent remyelination. Several models of inflammation-induced demyelination show 

spontaneous remyelination even in the presence of an exaggerated immune response. For 

instance, the EAE model in which animals are immunized against the myelin-oligodendrocyte 

glycoprotein (MOG) antigen is characterized by a relapse-remitting phenotype, however 

remyelination is not very extensive perhaps due to the dense infiltration of macrophages and 

microglia in the lesion over prolonged periods of time. The only indication of impressive levels 

of remyelination in EAE is observed in focal models of cortical demyelination involving 

immunization with subclinical doses of MOG and injection of pro-inflammatory mediators 
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[109]. Another model, Theiler’s murine encephalomyelitis (TME), consists of injection of a 

single-stranded ribonucleic acid (RNA) picovirus into the CNS to induce immune-mediated 

oligodendroglial cell death, axonal damage, and demyelination in the gray and white matter of 

the CNS [110]. This model can be characterized by varying levels of remyelination which 

renders it appropriate for testing of agents that can potentially inhibit or enhance the myelin 

repair process [111]. Both these models have been used as standards for the development and 

testing of therapeutic strategies for autoimmune diseases. 

 

5.6 Postulates for failure of remyelination in MS 

Although a limited number of MS patients have extensive spontaneous remyelination in up to 

96% of lesions [112], most patients eventually demonstrate impaired or insufficient 

remyelination as the disease progresses [112, 113]. OPCs are increased in numbers in actively 

demyelinating MS plaques, yet are depleted over time [114-117]. Failure in remyelination would 

imply that chronically demyelinated axons are rendered more susceptible to degeneration and 

immune-attack. Indeed, chronically demyelinated plaques are comprised of severely injured 

axons that are progressively cleared over time [118, 119]. Axons that have been chronically 

demyelinated for long periods of time, however, can still be remyelinated under acute 

inflammation [120]. There are a multitude of hypotheses as to why remyelination fails in MS, 

which may reflect either changes in environmental inputs or intrinsic pathways regulating OPC 

function [121, 122].  
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5.6.1 Immune-mediated injury to OPCs and new myelin sheath 

A postulate that supports that former hypothesis proposes that the new myelin sheath and OPCs 

are subject to immune-mediated injury to the same degree as the initial insult to the 

oligodendrocytes and myelin [122]. Post-mortem analysis of MS plaques indicates that 

remyelination may be interrupted by inflammation [123]. In acute demyelinating animal models 

with a single insult and no continuing injury to myelin, the ensuing remyelinating is complete 

[124]. Antibodies recognizing progenitor cell-specific antigen (AN2) have been identified in the 

CSF of relapse-remitting MS patients and could induce OPC lysis [125].  

5.6.2 Exhaustion of OPC source 

Another proposal is that repeated demyelinating insults, as observed in the relapse-remitting 

form of MS, causes an exhaustion of the OPC source. Accordingly, recurrent demyelinating 

insults to the corpus callosum with oral administration of the oligodendrocyte toxin, cuprizone, 

resulted in accumulative failure in remyelination and progressive diminishment in repopulation 

of mature oligodendrocytes [126]. However, successive demyelination of the brain stem with 

ethidium-bromide does not affect the efficiency of remyelination nor progenitor numbers [127]. 

This suggests that remyelination failure may be regionally defined due to exhaustion of distinct 

progenitor pools. Proliferating OPCs are rare in MS lesions suggesting that depletion of 

progenitors is conceivable following repeated episodes or extended periods of demyelination and 

recurrent episodes of remyelination [117, 127, 128, 129]. 
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5.6.3 Glial Scar in lesion 

The glial scar formed within the lesion, comprised of hypertrophic reactive astrocytes and 

meningeal fibroblasts, likely serves to form a barrier between inflamed damaged tissue and 

normal brain but is also thought to secrete factors that may inhibit OPC migration into the scar 

and subsequent differentiation. For example, some plaques with a reactive astrocytic core have 

high levels of CXCL-1 and ephrins at their perimeter that may impede OPC migration into the 

lesion [130, 131]. Also, the presence of myelin-associated debris in the glial scar, including 

myelin associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and 

NogoA, can prevent axonal regeneration and inhibit OPC differentiation [134]. OPCs grown on 

myelin substrates in vitro show impairments in maturation [132]. Additionally, the injection of 

myelin debris into a focal demyelinated lesion prevents the remyelination that normally succeeds 

[87]. The scar is also hypothesized to have upregulated levels of other molecules inhibitory to 

axonal regeneration and may render the axon unsuitable for remyelination, such as chondroitin 

sulfate proteoglycans (CSPGs) and semaphorins [133]. The presence of astrocytes within the 

lesion has been previously hypothesized to be sufficient to dampen the rate of remyelination via 

inhibition of OPC process extension and migration [97]. Nonetheless, transplanted OPCs are able 

to repopulate astrocytic lesions and endogenous remyelination does not occur in the adult when 

astrocytes are depleted [134]. LIF released from astrocytes can indeed promote myelin formation 

[25]. Some have argued that the glial scar is not a cause of failed remyelination but rather a 

consequence of it [83].  
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5.6.4 Upregulation of developmental regulators of myelination 

An additional hypothesis for the failure in remyelination in MS proposes that re-expression of 

developmental regulators of myelination, such as Leucine rich repeat and Ig domain-containing 

(LINGO)-1 and polysialic acid-neural cell adhesion molecule (PSA-NCAM), may be re-

expressed on stressed axons within the lesion and repel OPCs [135]. This is supported by the 

finding that non-differentiated and non-myelinating OPCs are closely associated to the axon in 

some MS lesions [136]. In addition, reactivation of the Wnt signaling pathway in MS lesions 

suggests that disregulation of this pathway may contribute to inefficient myelin repair; indeed, 

disregulation of this pathway in an experimental model of demyelination interfered with 

remyelination [137].  

 

5.6.5 Aging-related deficits in inflammation and OPC differentiation 

The remyelination process has also been shown to decline with age in experimental animal 

models; this is relevant in the context of MS that runs over several decades of life [138, 139]. 

One explanation could relate to prolonged exposure to inflammatory mediators that induce an 

accumulation of neural damage over time [108]. This age-related failure in remyelination has 

also been attributed to delayed clearance of myelin debris by phagocytic macrophages, 

consequently impairing OPC differentiation [124]. This is supported by studies of MS lesions in 

which early lesions and periplaque white matter (PPWM) have an increased number of OPCs 

(Olig2+) co-expressing a mature oligodendrocyte marker NogoA, thereby suggesting a 

differentiation block as a potential cause for remyelination failure [117]. The aforementioned 

importance of inflammation in inducing the activation of OPCs and resultant remyelination 

would also suggest that OPCs in un-remyelinated MS lesions may still be functional yet are not 
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immersed in the appropriate inflammatory environment that would induce differentiation [136, 

140]. Furthermore, studies have demonstrated that remyelination efficiency is regulated by age-

dependent epigenetic control of gene expression, and disregulation of this process may 

contribute to the decline in remyelination with age [141]. 

5.6.6 Temporal discordance of remyelination with inflammation 

The slow rate of OPC repopulation of demyelinated lesions observed in animal systems has lead 

to the hypothesis that remyelination may be unsuccessful in MS due to a temporal discordance 

between OPC migration into the lesion and the inflammation required for OPC activation that is 

generated from myelin breakdown [83]. Delaying OPC infiltration into lesions by their 

transplantation at a site distal from the demyelinated area results in impaired remyelination 

[122]. However, increasing progenitor recruitment to demyelinated lesions in aged animals via 

PDGF upregulation in astrocytes is not sufficient in rescuing the failed remyelination process 

[142]. This suggests that deficits in OPC migration cannot explain the deficiency in 

remyelination with aging. 

 

5.7 Therapeutic strategies to promote remyelination 

Current studies using experimental animal models of demyelination are aimed at discovering 

therapeutic strategies to overcome these obstacles and to replace myelin under circumstances in 

which endogenous remyelination is unsuccessful. Remyelination efficiency may be improved 

either by supplementing the CNS with an exogenous source of OPCs or promoting the 

endogenous repair process. 
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5.7.1 Transplantation of exogenous cells with myelinating potential 

Exogenous cells (such as neural stem cells, schwann cells, olfactory ensheathing cells, 

mesenchymal stem cells, and OPCs) have been transplanted into focal demyelinated lesions to 

promote remyelination. Using this therapeutic approach in the demyelinated brain, however, is 

confounded by the limited migration of transplanted cells in the adult CNS, the availability of 

source material, potential tumorigenesis, immunological incompatibility/ immune-mediated 

targeting of these cells, and the putative exhaustion of transplanted cells with recurrent 

demyelination. The route of administration also represents an additional dilemma; for instance, 

direct parenchymal injections would be complex given the presence of multi-focal randomly 

distributed lesions in MS. Other methods of administration, such as intravenous and intra-arterial 

injections, trigger functional improvement but raise the issue of tissue targeting and distribution 

[143]. 

Nevertheless, transplantation of human OPCs has proven effective in initiating myelin formation 

in dysmyelinated mutants [144, 145]. Interestingly, adult CNS-derived progenitors can myelinate 

dysmyelinated CNS at a relatively quicker rate than their embryonic counterparts [146]. 

Transplantation of human OPCs into a leukodystrophy animal model has demonstrated the 

capacity of these cells to integrate into white matter, contribute to myelination, and survive for 

prolonged periods of time in the host. Additionally, transplantation of bone marrow cells and 

embryonic neurospheres results in amelioration of EAE pathology and clinical symptoms [147, 

148]. Moreover, transplanted neurospheres can promote remyelination mediated by cells of both 

endogenous and exogenous origins in EAE-afflicted animals [149]. 

Transplantation may prove effective if the exogenous cells functionally substituted for or 

stimulated endogenous remyelination by OPCs that have intrinsic defects in remyelination-
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associated processes, such as migration and differentiation. Accordingly, following an acute 

demyelinating insult, transplanted cells remyelinate lesions at a faster rate than endogenous 

progenitors [85, 150].  

Notably, repopulation of a demyelinated lesion with OPCs is not sufficient to induce 

remyelination [150]. Contrary to the ability of axonal signals to induce OPC differentiation 

during developmental myelination, chronically demyelinated axons in adult CNS lesions do not 

promote OPC differentiation and remyelination even under prolonged co-existence with these 

OPCs [150, 151]. Interestingly, the cell transplantation approach may prove more effective as an 

anti-inflammatory therapy given that systemic administration of CNS-derived progenitors 

promotes endogenous repair via peripheral immuno-modulation rather than through new myelin 

formation [152]. Systemically applied neural stem cells distribute to the lymphoid organs and 

reduce pro-inflammatory cytokine production and auto-reactive cytotoxic T cell responses. 

Transplanted cells also have neuroprotective properties via release of trophic factors [153].  

 

5.7.2 Promoting endogenous remyelination 

A parallel approach to enhance remyelination is to attempt to promote endogenous repair. One 

area of interest involves the application of growth factors that stimulate OPC responses relevant 

for remyelination, such as proliferation, migration, differentiation, and survival. In fact, the 

upregulation of growth factors in many instances of trauma, including ischemia and spinal cord 

injury, indicates the importance of these factors in initiating a repair process [154, 155]. 

Promoting oligodendroglial survival via treatment with neurotrophic factors such as CNTF, IGF-

1, and glia growth factor (GGF)-2 has been successful in attenuating EAE pathology [156-158]. 
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However, the repair-promoting characteristics of these factors are lost upon targeted delivery to 

the CNS, suggesting peripheral mechanisms of action [159, 160]. In light of this, systemic 

growth factor treatment raises the issue of non-specific effects on the immune system. Moreover, 

the efficiency of growth factors in attenuating EAE does not necessarily translate into successful 

treatment of MS patients, as evidenced by the failed clinical trial with IGF-1[161].  

An initial counter-intuitive observation that immunization of animals with spinal cord 

homogenates can induce extensive remyelination has revealed that myelin- and oligodendrocyte-

reactive Immunoglobulin M (IgM) autoantibodies can promote endogenous myelin repair in 

models of viral- or toxin-based demyelination [162, 163]. Although these antibodies bind 

oligodendrocytes and white matter tracts, the mechanism of action through which repair is 

enhanced is unknown. Hypotheses include antibody-dependent cross-linking of molecules on the 

surface of oligodendrocytes that initiate signaling cascades relevant for the remyelination 

process. 

Recent studies have focused on hormonal therapy as a means of enhancing endogenous repair 

mechanisms in the CNS. The observations that MS is more prevalent in females, that remission 

occurs during the course of pregnancy, and that relapses increase post-partum [164] have 

highlighted the importance of sex-specific factors in regulating immune responses and repair. 

Pregnant murine females have increased numbers of newly generated oligodendrocytes, OPCs, 

and myelinated axons, and demonstrate enhanced remyelination following lysolecithin-induced 

demyelination of the spinal cord [139, 165]. Endogenous hormone production occurs both in the 

adrenal glands and in the CNS in a cholesterol-dependent manner [166], and is hypothesized to 

not be sufficient enough in males to protect them from brain injury [167]. Hormones can readily 

penetrate the blood-brain barrier and have neuroprotective properties. Additionally, hormones 
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have been implicated in regulating the survival of oligodendrocytes and myelination [168-170]. 

Even though hormone receptor expression is modulated in a sex- and hormone status-dependent 

manner, both males and female rats are responsive to the neuroprotective effects of hormonal 

therapy [180]. Administration of the hormone prolactin to virgin mice is sufficient in 

reproducing the superior remyelination observed in pregnant females [165]. Other hormonal 

therapies such as the synthetic analogues estradiol and progestin bestow neuroprotection in 

various CNS injury systems including EAE [170]. Clinical trials in which non-pregnant and post-

partum relapse-remitting MS patients were treated with these hormones demonstrated their 

potential application for autoimmune disease therapy [171]. The use of hormonal therapies for 

MS is confounded by their potential pro-inflammatory properties [172], the risk of development 

of hormone-responsive cancers [167], and putative excitotoxicity due to their actions on 

neurotransmitter receptors [173]. 

We are entering a new era of MS-directed immunomodulatory therapies that can not only 

modulate peripheral immune responses, but can access the CNS by virtue of their lipophilicity 

and may therefore directly impact cells of the oligodendroglial lineage and remyelination. A 

newly emerging sphingosine-1-phosphate analogue, FTY720 (fingolimod), was initially 

propelled into MS clinical trials due to observations of its anti-inflammatory properties in EAE 

[174-176]. FTY720 can cross the BBB and enter the brain parenchyma [177]. Microarray 

profiling has revealed that FTY720 treatment of EAE animals results in an increase in transcript 

levels of myelin-related genes and normalization of electrophysiological responses [178,179]. 

The efficacy of FTY720 in relieving clinical disability in the later stages of EAE where 

inflammation has subsided suggests a neuroprotective effect [174, 175, 179]. 

Audoradiographical and microscopic analysis of rodents that were orally administered C14-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 
 

labelled FTY720 (7.5mg/kg) for 1 week demonstrated that the drug is concentrated in myelin 

sheaths [179]. Both rodent and human OPCs and mature oligodendrocytes have been shown to 

express the sphingosine-1-phosphate (S1P) receptor isoforms that can bind the active 

phosphorylated form of FTY720 [180-184]. Studies where FTY720 was directly applied to 

dissociated cultures of human and rodent OPCs and mature oligodendrocytes demonstrate the 

capacity of these cells to respond to this drug in a dose- and treatment duration-dependent 

manner [183-186]. FTY720 was able to modulate process extension, differentiation, migration, 

and survival in these cells. Application of physiological doses of the active form of the drug to 

demyelinated organotypic cerebellar slice cultures resulted in enhanced remyelination with an 

accompanying increase in OPC and mature oligodendrocyte process extension and 

astrocytic/microglial response [187]. Fumaric acid esters (FAE), including BG12, are 

intermediate products of the citric acid cycle that are currently being evaluated in MS clinical 

trials due to their immunomodulatory properties [188]. Recent studies have suggested that FAEs 

may have neuroprotective properties by affecting anti-oxidative pathways in oligodendrocytes 

and other glia, which may conceivably protect neural cells from metabolic and inflammatory 

stress [189]. FAEs have been shown to protect myelin from immunological damage in EAE 

[190], yet not from cuprizone-induced demyelination [191]. FAEs have, however, been 

associated with a slight enhancement in remyelination in vivo [191]. In addition, neuropoietic 

cytokines (neurokines), such as leukemia inhibitory factor (LIF), CNTF, IL-6, oncostatin-M and 

IL-11, are cytokines which can regulate neural cell function. CNTF, LIF, and oncostatin-M were 

identified in a screen as being associated with enhanced myelin production [192]. 

Oligodendrocyte survival is enhanced by exposure to exogenous LIF in vitro [193] and in vivo in 

both chronic and relapse-remitting forms of EAE [194]. Additionally, IL-11 is able to potentiate 
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the survival, maturation, and myelination potential of oligodendrocytes [91]. The production of 

neuropoietic cytokines within the CNS and their accessibility to this compartment when 

exogenously applied [194] highlights them as candidates for multiple sclerosis therapy. 

Neurokines such as CNTF have been detected in the cerebral spinal fluid of multiple sclerosis 

patients [195]; however, CNTF therapy worsened clinical conditions of treated patients [196].  

 

5.8 Conclusions: 

Experimental animal systems have revealed the importance of OPCs and remyelination in 

reconstitution of the myelin sheath and subsequent recovery of neural function. Analyses of MS 

lesions by neuropathologic and magnetic resonance based criteria have demonstrated that 

remyelination does occur in acute inflammatory lesions yet is limited in more chronic lesions, 

perhaps reflecting a plethora of biological indices. All currently approved therapies for MS are 

aimed at dampening the exaggerated immune response, are only moderately effective at reducing 

the frequency of clinical relapses, do not slow the progression of the disease, and do not directly 

influence myelin and remyelination in the central nervous system. As such, the identification of 

new therapeutic factors that can protect neural cells from injury, directly promote myelin repair, 

and hinder disease progression has profound implications for the treatment of MS. 
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Figure Legend: 

Figure 1. Myelin characteristics, Demyelination, and Remyelination. 

A. Schematic of Node of Ranvier organization. Nodes of Ranvier are axonal regions of 

concentrated sodium channels devoid of myelin, formed between two internodes of 

myelin. The area adjacent to the node is termed the paranode, characterized by Caspr and 

paranodin expression. The area adjacent to the paranode is termed the juxtaparanode, 

where the potassium channels reside. 

B. Upon demyelination, there is destruction of the paranode and lateral migration of sodium 

channels from the nodal region. 

C. Remyelination is initiated by activation of OPCs, likely by inflammation-associated 

factors (i.e. IL-1β, TNFα, LIF), and chemotactic migration towards the lesion (i.e. PDGF, 

bFGF, CXCL1). Differentiation into mature oligodendrocytes and remyelination is 

associated with an upregulation of Olig2 and Nkx2.2, and requires both removal of 

myelin debris and inflammatory factors (i.e. IL-1β, TNFα, CXCL-2). The new myelin 

sheath has shorter internodes, thinner myelin loops, and may act as a physical barrier to 

protect from injurious inflammatory molecules, or provide trophic support anew to the 

axon. 

D. Multi-potent neural stem cells (nestin+) are specified into oligodendrocyte progenitor 

cells (OPCs; A2B5+, PDGFαR+, NG2+) by exposure to sonic hedgehog (SHH) and 

fibroblast growth factor (FGF), whereas bone morphogenic proteins (BMPs) inhibit this 

specification. This specification involves the transcription factors Olig2, Nkx2.2, Mash1, 

MyT1, Nkx2.6, Gli2, and Sox 8/9/10. OPCs can differentiate into multiple cell types 
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including astrocytes, neurons, and Schwann cells. Differentiation along the 

oligodendroglial lineage to pre-oligodendrocytes/ immature oligodendrocytes (O4+/ 

GalC+) is potentiated by the growth factor IGF-1, the cytokine CNTF, and the thyroid 

hormone T3, and requires the transcription factors Olig1/2, Sox10, Nkx2.2/ 2.6. 

Conversely, BMPs and transcription factors Sox5/6 prevent this differentiation. 

Differentiation into mature oligodendrocytes is associated with acquisition of myelin-

related proteins, such as myelin basic protein (MBP), myelin associated glycoprotein 

(MAG), myelin oligodendrocyte glycoprotein (MOG), oligodendrocyte myelin 

glycoprotein (OMgp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). 
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