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Abstract 

 Benzo(a)pyrene [B(a)P] is a widespread pollutant with a mutagenic, carcinogenic and 

strong prooxidative properties. The present study evaluated the melatonin effects on lipid 

peroxidation products levels and on activity of antioxidative enzymes in the course of B(a)P 

intoxication. Control rats were treated with 0.9% NaCl; another group was given 10 mg 

melatonin/kg b.w.; a third group was injected twice a week with B(a)P at the dose of 10 

mg/kg b.w.; the fourth group received both B(a)P and melatonin at the dose as above. The 

experiment continued for 3 months. In homogenates of brain, liver and kidneys lipid 

peroxidation was appraised by evaluation of malonyldialdehyde and 4-hydroxyalkenal 

(MDA+4HDA) levels. Activities of glutathione peroxidase (GPx), superoxide dysmutase 

(SOD) and catalase (CAT) and concentration of reduced glutathione (GSH) were also 

estimated. In animals receiving both B(a)P and melatonin lower levels of MDA+4HDA were 

observed in all organs as compared to the group treated with B(a)P only. Following 

administration of B(a)P, GSH level decreased in brain and kidney. Melatonin in combination 

with B(a)P induced rises in the GSH level in liver and brain, as compared to the receiving 

B(a)P alone. The activity of SOD increased in the rats treated with melatonin alone but the 

highest activity was observed in rats treated with B(a)P plus melatonin. CAT activity in the 

melatonin-treated group increased in brain and liver. Similarly to SOD, activity of the enzyme 

significantly increased in the group treated in combination with B(a)P and melatonin, as 

compared to the remaining groups in all tested tissues. The results suggest that melatonin 

protects cells from the damaging action of B(a)P. According to our knowledge, there are no 

studies describing the effects of melatonin on lipid peroxidation markers and antioxidative 

enzymes during intoxication of B(a)P in the brain, liver and kidneys. The results of present 
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study gives a perspective for further studies of its free radical scavenger properties in 

prevention of oxidative stress dependent diseases, among others cancers caused by 

carcinogens such as B(a)P.  

Introduction 

 

Benzo(a)pyrene [B(a)P] is a polycyclic aromatic hydrocarbon (PAH), formed in 

processes of oxidation of organic matter (e.g., carbon and petrol) and in culinary processes 

such as roasting, curing and frying. The compounds enter human body from various sources, 

due to industrial emission, from a polluted environment and from contaminated food 

(Srivastava et al., 1997; Roos et al., 2002).  

Previous studies have shown that B(a)P may induce cancer of lungs, stomach, breast, 

urinary bladder, prostate and skin (Sharma, 1997; Lee et al., 1998; Kumar and Das, 2000). 

The mechanism of carcinogenic activity of B(a)P is linked to formation of DNA adducts with 

metabolites of the compound (Kim and Lee, 1997; Lee et al., 1998). Following penetration 

into the organism, B(a)P undergoes turnover in processes of epoxidation and monoelectron 

oxidation. Both pathways are catalysed by cytochrome P-450 monoxgenases. The epoxidation 

yields highly reactive compound, 7,8-diol-9,10-epoxide-2 [BPDE], which manifests the most 

pronounced carcinogenic activity among all metabolites of  B(a)P (Sullivan, 1985; Kim and 

Lee, 1997).  
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The other pathway of B(a)P turnover involves a monoelectron oxidation process, 

leading to formation of chionone derivatives, B(a)P-6,12-dione, B(a)P-3,6-dione and B(a)P-

1,6-dione (Sullivan, 1985; Kim and Lee, 1997). These derivatives generate oxygen free 

radicals which cause to oxidative damage of macromolecules (DNA, RNA, protein, lipids and 

carbohydrates). This results in alterations in cellular structures and, hence, in organic 

structural and functional disturbances (Sharma, 1997; Kim and Lee, 1997; Lee and Lee, 

1997). 

Melatonin is present both in the plant world and in animals and it is a highly effective 

antioxidant. In its reaction with free radicals it donates electrons (Reiter et al., 1999; Reiter et 

al., 2001). Melatonin is a scavenger of both oxygen- and nitrogen-based reactive molecules, 

including peroxynitrite anion (ONOO-) and its decomposition products, including hydroxyl 

radical (OH•), nitrogen dioxide (NO2),  and carbonate radical (CO3•-) (Korkmaz et al., 2009). 

Melatonin reacts rapidly with highly toxic OH• resulting in several hydroxylated products 

formation. One of them, cyclic -3-hydroxymelatonin may serve as a biomarker of the amounts 

of OH• scavenged (Tan et al., 2000; Reiter et al., 2001). Apart from OH•, melatonin directly 

inactivates NO2, CO3•-, hydrogen peroxide (H2O2) and singlet oxygen (1O2) (Gilad et al., 

1997; Zang et al., 1998; Reiter et al., 2001; De Almeida et al., 2003; Fischer et al., 2004; 

Chuang and Chen, 2004, Korkmaz et al., 2009). The products of melatonin oxidation: N1-

acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine 

(AMK) have been also described as potent scavengers (Carampin et al., 2003; Tan et al., 

2007; Manda et al., 2007). Interaction of melatonin with the lipid radical (LOO•) awaits 

clarification (Reiter et al., 1999; Reiter et al., 2001). Besides its ability to direct scavenge 

radicals and radical products, melatonin also augments the activities of antioxidative enzymes, 
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including glutathione peroxidase (GPx), superoxide dysmutase (SOD) and glutathione 

reductase (Longoni et al., 1998; Tan et al., 2000; Reiter et al., 2001; Reiter et al., 2005; 

Korkmaz et al., 2009). The findings relating to the stimulation of antioxidative enzymes by 

melatonin were reviewed by Rodriguez et al. (Rodriguez et al., 2004).  

Present study demonstrated the protective activity of melatonin in the course of B(a)P 

intoxication through its effect on the antioxidative defense system. 

 

Material and Methods 

 

Chemicals 

B(a)P and melatonin were obtained from Sigma Chemical Co. (St. Louis, USA) and 

reagent kits from Calbiochem (La Jolla, CA, USA) and OXIS (OXIS International Inc, USA).  

Experimental protocol 

The studies were performed on 40 male rats of the Buffalo strain, weighing 200 - 

250g. The animals were kept in conditions consistent with requirements of the local 

commission for ethical matters of animal experimentation. They were maintained in 

controlled environmental conditions of ambient temperature (22 ± 2°C) and relative humidity 
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of 40 - 60%, in a 12:12 light / dark cycle. All animals were fed standard pelleted diet and 

water ad libitum. 

The animals were placed into four groups, of 10 rats each: the control group received 

i.p. injections of 0.9% NaCl twice a week (NaCl); melatonin-treated rats, received s.c. 

injections of melatonin at the dose of 10mg/kg b.w., three times a week, rats intoxicated with 

B(a)P received an i.p. injection of 10mg B(a)P /kg b.w. twice a week; the final group was 

intoxicated with B(a)P in combination with melatonin. Melatonin dosage was decided 

according to previous studies of Dziegiel et al. (2002a, 2002b) and it was administered before 

each injection of a B(a)P and between them. A dosage of B(a)P was determined according to 

the study of Konstandi et al. (2007).   

B(a)P was dissolved in a sunflower oil (Kim and Lee, 1997), while melatonin was 

dissolved in 10% C2H5OH in H2O at the ratio of 1:3. All the injections were administered 

between hours 13:00 and 14:00. The experiment Experimental protocol was approved by the 

Local Animal Ethics Committee of Wroclaw Immunology Institute.continued for 3 months. 

Forty-eight hours following the last injection of melatonin the animals were sacrificed by 

administration of bioketan at the dose of 100mg/kg body weight followed by cervical 

dislocation.  

 

Biochemical analysis 
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Brain, liver and kidneys were collected. The isolated organs were cut into smaller 

fragments, weighed and frozen at the temperature of -86°C. For biochemical tests the samples 

were thawed, washed with 0.9% NaCl plus EDTA, homogenized in ice-cold 20mM TRIS-

HCL buffer, pH 7.4 and centrifuged for 10 min at the temperature of 4°C at 15,000 rpm. The 

supernatants were decanted and used to estimate lipid peroxidation (malondialdehyde + 4 

hydroxynonenal, MDA+4HDA) levels using Lipid Peroxidation Assay Kit (Calbiochem) and 

of GSH using Bioxytech GSH-400 kit (OXIS). Activities of  GPx and SOD were estimated 

using Bioxytech kit GPx-340 (OXIS) and Bioxytech kit SOD-525  (OXIS) while catalase 

activity was assayed by the technique of Aebi (Aebi, 1984) against H2O2. Total protein 

concentration was estimated by the technique of Lowry (Lowry et al., 1951), using the  

Protein Assay Kit (Sigma Diagnostics Co., ST. Louis, USA). All analyses were performed as 

recommended by manufacturers of the reagent kits. 

 

Statistical analysis 

Results were subjected to statistical analysis using the Statistica 5.1 PL software 

(StatSoft, Cracow, Poland). Significance of differences was tested employing the non-

parametric Mann – Whitney U-test at the confidence level of p<0.05.  

 

Results 
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In control group levels of lipid peroxidation markers varied with the type of tissue 

studied. The highest concentration of MDA+4HDA was noted in kidneys. Administration of 

melatonin induced a decrease of lipid peroxidation markers in homogenates of kidney and 

liver. In the group receiving B(a)P with melatonin, levels of MDA + 4HDA were significantly 

lower in all studied tissues, as compared to the group receiving B(a)P alone (Fig. 1).  

Initial concentrations of GSH were the highest in liver homogenates. In the group 

treated with melatonin, GSH concentrations were significantly increased in all studied tissues 

as compared to the control group, especially in the liver. In the groups intoxicated with B(a)P 

concentration of GSH was significantly lower in the brain and kidney as compared to the 

control. In B(a)P plus melatonin group only GSH level in liver homogenates was significantly 

higher than in the group receiving B(a)P alone. (Fig. 2). 

The highest control GPx activities were noted in liver. In the group receiving 

melatonin, activity of the enzyme was significantly higher than in the control in all studies 

tissues. Significantly augmented activities of GPx in the group of B(a)P-intoxicated animals 

as compared to the control group, were demonstrated in homogenates of liver and brain. As 

compared to the B(a)P group, rats treated with B(a)P plus melatonin demonstrated a 

significantly higher activity of the enzyme in liver and brain homogenates (Fig. 3).  

In the control groups the highest activity of SOD was noted in the liver. Melatonin - 

treated rats demonstrated significantly augmented SOD activity in comparison to the control 
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in the brain. In rats treated with B(a)P alone activity of SOD was significantly higher in 

kidney and liver as compared to control and melatonin groups. In rats receiving B(a)P plus 

melatonin, activity of SOD was significantly augmented as compared to the control and 

melatonin treated groups in each experimental organ (Fig. 4). 

In control the highest CAT activity was observed in liver. As compared to this the 

group treated with melatonin alone showed significantly higher CAT activity only in the liver. 

In rats intoxicated with B(a)P significantly lower CAT activity was observed in comparison to 

control rats in the kidney, and as compared to the group treated with melatonin alone the 

values were significantly lower in all organs. In the group treated with B(a)P plus melatonin 

activity of CAT augmented significantly in all studied tissues, as compared to any other group 

(Fig. 5).  

 

 

 

 

Discussion 
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This study aimed to investigate whether melatonin protects cells from oxidative injury, 

induced by B(a)P. Benzo(a)pyrene, a five-ring polycyclic aromatic hydrocarbon is a 

widespread pollutant with a well documented  mutagenic and carcinogenic properties. It’s 

action involves generation of free radicals which cause oxidative damage of macromolecules. 

Melatonin is a highly effective antioxidant. It was also shown that it inhibits mutagenesis and 

clastogenic effect of a number of chemical mutagens  (Anisimov et al., 2006). Only a few 

papers described the effects of melatonin on B(a)P intoxication, showing the possible 

inhibitory effect of this pineal hormone on B(a)P induced carcinogenesis in rodents. In 

Vesnushkin’s et al. surveys melatonin decreased the incidence of skin tumors and 

subcutaneous sarcomas after superficial and subcutaneous administration of B(a)P, 

respectively (Vesnushkin et al., 2006, Vesnushkin et al., 2007). Moreover, melatonin 

decreased, enhanced by B(a)P, lipid peroxidation markers both in the serum and tumor tissue. 

(Vesnushkin et al., 2006). According to our knowledge, there are no studies describing the 

effects of melatonin on lipid peroxidation markers and antioxidative enzymes during 

intoxication of B(a)P in the brain, liver and kidneys. The effects of melatonin on brain were 

examined since it is clearly dependent on rich oxygen supply and containing vast amounts of 

lipid. The brain is also characterized by relatively low levels of anti-oxidative enzymes 

(Reiter, 1995; Escames et al., 1997; Esparza et al., 2005). Moreover, both investigated 

substances: exogenous melatonin and B(a)P readily cross a blood-brain barrier and reach the 

brain in a clinical relevant concentrations (Menendez-Pelaez et al., 1993; Moir et al., 1998; 

Saunders et al., 2006; Reiter et al., 2008; Zhang et al., 2008). The liver was included because 

of its multiple detoxication pathway including during B(a)P intoxication. The kidney was 

studied because its excretes metabolites of B(a)P. Among the selected organs, the lowest level 

of enzymatic antioxidative protection was manifested by the brain while the highest enzyme 
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activities were found in the liver. However, the brain may be physiologically protected by 

many antioxidants, especially by melatonin, the receptors for which are present in various 

brain structures (Reiter, 1995; Sewerynek et al., 1995; Reiter, 1996; Uz et al., 2005).  

B(a)P crosses a blood-brain barrier and induces acute neurobehavioral toxicity through 

oxidative stress due to inhibition of the brain antioxidant scavenging system (Moir et al. 1998; 

Saunders et al., 2006; Zhang et al., 2008). Generation of oxygen-based reactive molecules  in 

brain can increase permeability of the blood-brain barrier and modify synaptic transmission 

(Evans, 1995).  B(a)P can also reach the brain directly by passing through the olfactory nerve 

(Persson et al., 2002). In the present study B(a)P has stimulated lipid peroxidation and 

augmented activities of SOD and GPx in the brain. Administration of melatonin alone or in 

combination with B(a)P clearly stimulated CAT, SOD and GPx activities. Numerous authors 

(Tan et al., 1993; Acuna-Castroviejo et al., 1995; Escames et al., 1997; Bongiovanni et al., 

2007; Hung et al., 2008; Bharti and Srivastava 2009) have shown melatonin to be an effective 

neuroprotective agent. Its actions involve not only stimulation of antioxidative enzymes but 

also direct scavenging of oxygen free radicals and prevention of free radical generation 

(Sewerynek et al., 1995; Escames et al., 1997; Hung et al., 2008; Reiter et al., 2008). Urata et 

al. (1999) found that the concentration of GSH increases following administration of 

melatonin similar to our results. 

 Among the examined organs, kidneys contained the highest physiological level of 

lipid peroxidation markers. Thus, they may be assumed to be the least protected from free 

radicals even if, compared to the brain, they have higher activities of antioxidative enzymes. 

Perhaps despite the high physiological activities of the enzymes, they are more sensitive to the 
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toxic effects of B(a)P metabolites. Similarly to other polycyclic aromatic hydrocarbons, B(a)P 

becomes mainly trapped in the kidneys, liver and adipose tissue (Collins et al., 1991). Urinary 

excretion includes one forth of the total B(a)P (Becher and Bjorseth, 1983). Moreover, 

various B(a)P turnover products are eliminated in urine mainly as conjugates with 

endogenous compounds, i.e., with glutathione (Yang et al., 1994). A small percent of 

unmetabolized B(a)P is also excreted in urine (Jongeneelen, 1990). In the groups receiving 

melatonin alone or in combination with B(a)P, MDA + 4HDA concentrations in kidney 

homogenates were significantly lower as compared to the control and B(a)P groups. 

Melatonin alone also stimulated renal GPx activity, The activity of SOD was significantly 

increased following injection of B(a)P. Lower levels of GSH both after administration of 

B(a)P alone and B(a)P plus melatonin as compared to the control group may have resulted 

from increased GSH usage by GPx and from it complex formation with B(a)P metabolites 

(Sharma, 1997). There was very pronounced reduction in concentration of MDA+4HDA in 

rats that received melatonin with or without B(a)P to values below those observed in the 

control rats. This may supports melatonin strong protective actions against lipid peroxidation 

as observed by others (Kim and Lee, 1997; Dziegiel et al., 2002a,b; Dziegiel et al., 2003; 

Buyukokuroglu, 2008).  

Results obtained here indicate that among examined organs the liver is least sensitive 

to damaging action of oxygen radicals in B(a)P treated rats. Administration of melatonin 

alone or with B(a)P reduced MDA +4HDA levels compared to the control rats and rats 

intoxicated with B(a)P. Among the antioxidative enzymes activity of which may be 

stimulated by melatonin, liver cells are protected by SOD, CAT and GPx and by the 

augmented levels of GSH (Ohta et al., 2000; Ohta et al., 2001; Leaden et al., 2002; Ohta et al., 
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2003; Tùnez et al., 2003; Taysi et al., 2003; Mauriz et al., 2007). The least pronounced 

increase in lipid peroxidation markers in the liver of B(a)P-treated animals clearly proves that 

the organ is most effectively protected from oxidative stress. 

 

 

 

 

Conclusion 

 

On the basis of present results we conclude that melatonin may protect the brain, 

kidneys and liver from damaging effects of reactive oxygen species formed by B(a)P 

turnover. The mechanism of melatonin’s protective effects involves most probably 

stimulation of activities of antioxidative enzymes. Melatonin is regarded as a safe substance 

with  low risk of side effects after the treatment even in a large doses. It gives a perspective 

for further studies of its free radical scavenger properties  in prevention of oxidative stress 

dependent diseases, among others cancers caused by carcinogens such as B(a)P.  
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Fig. 1. Concentration of lipid peroxidation markers (MDA+4HDA) in homogenates of brain, 

kidney and liver, *p<0.05 as compared with control, #p<0.05 as compared with melatonin, 

$p<0.05 as compared with B(a)P in all organs. 

 

Fig. 2. Concentration of reduced glutathione (GSH) in homogenates of brain, kidney and 

liver, *p<0.05 as compared with control, #p<0.05 as compared with melatonin, $p<0.05 as 

compared with B(a)P in all organs. 

 

Fig. 3. Activity of glutathione peroxidase (GPx) in homogenates of brain, kidney and liver, 

*p<0.05 as compared with control, #p<0.05 as compared with melatonin, $p<0.05 as 

compared with B(a)P in all organs. 

 

Fig. 4. Activity of superoxide dismutase (SOD) in homogenates of brain, kidney and liver, 

*p<0.05 as compared with control, #p<0.05 as compared with melatonin, $p<0.05 as 

compared with B(a)P in all organs. 
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Fig. 5. Activity of catalase (CAT) in homogenates of brain, kidney and liver, *p<0.05 as 

compared with control, #p<0.05 as compared with melatonin, $p<0.05 as compared with B(a)P 

in all organs. 
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