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Abstract

The effective behaviour of linear viscoelastic heterogeneous material can be derived from the cor-
respondence principle and the inversion of the obtained symbolic homogenized behavior. Various
numerical methods were proposed to carry out this inversion. The collocation method, widely used,
within this framework rests on a discretization of the characteristic spectrum in a sum of discrete
lines for which it is necessary to determine the intensities and the positions by the minimization of
the difference between the exact temporal function and its approximation. The classical method
is based on a priori choice of the lines positions and on the optimization of their intensities. It is
shown here that the combined optimization of the positions and the (positive) intensities lead to
a minimization problem under constraints. In the simple case of an incompressible isotropic two-
phase material, this method is confronted with the analytical solutions of the effective relaxation
function and the classical collocation method. In the case of a continuous spectrum or a spectrum
made up of a whole of discrete lines, the proposed method improves the predictions of the classical
approach. For the various cases considered (ratio of the phases relaxation times, volume fraction
of the components), a low number of the collocation points, even with the classical approach, lead
to a good agreement with the analytical solution. The profit increases with the chosen interval
time for the distribution of the collocation points especially for a spectrum made up of a whole of
discrete lines.
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1. Introduction

To obtain the effective properties of non-ageing linear viscoelastic heterogeneous media, it is useful
to apply the Laplace-Carson transform or the so-called correspondence principle [1] which helps to
transform the linear viscoelastic behaviour into a symbolic elastic one for which it is possible to
apply the classical linear homogenization techniques. The viscoelastic effective properties are then
deduced by the inversion of the Laplace-Carson transform. Apart some simple cases, for which it
is possible to carry out ”exactly” this inversion by calculating the integral of Bromwich defined in
the complex plane by f(t) = 1

2iπ

∫ f∗(p)
p eptdp [2], this inversion is usually performed numerically

in an approached way. The majority of the work carried out within this framework rests on a
development in series of the required temporal functions. We can in particular quote the widely
used Prony-Dirichlet series or the collocation method developed by Schapery [8] and its extensions
such as the multidata method proposed by Cost and Becker [5]. From a practical point of view,
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these methods rest on a preliminary choice of relaxation times (delays) and require the resolution
of a linear system to determine the coefficients of the series approaching the relaxation (creep)
function. Nevertheless, they do not impose conditions on these coefficients whereas a physical
description of the stiffness (compliance) viscoelastic modulus requires positive coefficients. Various
methods were proposed to overcome this difficulty [6, 4], but they are always based on a preliminary
adequate choice of the relaxation (creep) times.
This paper deals with the evaluation of the collocation method, used in homogenization [7], by
considering a more general approach to approximate effective relaxation or creep function. To
this end, we recall firstly the approximation of viscoelastic stiffness and compliance modulus by
the Dirichlet series and we present the implemented procedure allowing to fit as well as possible
the reference function. To assess the efficiency of this method, we consider then the case of an
incompressible isotropic two-phase material for which analytical expressions of the effective behavior
are available. This comparison enables especially to discuss the cases of relaxation functions with
continuum spectra or made up of discrete lines and their consequence on the improved procedure.

2. Principle of the improved collocation method

According to the principle of superposition of Boltzmann, the local behavior in heterogeneous
materials composed of linear viscoelastic constituents without ageing is governed by the following
law:

σ(t) =

∫ t

0
C(t− τ)dε(τ) or ε(t) =

∫ t

0
S(t− τ)dσ(τ) (1)

where C(t) is the tensor of viscoelastic modulus (i.e. relaxation function) and S(t) is the tensor of
viscoelastic compliances (i.e. the creep function). Based on the thermodynamics of the irreversible
processes, Biot [3] showed that in the general case the linear viscoelastic compliance tensor reads:

S(t) = Se + Svt+

∫ +∞

0
J(τ)(1− e−t/τ )dτ (2)

where J(t) is the spectrum of creep (or delay) of the material, Se and Sv are the tensors of the
elastic and viscous compliances characterizing the material’s behavior, respectively, at t = 0 and
t = +∞. The tensor of viscoelastic modulus is written:

C(t) =

∫ +∞

0
G(τ)e−t/τdτ (3)

where G(t) is the spectrum of relaxation of the material. Each characteristic spectrum, a priori
unknown, is approached by a sum of discrete lines positioned at n relaxation times or relaxation
delays τr. The relaxation function (3), as well as the transient part of the creep function S =
S(t)− Se − Svt are thus approached by their expansion as Prony series as follows:

C∗(t) =

n∑
r=1

Gre
−t/τr , S∗(t) =

n∑
r=1

Jr(1− e−t/τr) (4)

where Gr and Jr are the intensities of the functions C∗(t) and S∗(t), respectively.
The determination of the coefficients and relaxation times of the transient series relies on the
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minimization of the quadratic error E evaluated between the exact and approached functions. For
the relaxation function, E reads:

E =

∫ +∞

0
[C(t)− C∗(t)]2dt (5)

whose minimization (∂E/∂Gr = 0 and ∂E/∂τr = 0) leads to:

Ĉ(pr) = Ĉ∗(pr) and
dĈ(p)

dp
|pr =

dĈ∗

dp
|pr where pr = 1/τr,∀ r = 1, ..., n (6)

.̂ denotes the Laplace transform. Substituting C∗ by its expression (4)-(a) leads to the following
system:

Ĉ∗(pr) =

n∑
i=1

Gi
1

pi + pr
and

dĈ∗(p)

dp
|pr = −

n∑
i=1

Gi
1

(pi + pr)2
∀ r = 1, ..., n (7)

For a fixed number of terms of the the Dirichlet series, the best approximation of the exact function
is thus obtained when the transforms of Laplace and their derivative are equal at n points pr.
From a practical point of view, it is thus necessary to know the Laplace transform, as well as the
derivative of this transform of the original temporal function at the various points of collocation. It
is worth noting that the classical collocation method, resting on a preliminary choice of the points
pr, corresponds to the first equality (7)-(a) which defines a linear system allowing to determine the
coefficients. For the improved collocation method, the obtained two equalities define a nonlinear
system of 2n equations (for each component of the viscoelastic modulus tensor) with 2n unknown
variables. In addition, it is necessary to introduce the following constraints for its resolution:

• The coefficents Gr must be positive,

• The collocation times τr must be in the interval [τmin, τmax],

• The relaxation function must be equal to the elastic modulus at the instant t = 0.

The nonlinear system can then be written as a minimization problem under constraints: minGr,τr

[∑n
r=1

(
Ĉ(pr)− Ĉ∗(pr)

)2
+

∑n
r=1

(
dĈ(p)
dp |pr −

dĈ∗(p)
dp |pr

)2
]

where Gr ≥ 0, τmin ≤ τr ≤ τmax and
∑n

r=1Gr − Ce = 0
(8)

where Ce is the elastic modulus of the considered material. In a same manner, it is possible to
define a minimization problem associated to the transient part of the creep function S. The former
takes similar form than (8) but without the constraint on the behavior at t = 0. In this work we
will focus only on the relaxation function. To solve the minimization problem (8), we implement
the algorithm Shor (SolvOpt) [10] which allows the optimization of non-smooth functions (case of
a problem under constraints, for example).

3. Illustrative example: case of a two-phase composite

In order to evaluate the relevance of the numerical procedure of inversion proposed above and for
the sake of simplicity, we consider in the following an isotropic material whose components obey
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an isotropic incompressible Maxwellian behaviour. The local behaviour of the phase (i) is then
described by the following compliance and stiffness tensors:

Si(t) = (me
i +mv

i t)K and C(t) = 2µe
i e

−t/τiK +∞J (9)

where τi = me
i/m

v
i and 2µe

i = 1/me
i . J and K are the spherical and deviatoric isotropic projectors,

respectively. The scalar constants me
i and mv

i are, respectively, the elastic and viscous shear
compliances of phase (i), µe

i is the elastic shear modulus and τi = me
i/m

v
i are the relaxation times

characterizing the spectrum of the phase (i). The effective behavior of this composite is thus entirely
defined by the scalar function µ̃(t).
Then applying the Laplace-Carson transform, the local behavior (1) becomes a symbolic elastic law
characterized by the symbolic local shear modulus µ̂∗

i (p) = p/[2me
i (p+1/τi)]. The effective symbolic

shear modulus can therefore be evaluated using one of the available linear homogenization schemes
such as the Mori-Tanaka or the self-consistent models. The expression of the shear modulus µ̃(t)
is then obtained by the inversion of the Laplace-Carson transform of the symbolic result.
According to the Mori-Tanaka model, the analytical expression of the effective shear modulus reads
[9]:

µ̃MT (t) =
be

2avmv
1(τ1 − τ ′)

[(
1

τ
− 1

τ1

)
e−t/τ1 −

(
1

τ
− 1

τ ′

)
e−t/τ ′

]
(10)

where 2 denotes the inclusion phase, τ ′ = τ1(2c1 + (5 − 2c1)
τ2

me
1/m

v
2
)(2c1 + (5 − 2c1)

τ1
me

1/m
v
2
), av =

5mv
2−2c1(m

v
2−mv

1), b
e = 5me

1+3c1(m
e
2−me

1) and ci the volume fraction of the phase (i). According
to this model, the spectrum of the relaxation function is thus composed of two discrete lines.
For the self-consistent model, Beurthey and Zaoui [2] showed that the spectrum of relaxation of the
effective shear modulus consists of two discrete lines and a bounded continuous part of the form

GAC(τ) ∼ τ1τ2√
θ1θ2

√
(τ − θ1)(θ2 − τ)

τ(τ − τ1)(τ2 − τ)
(11)

as shown for example in figure 2-(a) (see [2]) where θ1 and θ2 are the bounds of the interval.

More details about the explicit expression of the shear modulus are given in [2]. In this work the
integral expression of the shear modulus (11) was evaluated numerically. The result derived from
the inversion method using the collocation method can then be confronted to the above quoted
analytical results which differ mainly by the fact that the self-consistent model implies a continuous
spectrum of relaxation.

4. Results and discussion

The ”optimized” collocation method proposed in this paper is compared to the classical collocation
method relying on a preliminary choice of the relaxation times and to the exact results provided
by the self-consistent and Mori-Tanaka models for the relaxation function as shown on figures (1)-
(a)-(b) and figures (1)-(c)-(d), respectively. For figures (1)-(a) and (c), the relaxation times τr
(r = 1, ..., n) characteristics of the collocation method are distributed in an interval qualified to
be ”minimal” [τmin, τmax] = [min(τi),max(τi)] where τi are the relaxation times characteristics of
the phase (i). In figures (b) and (d) the relaxation times of the collocation method belong to an
interval wider than the ”minimal” interval.

4



For relaxation times in the ”minimal” interval, the results show that for a low number of points
(n ≥ 3) the classical collocation method and its ”optimized” version provide results in well agree-
ment with the analytical solution characterized either by a continuous spectrum (figure (1)-(a))
or a discrete spectrum (figure (1)-(c)). It is noted that for a low number of relaxation times the
”optimized” collocation gives the exact solution for relaxation function characterized by a spectrum
made up of discrete lines as shown for the Mori-Tanaka scheme (see Figures (1-(c) and (d)). For
relaxation times distributed in a wide interval, the ”optimized” version of the collocation method
considering a low number of points (n ≥ 8) for relaxation functions with continuous spectrum
improves the results of its classical version.

The interest of the ”optimized” collocation method increases if the relaxation function is character-
ized by a spectrum made up of discrete lines as it provides the exact solution. For a wide interval
and with a high number of points (n ≥ 20) the classical collocation method provides estimates in
good agreement with the exact solution. In opposition, for a low number of points, this method
can provide negative estimates as shown on figure (1)-(d).

[Figure 1 about here.]

5. Conclusion

The combined optimization of the positions and the (positive) intensities of the Prony’s serie
approaching the exact relaxation (or creep) function improves the results of the classical collocation
method with a low number of collocation points. The efficiency of the proposed method increases
especially for the case of relaxation (creep) functions with a a spectrum made up of discrete lines.
Indeed it provides exact solution for a low number of relaxation times. Such idea could be interesting
for other homogenization models such as the generalized-self-consistent scheme or the ”N+1”-phase
model (see for example [2]). Moreover, it can be applied for composites with compressible phases
and extended for other existent numerical methods allowing the inversion of the Laplace-Carson
transform.
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Figure 1: Relaxation functions evaluated by the improved and classical collocation methods compared to the exact
results for a two-phase material according to the self-consistent scheme (a-b) in the case c2 = 0.5,me

1 = me
2 =

1, τ2/τ1 = 100 and to the Mori-Tanaka scheme (c-d) in the case c2 = 0.5,me
1 = me

2 = 1, τ2/τ1 = 10.
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