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ON THE DEGREE OF CAUSTICS BY REFLECTION

ALFREDERIC JOSSE AND FRANÇOISE PÈNE

Abstract. Given S ∈ P2 and an algebraic curve C of P2 (with any type of singularities), we
consider the lines Rm got by reflection of lines (Sm) (m ∈ C) on C. The caustic by reflection
ΣS (C) is defined as the Zariski closure of the envelope of the reflected lines Rm. We identify
this caustic with the Zariski closure of Φ(C), where Φ is some rational map. We use this
approach to give general and explicit formulas for the degree (with multiplicity) of every caustic
by reflection. Our formulas are expressed in terms of intersection numbers of the initial curve
C (or of its branches). Our method is based on a fundamental lemma for rational map thanks
to the notion of Φ-polar and on computation of intersection numbers. In particular, we use
precise estimates related to the intersection numbers of C with its polar at any point and to the
intersection numbers of C with its hessian determinant. These computations are linked with
generalized Plücker formulas for the class and for the number of inflection points of C.

Introduction

Von Tschirnhausen was the first to consider the caustic by reflection as the envelope of re-
flected rays from a point S on a mirror curve C (see [18]). Many mathematicians have studied
individually different caustics. In [14, 8], when S is at finite distance, Quetelet and Dandelin
showed that the caustic is the evolute of the S-centered homothety (with ratio 2) of the pedal
from S of C, i.e. the evolute of the orthotomic of C with respect to S. This decomposition has
also been used in a modern approach by [2, 3, 4] to study the source genericity (in the real case).

In [6], Chasles got a formula (in generic but restrictive cases) for the class of the caustic in
terms of the degree and of the class of C. In [15, p. 137, 154], Salmon and Cayley establish
formulas, at a more general level, for the class and the degree of the evolute and pedal curves.
The formulas of Salmon and Cayley apply only to curves having no singularities other than
ordinary nodes and cups [15, p. 10].

Apparently thanks to these last results, in [1], Brocard and Lemoyne gave, without any proof,
formulas for the degree and the class of caustics by reflection, for S is at finite distance and
for algebraic curve C admitting no other singularities than ordinary nodes and cusps. The
formulas of Brocard and Lemoyne are not satisfactory. First no proof is given. Second, the
direct composition of the formulas got by Salmon and Cayley for evolute and pedal curves is not
correct since the pedal curve of a curve having no singularities other than ordinary nodes and
cups is not necessarily a curve satisfying the same properties. For example, the pedal curve of
the rational cubic V (y2z − x3) from [4 : 0 : 1] is a quartic curve with a triple ordinary point.

More recently, a study of the evolute has been done by Fantechi in [9], including necessary and
sufficient condition for the birationality of the evolute map and a description of the number and
type of the singularities of the general evolute. This work has been extended in higher dimension
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by Trifogli [17], Catanese and Trifogli [5] giving, in particular, formulas for degrees of focal loci
of smooth algebraic curves.

Our aim is here to give formulas for the degree (with multiplicity) of the caustic by reflection
for any light point S (including the case when S is on the infinite line) and any algebraic curve
C (without any restriction neither on the singularity points nor on the flex points). We express
the degree (with multiplicity) of ΣS(C) in terms of intersection numbers of the initial curve C.
Our proofs use the notion of pro-branches (also called partial branches) considered by Halphen
[12] and more recently by Wall [19, 20].

Given an algebraic curve C in the euclidean affine plane E2 (C is called mirror curve) and given
a light position S (in E2 or at infinity), the caustic by reflection ΣS(C) is the Zariski closure of
the envelope of the reflected lines {Rm;m ∈ C} where, for every m ∈ C, the reflected line Rm at
m is the line containing m and such that the tangent line TmC to C at m is the bissectrix of the
incident line (Sm) and of Rm.

The notion of caustic by reflection ΣS(C) is easily extendible to the complex projective case
for an irreducible algebraic curve C = V (F ) of P2 := P2(C) with F ∈ C[x, y, z] a homogeneous
polynomial of degree d and a light position S = [x0 : y0 : z0] ∈ P2. It will be also useful to
consider S := (x0, y0, z0) ∈ C3 \ {0}.

Plan of the paper. The paper is organized as follows.

In section 1, we present our main results and illustrate them with an example.

In section 2, we introduce the notion of reflected lines and use it to define the caustic by
reflection.

In section 3, we study the properties of our rational map ΦF,S (link with the caustic ΣS(C),
base points,etc.).

In section 4, for any rational map ϕ : Pp → Pq and any irreducible algebraic curve C of Pp,
we introduce the notion of ϕ-polar Pϕ,a and give a general fundamental lemma expressing the

degree of ϕ(C) in terms of intersection numbers of C with Pϕ,a at the Base points of ϕ on C.
Thanks to this result, the computation of the degree of the caustic by reflection ΣS(C) is related
to the intersection numbers of the curve C with its polar curves δPF with respect to P and with
V (HF ) (HF being the Hessian determinant of F ).
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In section 5 completed with the appendix, we recall some facts on intersection numbers and use
it to establish the precise computations we need. This section contains also generalized Plücker
formulas for the class and for the number of inflection points of C.

In section 6, we prove our general Theorems 2 and 3 on the degree of caustics by reflection.
In section 7, we prove our Corollary 5.

1. Main results

Throughout the paper, we will write ℓ∞ the infinite line of P2 and Π : C3 \ {0} → P2 the
canonical projection. As usual, we denote by Fx, Fy, Fz the partial derivatives of F and by
Fxx, Fxy, Fxz, Fyy , Fyz, Fzz its second order partial derivatives.

We recall that when d = 1, ΣS(C) is well defined as soon as C contains neither S, nor I, nor
J and we have ΣS(C) = {S1} (where S1 corresponds to the euclidean symetric point1 of S with
respect to line C).

The aim of this paper is to give an effective way to compute the degree of ΣS(C) when d ≥ 2.
To this end, we define a rational map ΦF,S (with S = (x0, y0, z0)). This maps is given by

Φ̃F,S : C3 → C3 defined by :

Φ̃F,S := −
2HFNS

(d− 1)2
· Id + ∆SF ·





F 2
y x0 − F 2

xx0 − 2FxFyy0 − 2FxFzz0
F 2
xy0 − F 2

y y0 − 2FxFyx0 − 2FyFzz0
z0(F

2
x + F 2

y )



 , (1)

with HF the hessian determinant of F , i.e.

HF := FxxFyyFzz − FxxF
2
yz + 2FxyFyzFxz − F 2

xyFzz − FyyF
2
xz,

with
NS(x, y, z) := (xz0 − x0z)

2 + (yz0 − y0z)
2,

and with

∀P = (xP , yP , zP ) ∈ C3 \ {0}, ∆PF := DF (·)(P ) = xPFx + yPFy + zPFz.

Let us recall that V (∆PF ) is the polar δΠ(P )(C) of C with respect to Π(P ).

Theorem 1. If d ≥ 2,
ΣS(C) = ΦF,S(C), (2)

where the closure is in the sense of Zariski.

Moreover, ΦF,S maps generic m ∈ C to the corresponding point of ΣS(C).

Let I := [1 : i : 0] and J := [1 : −i : 0] be the two cyclic points of P2. We also define
I := (1, i, 0) and J := (1,−i, 0). Points I and J will play a particular role in our study (see
theorems below). They will be crucial in the construction of the reflected lines Rm. Moreover,
we will see that

ΣI(C) = {J } and ΣJ (C) = {I}. (3)

We will use Theorem 1 and a general fundamental lemma to express the degree of ΣS(C) in terms
of some intersection numbers (computed in Proposition 30). Before giving our formulas, let us
introduce some notations.

We write Sing(C) the set of singular points of C (i.e. the set of points m = [x : y : z] ∈ C
such that DF (x, y, z) = 0) and Reg(C) := C \ Sing(C). We denote by Tm1C the tangent line to

1If F (x, y, z) = ax + by + cz, we have S1 = Π

0

@(a2 + b2)S − 2(x0a + y0b + cz0)

0

@

a

b

0

1

A

1

A.
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C at m1 when m1 is non-singular. We also write im1(·, ·) the intersection numbers. For every
m1 ∈ C, we write Branchm1(C) the set of branches of C at m1. Now, for every m1 ∈ C and every
B ∈ Branchm1(C), Tm1B denotes the tangent line to B at m1 and e(B) the multiplicity of B. If
m1 ∈ Sing(C), such a line Tm1B will be called a singular tangent line to C at m1. The quantity
1P is equal to 1 if property P is true and 0 otherwise.

We will denote by mdeg(ΣS(C)) the degree with multiplicity of ΣS(C). We have

mdeg(ΣS(C)) = δ1(S, C) × deg(ΣS(C))

(with convention ∞ × 0 = 0), where deg(ΣS(C)) is the degree of the algebraic curve ΣS(C)
and where δ1(S, C) is the degree of ΦF,S. We recall that δ1(S, C) corresponds to the number of
preimages on C of a generic point of ΣS(C) by ΦF,S. The fact that mdeg(ΣS(C)) = 0 means that
ΣS(C) contains a single point.

We start with the generic and simple case when S, I and J do not belong to a singular
tangent line to C.

Theorem 2. Assume that d ≥ 2 and that S is equal neither to I nor to J . Assume moreover
that S is not contained in a singular tangent line to C and that ℓ∞ is not a singular tangent line
to C. Then

mdeg(ΣS(C)) = 3d∨ − v1 − v2 − v′2 − v31S∈C − v41S6∈ℓ∞ ,

where d∨ is the class of C (i.e. the degree of its dual curve) and with

v1 :=
∑

m1∈Sing(C)\((IS)∪(JS))

∑

B∈Branchm1 (C)

min(im1(B,Tm1B) − 2e(B), 0),

v2 :=
∑

m1∈Reg(C)\{S}:S∈Tm1C,im1(C,Tm1C)6=2

[im1(C,Tm1C)(1 + 1I∈Tm1C
+ 1J∈Tm1C

)− 2 − 1I,J∈Tm1C
];

v′2 :=
∑

m1∈Reg(C)\{S}:S∈Tm1C,im1 (C,Tm1C)=2

3 × 1{I,J}∩Tm1C6=∅;

v3 :=

{

iS(C,TSC) + (iS(C,TSC) − 1)(1I∈TSC + 1J∈TSC) if iS(C,TSC) 6= 2
2 + 1I∈TSC + 1J∈TSC + 2 × 1I,J∈TSC if iS(C,TSC) = 2;

v4 :=
∑

m1∈Reg(C):Tm1C=ℓ∞

[im1(C,Tm1C) − 2 + 1m1∈{I,J}].

Now let us give the more general but also more technical result. In this result we do not
distinguish singular and non-singular points of C. We recall that, at a non-singular point m1, C
admits a single branch and that the multiplicity of this branch is equal to 1. Let us consider the
set E of all possible couples (m1,B) with m1 ∈ C and B a branch of C at m1. Given (m1,B) ∈ E ,
if im1(B,Tm1B) = 2e(B), we define

γ1(m1,B) := min(3e(B), im1(B, C
′)),

where C′ is any curve non-singular at m1 such that im1(B, C
′) > 2e(B) (for example, one can take

for C′ the osculating "circle" Om1(B) of any pro-branch of B, see section 5 for the definition of
pro-branches) and

γ2(m1,B) := min(γ1(m1,B) − 2e(B), 2e(B)) if γ1(m1,B) 6= 3e(B)

and

γ2(m1,B) := min(im1(B, C
′′) − 2e(B), 2e(B)) if γ1(m1,B) = 3e(B),

where C′′ is any algebraic curve non-singular at m1 such that im1(B, C
′′) > 3e(B).
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Theorem 3. Assume that d ≥ 2 and that S is equal neither to I nor to J . Then

mdeg(ΣS(C)) = 3d∨ − v1 − v2 − v′2 − (v3 + v′3)1S∈C − v41S6∈ℓ∞ ,

where d∨ is the class of C (i.e. the degree of its dual curve) and with

v1 :=
∑

(m1,B)∈E:m1∈Sing(C)\[(IS)∪(JS)],S 6∈Tm1B,Tm1B6=ℓ∞

min(im1(B,Tm1B) − 2e(B), 0),

v2 :=
∑

(m1,B)∈E:m1 6=S,S∈Tm1B,im1(B,Tm1B)6=2e(B)

[im1(B,Tm1B)(1 + 1I∈Tm1B
+ 1J∈Tm1B

) − (2 + 1I,J∈Tm1B
)e(B)];

v′2 :=
∑

(m1,B)∈E:m1 6=S,S∈Tm1B,im1 (B,Tm1B)=2e(B)

[γ1(m1,B)1#({I,J }∩Tm1B)=1 + 3e(B)1Tm1B=ℓ∞ ];

v3 :=
∑

(S,B)∈E:iS(B,TSB)6=2e(B)

[

iS(B,TSB) + (iS(B,TSB) − e(B))(1I∈TSB + 1J∈TSB)
]

;

v′3 :=
∑

(S,B)∈E:iS(B,TSB)=2e(B)

[

(2 + 1I∈TSB + 1J∈TSB)e(B) + γ2(m1,B)1I,J∈TSB

]

;

v4 :=
∑

(m1,B)∈E:Tm1B=ℓ∞

[im1(B,Tm1B) + (1m1∈{I,J} − 2)e(B)].

Remark 4. Denote by Flex(C) the set of inflection points of C, i.e. the set of non-singular
points of C such that im1(C,Tm1(C)) > 2. Recall that, since C is irreducible and if d ≥ 2, (by the
Bezout theorem and Corollary 26 below) we have

3d(d− 2) =
∑

m1∈C

im1(C, V (HF ))

= 3[d(d−1)−d∨]+
∑

m1∈Sing(C)

∑

B∈Branchm1 (C)

[im1(B,Tm1B)−2e(B)]+
∑

m1∈F lex(C)

(im1(C,Tm1C)−2)

and so

3d∨ −
∑

(m1,B)∈E,m1∈Sing(C)

(im1(B,Tm1B) − 2e(B)) = 3d+
∑

m1∈F lex(C)

(im1(C,Tm1C) − 2).

Hence, under assumptions of Theorem 2, if we suppose moreover that Sing(C)∩((IS)∪(JS)) = ∅
and that, for every m1 ∈ Sing(C) and every branch B of C at m1, we have im1(B,Tm1B) ≤ 2e(B)

(this is true for instance, if all the singular points of C are ordinary cusps and nodes), we get
that

3d∨ − v1 = 3d+
∑

m1∈F lex(C)

(im1(C,Tm1C) − 2).

Corollary 5. Assume that d ≥ 2 and that S is equal neither to I nor to J . Assume that S is
not contained in a singular tangent line to C and that ℓ∞ is not a singular tangent to C.

Assume moreover that Sing(C) ∩ ((IS) ∪ (JS)) = ∅ and that, for every m1 ∈ Sing(C) and
every branch B of C at m1, we have im1(B,Tm1B) ≤ 2e(B).

If S 6∈ ℓ∞, then

mdeg(ΣS(C)) = 3d+ i0 − t0 − n0 − 2 × 1S∈C + 1S∈C;{I,J}∩TSC6=∅ − 1I∈C,TIC=ℓ∞ − 1J∈C,TJ C=ℓ∞ ,

where
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• i0 is the number of inflection points m1 of C such that Tm1C does not contain S and is
not equal to ℓ∞ :

i0 :=
∑

m1∈F lex(C),S6∈Tm1C,Tm1C6=ℓ∞

(im1(C,Tm1C) − 2)

• t0 is the number of tangencies of C with (IS) or (JS) :

t0 :=
∑

m1∈Reg(C):Tm1C⊆(IS)∪(JS)

im1(C,Tm1C);

• n0 is the cardinality of the set of non-singular m1 ∈ C \ (Flex(C) ∪ {S}) such that Tm1C
is (IS) or (JS).

If S ∈ ℓ∞, then

mdeg(ΣS(C)) = 3d+ i′0 − t′0 − 3 × 1S∈C + 2 × 1S∈C,TSC=ℓ∞,iS 6=2,

where

• i′0 is the number of inflection points m1 of C such that Tm1C does not contain S :

i′0 :=
∑

m1∈F lex(C),S6∈Tm1C

(im1(C,Tm1C) − 2);

• t′0 is given by

t′0 :=
∑

m1∈Reg(C):Tm1C=ℓ∞

(2 × im1(C,Tm1C) − 1).

An example. We give now an example in order to show how our formula can be used in practice.

We consider the quintic curve C = V (F ) with F (x, y, z) = y2z3 − x5. This curve admits two
singular points: A1 := [0 : 0 : 1] and A2 := [0 : 1 : 0], we have d = 5.

In the chart z = 1, at A1, C has a single branch BA1 , which has equation y2 − x5 = 0 and
multiplicity 2. Hence, C admits two pro-branches at A1 of equations (y = gi(x), i = 1, 2) with

g1(x) := x5/2 and g2(x) := −x5/2. The tangential intersection number iA1 of the branch BA1 is
equal to

iA1 =

2
∑

j=1

val(gi) = 5.

In the chart y = 1, at A2, C has a single branch BA2 , which has equation z3 − x5 = 0 and
multiplicity 3. Hence, C admits three pro-branches at A2 of equations (z = hi(x), i = 1, 2, 3)

with h1(x) := x5/3, h2(x) := jx5/3 and h3(x) := j2x5/3 (where j is a fixed complex number
satisfying 1 + j + j2 = 0). The tangential intersection number iA2 of the branch BA2 is equal to

iA2 =
3

∑

j=1

val(hi) = 5.

According to Corollary 26, the class d∨ of C is given by

d∨ = d(d− 1) −
∑

i,j∈{1,2}:i6=j

val(gi − gj) −
∑

i,j∈{1,2,3}:i6=j

val(hi − hj) = 5 × 4 − 2 ×
5

2
− 6 ×

5

3
= 5.
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Using again Corollary 26, we know that the number of inflection points of C (computed with
multiplicity) is equal to

3d(d − 2) − 3





∑

i,j∈{1,2}:i6=j

val(gi − gj) +
∑

i,j∈{1,2,3}:i6=j

val(hi − hj)



 = 0.

Therefore, C has no inflection points.

The curve C admits six isotropic non-singular tangent lines (three for I and three for J ),
which are pairwise distinct.

We consider a light point S = [x0 : y0 : z0] ∈ P2 \ {I,J }. We will see that

mdeg(ΣS(C)) = 15 − 1y0=0,x0 6=0 − 6 × 1z0=0,x0 6=0 − 3 × n0 − 5 × 1S=A1 − 9 × 1S=A2 + 1z0 6=0

−2 × 1S∈Reg(C),TSC6⊆(IS)∪(JS),

where n0 is the number of non-singular isotropic tangent lines to C containing S. Hence, we have

Condition on S mdeg(ΣS(C)) =
for generic S ∈ P2 16
for generic S ∈ C 14

for generic S ∈ TA1BA1 15
for generic S ∈ TA2BA2 = ℓ∞ 9

S ∈ TA1BA1 ∩ TA2BA2 8
S = A1 (double point) 11
S = A2 (triple point) 6

for generic S on a single isotropic tangent 13
S on two isotropic tangents 10

S = I or S = J 0

Let us prove the above formula. According to Theorem 3, we have

mdeg(ΣS(C)) = 3d∨ − v1 − v2 − v′2 − (v3 + v′3)1S∈C − v41z0 6=0.

• d∨ = 5 (see above).
• Since A1 is the single singular point of C outside ℓ∞, we have

v1 = min(iA1 − 2 × 2, 0)1S6∈(A1I)∪(A1J ),y0 6=0 = 0.

• The couples (m1,B) ∈ E that may contribute to v2 corresponds to inflection points or to
singular tangent. Since C admits no inflection points, since the singular tangent line at
A1 contains neither I nor J and since the singular tangent line at A2 contains I and J ,
we get

v2 = (iA1 − 2 × 2)1y0=0,x0 6=0 + (3iA2 − 3 × 3)1z0=0,x0 6=0

• Since C has no point on ℓ∞ except A2, we have

v′2 = 3#{m1 ∈ Reg(C) \ {S} : S ∈ (m1I) ∪ (m1J )}.

• Since C admits no inflection points, the only points that possibly contributes to v3 are
the singular points. We have

v3 = iA1 × 1S=A1 + (3iA2 − 2 × 3)1S=A2

• Since the non singular point of C with isotropic tangent are not in ℓ∞, we have

v′3 = 3 × 1S∈Reg(C),TSC⊆(IS)∪(JS) + 2 × 1S∈Reg(C),TSC6⊆(IS)∪(JS).

• v4 = iA2 − 2 × 3.
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2. Caustic by reflection and reflected lines

Let us consider a light position S = [x0 : y0 : z0] ∈ P2 and an irreducible algebraic (mirror)
curve C = V (F ) of P2 given by a homogeneous polynomial F of degree d ≥ 2.

Definition 6. The caustic by reflection ΣS(C) is the Zariski closure of the envelope of the
reflected lines {Rm;m ∈ Reg(C)\({S}∪ℓ∞)}, where Rm is the reflected line at m of an incident
line coming from S after reflection on C.

Let us define the reflected lines Rm. Since our problem is euclidean, we endow P2 with an
angular structure for which I = [1 : i : 0] and J = [1 : −i : 0] play a particular role. To
this end, let us recall the definition of the cross-ratio β of 4 points of ℓ∞. Given four points
(Pi = [ai : bi : 0])i=1,...,4 such that each point appears at most 2 times, we define the cross-ratio
β(P1, P2, P3, P4) of these four points as follows :

β(P1, P2, P3, P4) =
(b3a1 − b1a3)(b4a2 − b2a4)

(b3a2 − b2a3)(b4a1 − b1a4)
,

with convention 1
0 = ∞.

For any distinct lines A and B not equal to ℓ∞, containing neither I nor J , we define the
oriented angular measure between A and B by θ ∈ [0;π[ such that e2iθ = β(a, b,I,J ) (where a
is the point of A at infinity and where b is the point of B at infinity).

For every m = [x : y : z] ∈ Reg(C) \ {S} with z 6= 0, we define the reflected line Rm at
m as follows. Let TmC be the tangent line to C at m (with equation FxX + FyY + FzZ = 0
and with point tm = [Fy : −Fx : 0] at infinity). The incident line at m is line (Sm). We
denote by sm := [x̄ : ȳ : 0] its point at infinity. We have sm := [x0z − z0x : y0z − z0y : 0] if
S 6∈ ℓ∞ and sm = [x0 : y0 : 0] if S ∈ ℓ∞. When sm and tm are equal neither to I nor J , we
define the reflected line Rm at m ∈ C as the line (mrm) with point rm at infinity given by the
Snell-Descartes reflection law Angle((Sm),Tm) = Angle(Tm,Rm), i.e.

β(sm, tm,I,J ) = β(tm, rm,I,J ). (4)

Observe that rm is well defined by this formula as soon as tm 6∈ {I,J }. In particular, if
(Sm) = TmC, then the reflected line at m is (Sm). Moreover, with definition (4), we have
(sm = I ⇒ rm = J ) and (sm = J ⇒ rm = I).

According to (4), we have

rm := [x̄(F 2
x − F 2

y ) + 2ȳFxFy : −ȳ(F 2
x − F 2

y ) + 2x̄FxFy : 0].

Hence Rm is the set of [X : Y : Z] ∈ P2 such that

(F 2
x − F 2

y )(−zȳX − zx̄Y + Z(ȳx+ yx̄)) + 2FxFy(zx̄X − zȳY + Z(−x̄x+ ȳy)) = 0.

Let us define 〈(X1, Y1, Z1), (X2, Y2, Z2)〉 := X1X2 + Y1Y2 + Z1Z2.

Definition 7. Let m = [x : y : z] ∈ Reg(C) \ ({S} ∪ ℓ∞), an equation of the reflected line Rm at
m is given by 〈ρ̃(x, y, z), (X,Y,Z)〉 = 0 with

ρ̃(x, y, z) =





z(z0y − zy0)(F
2
x − F 2

y ) + 2z(zx0 − z0x)FxFy
z(z0x− zx0)(F

2
x − F 2

y ) + 2z(z0y − zy0)FxFy
(xzy0 + yzx0 − 2z0xy)(F

2
x − F 2

y ) + 2(yzy0 − xzx0 + z0x
2 − z0y

2)FxFy



 if z0 6= 0

or with

ρ̃(x, y, z) =





(−zy0)(F
2
x − F 2

y ) + 2(zx0)FxFy
(−zx0)(F

2
x − F 2

y ) + 2(−zy0)FxFy
(xy0 + yx0)(F

2
x − F 2

y ) + 2(yy0 − xx0)FxFy



 if z0 = 0.
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3. Rational map ΦF,S

3.1. Proof of Theorem 1.

Theorem 8. Let C = V (F ) be an algebraic curve of P2 given by some irreducible homogeneous
polynomial F of degree d ≥ 2 and let S = (x0, y0, z0) ∈ C3 \ {0}.

For every m = [x : y : 1] ∈ Reg(C) \ V (F 2
x + F 2

y ) which is not a Base point of ΦF,S, the

reflected line Rm is well defined and is tangent to C′ := ΦF,S(C) at ΦF,S(m).

Moreover the set of base points of (ΦF,S)|C is finite.

C′ := ΦF,S(C) is the caustic by reflection ΣS(C) of C with source point S = [x0 : y0 : z0].

Before proving this theorem, we explain how the expression Φ̃(x, y, 1) can be simplified when
(x, y, 1) is in C. Let us recall that, since F is homogeneous with degree d, we have

dF = xFx + yFy + zFz

and therefore

(d−1)Fz = xFxz+yFyz+zFzz, (d−1)Fx = xFxx+yFxy+zFxz and (d−1)Fy = xFxy+yFyy+zFyz .

Remark 9. Thanks to the expression of Fzz, Fxz, Fyz, Fz, we have

z2HF = (d− 1)2hF on C,

with

hF := 2FxyFyFx − FxxF
2
y − FyyF

2
x and z∆SF (x, y, 1) = (zx0 − x)Fx + (zy0 − y)Fy.

Therefore, for any m = [x : y : 1] ∈ C, we have

Φ̃F,S(x, y, 1) =





−2xhFNS + (F 2
y x0 − F 2

x (x0 − 2xz0) − 2FxFy(y0 − yz0)∆SF
−2yhFNS + (F 2

xy0z − F 2
y (y0 − 2yz0) − 2FxFy(x0 − xz0))∆SF

−2hFNS + z0(F
2
x + F 2

y )∆SF



 .

Proof of Theorem 8. Let us first observe that, since F is irreducible of degree d ≥ 2, we have
C 6⊆ {F 2

x + F 2
y = 0} ∪ ℓ∞.

Let us write ρ̃1, ρ̃2 and ρ̃3 the coordinates of ρ̃. Observe that zρ̃3(m) = −xρ̃1(m) − yρ̃2(m).

We will prove that, on z = 1, we have (ρ̃ ∧W ) = (F 2
x + F 2

y )Φ̃, for some W .

Consider now m̃ := (x, y, 1) ∈ C3 be such that m = [x : y : 1] is in Reg(C) \ ({S} ∪ ℓ∞ ∪
V (F 2

x + F 2
y )) and is not a base point of ΦF,S. Hence ρ̃(x, y, 1) 6= 0 and the reflected line Rm is

well defined.

To simplify notations, we ommit indices F, S in Φ̃ and in Φ.

To prove that Φ(m) belongs to Rm, it is enough to prove that

〈Φ̃(m̃), ρ(m̃)〉 = 0, (5)

If this is true, to prove that Rm is tangent to C′ at Φ(m), it is enough to prove that

〈Φ̃(m̃),W (m)〉 = 0, with W :=





W1 := (ρ̃1)x(−Fy) + (ρ̃1)yFx
W2 := (ρ̃2)x(−Fy) + (ρ̃2)yFx

W3 := −xW1 − yW2 − ρ̃1(−Fy) − ρ̃2(Fx)



 . (6)

Indeed, let us consider a parametrization M(t) = [x(t) : y(t) : 1] of C in a neighbourhood of m
such that M(0) = m and such that x′(t) = −Fy and y′(t) = Fx. This is possible since DF (m)
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is non-null. Then ϕ(t) := Φ(M(t)) is a parametrization of C′ at a neighbourhood of Φ(m). Let
r(t) := ρ(M(t)). The fact that Rm is tangent to C′ at Φ(m) means that 〈r(0), ϕ′(0)〉 = 0, i.e.
〈r′(0),Φ(m)〉 = 0 (since 〈r(t), ϕ(t)〉 = 0, we have 〈r′(0),Φ(m)〉 = −〈ρ(m), ϕ′(0)〉). We have
r′(0) = W (m̃).

Hence, to prove the theorem, it is enough to prove that

ρ̃(m̃) ∧W (m̃) = (F 2
x + F 2

y )Φ̃(m̃) ,

which is the key point of this proof. This can be checked by a fastidious formal computation
thanks to the following formulas (and thanks to a symbolic computation software):

(ρ̃1)x = 2(z0y − zy0)(FxFxx − FyFxy) − 2z0FxFy + 2(zx0 − z0x)(FxFxy + FxxFy),

(ρ̃1)y := z0(F
2
x − F 2

y ) + 2(z0y − zy0)(FxFxy − FyFyy) + 2(zx0 − z0x)(FxyFy + FxFyy),

(ρ̃2)x := z0(F
2
x − F 2

y ) + 2(z0x− zx0)(FxFxx − FyFxy) + 2(z0y − zy0)(FxFxy + FxxFy),

(ρ̃2)y = 2(z0x− zx0)(FxFxy − FyFyy) + 2z0FxFy + 2(z0y − zy0)(FxFyy + FxyFy).

The fact that the set of base points of Φ is finite on C comes from the following proposition. The
last point follows. �

We can observe that Theorem 8 remains true when d = 1 and S,I,J 6∈ C.

3.2. Base points of (ΦF,S)|C.

Remark 10 (Light position at I or J ). We notice that Φ̃F,αI = −α2(∆IF )3J and Φ̃F,αJ =
−α2(∆JF )3I. Hence

ΣI(C) = {J } and ΣJ (C) = {I}.

This is not surprising since, in these cases, we always have rm = J and rm = I respectively.

Hence, in the sequel, we will suppose that S ∈ P2 \ {I,J }.

Proposition 11. Let us assume that hypotheses of theorem 8 hold true and that S 6∈ {I,J }.

If S ∈ ℓ∞, then [x : y : z] ∈ C is a base point of ΦF,S if and only if

hF (x, y, z) = 0 and ∆SF (x, y, z) = 0.

If S 6∈ ℓ∞, then [x : y : z] ∈ C is a base point of Φ̃ if and only if

[HF (x, y, z) = 0 or NS(x, y, z) = 0] and [∆SF (x, y, z) = 0 or (z = 0 and Fx = Fy = 0) )].

Remark 12. This result insures that the set of base points of ΦF,S is finite on C = V (F ) as
soon as F is irreducible and of degree d ≥ 2.

Remark 13 (Geometric interpretation). Let us notice that NS(x, y, z) = 0 means that either
I, [x : y : z],S lie on a same line or J , [x : y : z],S are on a same line.

If S ∈ ℓ∞ \ {I,J }, the base points of ΦF,S on C are :

• the singular points of C (since DF = 0 implies HF = 0),
• the inflection points m of C such that S is in TmC,
• the points m of C lying on ℓ∞ such that TmC is ℓ∞,
• m = S (if S belongs to C).

If S 6∈ ℓ∞, the base points of ΦF,S on C are :

• the singular points of C,
• the inflection points m of C such that S is in TmC,



ON THE DEGREE OF CAUSTICS BY REFLECTION 11

• the inflection points m of C belonging to infinity such that TmC is ℓ∞,
• the points m belongs of C, such that S belongs to TmC and m ∈ (SI) ∪ (SJ ), i.e.

– m ∈ C ∩ {S},
– m ∈ C ∩ {I,J } and S ∈ TmC,
– m ∈ C such that TmC equals an isotropic line (SI) or (SJ ),

• m ∈ C ∩ {I,J } such that TmC is ℓ∞.

Proof of Proposition 11. We just prove one implication, the other one being obvious. To simplify
notations, we write Φ̃ instead of Φ̃F,S.

Let us suppose that z0 = 0.

In this case, we have NS = z2(x2
0 + y2

0) and so HFNS = (d− 1)2(x2
0 + y2

0)hF and

Φ(x, y, z) =





−2x(x2
0 + y2

0)hF + (F 2
y x0 − F 2

xx0 − 2FxFyy0)∆SF
−2y(x2

0 + y2
0)hF + (F 2

xy0 − F 2
y y0 − 2FxFyx0)∆SF

−2z(x2
0 + y2

0)hF



 .

Let m̃ = (x, y, z) be such that Φ̃(m̃) = 0. Since x2
0 + y2

0 6= 0, thanks to the last equation, we get
that zhF = 0, i.e.

hF = 0.

According to the two other equations, we get that

0 = (F 2
y x0 − F 2

xx0 − 2FxFyy0)∆SF and (F 2
xy0 − F 2

y y0 − 2FxFyx0)∆SF = 0.

If moreover ∆SF 6= 0, then we must have a = 0 and b = 0 with

a := F 2
y x0 − F 2

xx0 − 2FxFyy0 and b := F 2
xy0 − F 2

y y0 − 2FxFyx0.

Writing successively x0a − y0b = 0 and y0a + x0b = 0 and using the fact that x2
0 + y2

0 6= 0, we
get that Fx = Fy = 0, and so ∆SF = 0.

Let us suppose that z0 6= 0.

Let m̃ = (x, y, z) be such that Φ̃(m̃) = 0. We observe that we have

Φ̃(m̃) =







−2xHFNS

(d−1)2 + ((F 2
x + F 2

y )x0 − 2Fx∆SF )∆SF

−2yHFNS

(d−1)2 + ((F 2
x + F 2

y )y0 − 2Fy∆SF )∆SF

−2zHFNS

(d−1)2 + z0(F
2
x + F 2

y )∆SF






.

Hence we have

Φ̃(m̃) = −
2HFNS

(d− 1)2





x
y
z



 + (F 2
x + F 2

y )∆SF





x0

y0

z0



 − 2(∆SF )2





Fx
Fy
0



 = 0. (7)

First, let us consider the case when HFNS = 0 (which is equivalent to the fact that HF = 0
or NS = 0). In this case, if ∆SF 6= 0, then we have F 2

x + F 2
y = 0 (by the third equation)

and therefore Fx = Fy = 0 (according to the two other equations). Let us notice that, since
zFz = dF − xFx − yFy, and since Fz 6= 0 (since ∆SF 6= 0), this implies that z = 0.

Second, let us consider the case when HFNS 6= 0. Then ∆SF 6= 0. Since xFx + yFy + zFz =
F = 0 and according to the definition of ∆SF , we get

0 = (Fx Fy Fz) · Φ̃(m̃) = (∆SF )2(F 2
x + F 2

y ) − 2(∆SF )2(F 2
x + F 2

y )

and so F 2
x + F 2

y=0 and so z = 0 (by Φ̃3 = 0) and x2 + y2 = 0 (from xΦ̃1 + yΦ̃2 = 0) which
contradicts the fact that NS 6= 0. �
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3.3. Degree of ΦF,S. We recall the definition of the degree of a rational map on an irreducible
curve.

Definition 14. Let φ : Pp → Pq be a rational map and C1 an irreducible algebraic curve of Pp.
Let C2 be the Zariski closure φ(C1).

The map φ∗ : C(C2) → C(C1) defined by φ∗(f) = f ◦ φ is called the pullback of φ|C1
.

If C1 6⊂ Base(φ), if φ|C1\Base(φ) is not constant, the degree of φ|C1
is the degree [C(C1) :

φ∗(C(C2))] of C(C1) as a finite algebraic extension of φ∗(C(C2)).

If C 6⊂ Base(φ) and if φ|C\Base(φ) is constant, the degree is equal to infinity.

The following interpretation of the degree of a rational map is also useful.

Remark 15. Let φ : Pp → Pq be a rational map and C an irreducible algebraic curve of Pp.

We recall that, thanks to blowing up ([13, Example II-7-17-3]) and to a classical morphism result
([16, Proposition II-2-6], [13, Proposition II-6-8]), if C 6⊂ Base(φ), if φ|C\Base(φ) is not constant
and has degree δ1, then there exists a finite set N such that for every point y of φ(C) \ N , the
number of preimages of y by φ is equal to δ1.

If δ1 = 1, then the map φ|C is birational onto its image.

When #(φ(C \Base(φ))) = 1, we set δ1 = ∞.

The question of the degree of the caustic map ΦF,S is not evident, even if S 6∈ ℓ∞. Indeed,
when S 6∈ ℓ∞, we recall that, as noticed by Quetelet and Dandelin, ΦF,S is the evolute of the
S-centered homothety (with ratio 2) of the pedal of C from S. It is easy to see that the pedal
map is birational on any irreducible curve which is not a line. It is clear that the S-centered
homothety (with ratio 2) is an isomorphism of P2. But, as proved in [9], the degree of the evolute
map is not necessarily equal to 1 or to infinity (contrarily to a statement in [7]).

4. About the computation of the degree of the caustic

4.1. A fundamental lemma. The idea used in this paper to compute the degree of caustics is
is based on the following general lemma giving a way to compute the degree of the image of a
curve by a rational map. The proof of the Plücker formula given in [10, p. 91] can be seen as an
application of the following lemma.

The following definition extends the notion of polar into a notion of ϕ-polar.

Definition 16. Let p ≥ 1, q ≥ 1. Given ϕ : Pp → Pq be a rational map given by ϕ = [ϕ0 : · · · : ϕq]
(with homogeneous polynomial functions ϕj : Cp+1 → Cq+1) and a = [a0 : · · · : aq] ∈ Pq, we
define the ϕ-polar at a, denoted by Pϕ,a, as follows

Pϕ,a := V





q
∑

j=0

ajϕj



 .

With this definition, the classical polar of a hypersurface C = V (F ) of Pp (for some homo-
geneous polynomial F ) at a is the ∇F -polar at a, where ∇F (X) denotes as usual the vector
constitued of the partial derivatives of F at X ∈ Cp+1 \ {0}.

We recall that the set of base points of a rational map ϕ = [ϕ0 : ... : ϕq] : Pp → Pq is the set

Base(ϕ) :=

q
⋂

j=0

V (ϕj).
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The cardinality of a set E will be written #E.

Lemma 17 (Fundamental lemma). Let C be an irreducible algebraic curve of Pp. Let p ≥ 1,
q ≥ 1 be two integers and ϕ : Pp → Pq be a rational map given by ϕ = [ϕ0 : · · · : ϕq], with
ϕ0, ..., ϕq ∈ C[x0, ..., xp] some homogeneous polynomials of degree δ. Assume that C 6⊆ Base(ϕ)
and that ϕ|C has degree δ1 ∈ N ∪ {∞}.

Then, for generic a = [a0 : · · · : aq] ∈ Pq, the following formula holds true

δ1.deg
(

ϕ(C)
)

= δ.deg(C) −
∑

p∈Base(ϕ|C)

ip (C,Pϕ,a) ,

with convention 0.∞ = 0 and deg(ϕ(C)) = 0 if #ϕ(C) <∞.

Before proving this result, we make some observations.

Lemma 18. Let ϕ0, ..., ϕq ∈ C[x0, ..., xp] be homogeneous polynomials of degree δ. Consider
Φ := (ϕ0, ..., ϕq) and the rational map ϕ : Pp → Pq defined by ϕ = [ϕ0 : · · · : ϕq]. Let K be the
cone surface associated to an algebraic irreducible curve C of Pp. If #(ϕ(C \Base(ϕ))) > 1 and
if that ϕ|C has degree δ1, then the set of regular points m = [x0 : ... : xp] ∈ C such that

DΦ(m̃)(Tm̃K) ⊂ V ect(Φ(m̃)), with m̃ := (x0, ..., xp)

(where Tm̃K is the vector tangent plane to K at m̃) is finite.

Proof. Let m̃ = (y0, ..., yp) ∈ Cp+1 be such that m := Π(m̃) is a non-singular point of C. We know

that there exist an integer s ≥ p− 1 and s homogeneous polynomials F (1), ..., F (s) ∈ C[x0, ..., xp]

such that C = ∩si=1V (F (i)). We also know that Tm̃K is ∩si=1V (
∑p

j=0XjF
(i)
xj (m̃)). Thanks to

classical methods of resolution of linear systems, we know that there exist an integer r ≥ 1 and

(G
(u)
k ; k = 0, ..., p;u = 1, ..., r) a family of homogeneous polynomials of (F

(j)
xi ; i = 0, ..., p; j =

1, ..., s) such that
Tm̃K = V ect(Vu(m̃); u = 1, ..., r)

with Vu(m̃) := (G
(u)
k (F (j)

xi
(m̃)); i = 0, ..., p; j = 1, ..., s)k=0,...,p.

Now the fact that
DΦ(m̃)(Tm̃K) ⊂ V ect(Φ(m̃)) (8)

is equivalent to

∀u = 1, ..., r, ∀i, j = 0, ..., p, [DΦ(m̃) · Vu(m̃)]iϕj(m̃) − [DΦ(m̃) · Vu(m̃)]jϕi(m̃) = 0.

and so to the fact that m belongs to some algebraic variety. Since C is irreducible, we conclude
that either the set of such m is finite or is equal to C. The fact that this set is C would mean
that for every point m̃ such that m := Π(m̃) is a non-singular point of C and is not a base point
of ϕ, for every t 7→ X(t) = (X0(t), ...,Xp(t)) such that t 7→ Π(X(t)) is a local parametrization
of C satisfying X(0) = m, we have (Φ ◦X)′(t) = DΦ(X(t)) ·X ′(t) with X ′(t) ∈ TX(t)K and so

(ϕi ◦X)′(t)ϕj(X(t)) − (ϕj ◦X)′(t)ϕi(X(t)) = 0.

This implies that Φ(X(t)) = ϕi(X(t))
ϕi(m) Φ(m) if i is such that ϕi(m) 6= 0. This means that

Π(Φ(X(t))) = Π(Φ(m)) for every t. This is impossible by hypothesis. �

Proof of Lemma 17. Let us consider a polynomial map Φ : Cp+1 → Cq+1 associated to ϕ. For
every a = [a0 : · · · : aq] ∈ Pq, we consider the hyperplane V (ψa) := {[y0 : · · · : yq] ∈ Pq :
∑q

i=0 aiyi = 0} (with ψa(y0, · · · , yq) :=
∑q

i=0 aiyi for some choice of representant of a). Let
B := Base(ϕ|C) (i.e. the set of m = Π(m̃) ∈ C such that Φ(m̃) = 0). This set clearly belongs to
C ∩ V (ψa ◦ Φ).
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• If #(ϕ(C \ Base(ϕ))) = 1, we consider the point M of Pq such that ϕ(C \ Base(ϕ)) = {M}
and we observe that, for every a ∈ Pq \ V (ψM ), we have C ∩ V (ψa ◦ Φ) = B and so, by Bezout
theorem (using the fact that V (ψa ◦ Φ) is an hypersurface that does not contain C)

deg(C)δ = deg(C)deg(ψa ◦ Φ)

=
∑

m∈C∩V (ψa◦Φ)

im(C, V (ψa ◦ Φ))

=
∑

m∈B

im(C, V (ψa ◦ Φ))

=
∑

m∈B

im(C, V (ψa ◦ Φ)) + δ1.deg
(

ϕ(C)
)

,

since deg
(

ϕ(C)
)

= 0.

• Assume now that #(ϕ(C \Base(ϕ))) > 1.

Let a = [a0 : · · · : aq] ∈ Pq be such that

(1) for every y ∈ ϕ(C \ B) ∩ V (ψa) is in ϕ(C) and satisfies #ϕ−1({y}) = δ1,
(2) deg (

∑q
i=0 aiϕi) = δ,

(3) for every y ∈ ϕ(C \ B) ∩ V (ψa), we have iy(ϕ(C \ B), V (ψa)) = 1,
(4) V (ψa) contains no point Π(m̃) of C such that Dφ(m̃) · (Tm̃K) ⊆ V ect(Φ(m̃)), where K is

the cone surface associated to C and where Tm̃K is its tangent plane at m,
(5) #(ϕ(C \ B) ∩ V (ψa)) <∞,
(6) V (ψa) ∩ ϕ(Sing(C)) = ∅, with Sing(C) = {m = [x : y : z] ∈ C : DF (x, y, z) = 0}.

Now let us write V (ψa ◦ Φ) := {[y0 : · · · : yp] ∈ Pp :
∑q

i=0 aiϕi(y0, ..., yp) = 0}.

Point 5 insures that #(C ∩ V (ψa ◦ Φ)) < ∞. Hence, C and V (ψa ◦ Φ) have no common
component and since C is a curve and V (ψa◦Φ) is an hypersurface, according to Bezout theorem,
since V (ψa ◦ Φ) does not contain C, we have

deg(C)δ = deg(C)deg(ψa ◦ Φ)

=
∑

m∈C∩V (ψa◦Φ)

im(C, V (ψa ◦ Φ))

=
∑

m∈B

im(C, V (ψa ◦ Φ)) +
∑

m∈(C\B)∩V (ψa◦Φ)

im(C, V (ψa ◦ Φ)).

Let us now consider any m = [x0 : · · · : xp] ∈ (C\B)∩V (ψa◦Φ). We have ϕ(m) ∈ ϕ(C\B)∩V (ψa).
According to point 6, C admits a tangent line Tm at m. Set m̃ := (x0, ..., xp). According to point
4, we consider a tangent vector v = (v0, . . . , vp) ∈ Cp+1 to K such that DΦ(m̃)(v) and Φ(m̃) are
linearly independent.

Therefore, according to point 3, with the notation a := (a0, ..., aq) we have

〈a, (DΦ)(m̃)(v)〉 6= 0 and so 〈v, t(DΦ)(m̃)(a)〉 6= 0.
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Since t(DΦ)(m̃) · a = ∇(ψa ◦ Φ)(m̃), we get that im(C, V (ψa ◦ Φ)) = 1. Hence, we have
∑

m∈(C\B)∩V (ψa◦Φ)

im(C, V (ψa ◦ Φ)) = # ((C \B) ∩ V (ψa ◦ Φ))

= δ1# (ϕ(C \B)) ∩ V (ψa))

= δ1#
(

ϕ(C \B)) ∩ V (ψa)
)

, according to Point 1

= δ1
∑

y∈ϕ(C)∩V (ψa)

iy(ϕ(C), V (ψa)), according to Point 3

= δ1.deg(ϕ(C)).

�

4.2. About intersection numbers at the base points of ΦF,S. Theorems 2 and 3 will
be a direct consequence of the fundamental lemma (Lemma 17) and of the computation of
im1 (C,PΦ,a) at every base point. To compute these intersection numbers, we will compute
intersection numbers of branches thanks to the notion of pro-branches. It will be important to
observe that, since F 2

x + F 2
y = ∆IF.∆JF , Φ̃F,S can be rewritten

Φ̃F,S = −
2HF .fI,S.fJ,S

(d− 1)2
.Id+ ∆IF.∆JF.∆SF.S − (∆SF )2[∆IF.J + ∆JF.I], (9)

where fA,B(C) = det(A|B|C), for every A,B,C ∈ C3. We observe that V (fA,B) is the line
(Π(A)Π(B)). In the proof of Theorems 2 and 3, thanks to formula (9), we will easily see that,
for a generic a ∈ P2,

im1

(

C,PΦF,S ,a

)

≥ min (im1 (C, V (Ψ1)) , im1 (C, V (Ψ2)) , im1 (C, V (Ψ3)) , im1 (C, V (Ψ4))) , (10)

with

Ψ1 := −
2HF .fI,S.fJ,S

(d− 1)2
, Ψ2 := ∆IF.∆JF.∆SF,

Ψ3 := (∆SF )2∆IF and Ψ4 := (∆SF )2∆JF.

More precisely, we will prove the same inequality for branches of C at m1 instead of C, this
inequality being an equality in most of the cases but not in every case. This will be detailed in
section 6. Before going on in the proof of Theorems 2 and 3, let us give some general results on
intersection numbers including general formulas for the following intersection numbers

im1(C, V (HF )) and im1(C, V (∆PF )).

5. About computation of intersection number : classical results and extensions

As in [10], we write C[[x]] the ring of formal power series and C[[x∗]] :=
⋃

N≥1 C[[x
1
N ]] the

ring of formal fractional power series.

Definition 19. Let g ∈ C[[x∗]].

• If g(x) = axq with a ∈ C∗ and q ∈ Q+, we say that the degree of g is equal to q.
• We denote by LM(g) the lowest degree monomial term of g and we call (rational)

valuation of g, also denoted val(g) or valx(g(x)) the degree of LM(g).

Definition 20. Let F ∈ C[X,Y,Z] be a homogeneous polynomial such that F (0, 0, 1) = 0. The
tangent cone of V (F ) at [0 : 0 : 1] is V (LM(F )) where LM(F ) is the sum of terms of lowest
degree in F (x, y, 1).

We recall that the degree in {x, y} of LM(F ) is the multiplicity of [0 : 0 : 1] in V (F ).
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We recall now the classical use of the Weierstrass preparation theorem combined with the

Puiseux expansions (see [10], pages 107, 137 and 142). For every N ∈ N∗, we set C〈x
1
N 〉 and

C〈x
1
N , y〉 the rings of convergent power series of x

1
N and of x

1
N , y. Let C〈x∗〉 :=

⋃

N≥1 C〈x
1
N 〉

and C〈x∗, y〉 :=
⋃

N≥1 C〈x
1
N , y〉.

Let F (x, y, z) ∈ C[x, y, z] be a homogeneous polynomial. We suppose that [0 : 0 : 1] is a point
of V (F ) with multiplicity q. This means that F (x, y, 1) has valuation q in (x, y). Suppose that
{X = 0} is not contained in the tangent cone of V (F ) at [0 : 0 : 1]. This implies that q is also
the valuation of F (0, y, 1) in y.

Now, the Weierstrass theorem insures the existence of a unit U of C〈x, y〉 and of Γ(x, y) ∈
C〈x〉[y] monic, such that Γ(0, y) has degree q in y and

F (x, y, 1) = U(x, y)Γ(x, y)

There exists an integer b ≥ 1 and Γ1(x, y), ...,Γb(x, y) ∈ C〈x〉[y] monic irreducible such that

Γ(x, y) =

b
∏

β=1

Γβ(x, y).

We recall that the Bβ’s with equation Γβ = 0 on z = 1 are the branches of V (F ) at [0 : 0 : 1].
The tangent line Tβ to branch Bβ at [0 : 0 : 1] is the reduced tangent cone of Bβ at [0 : 0 : 1]
(the notion of tangent cone is well defined with the same definition as for polynomials, see [10,
P. 148]). Line Tβ is given by (Γβ)xX + (Γβ)yY = 0.

The degree eβ in y of Γβ(x, y) is called the multiplicity of the branch Bβ.

Thanks to the Puiseux theorem, for every β ∈ {1, ..., b}, there exists ϕβ(t) ∈ C〈t〉 such that

Γβ(x, y) =

eβ
∏

k=1

(y − ϕβ,k(x)) , with ϕβ,k(x) := ϕβ

(

e
2ikπ
eβ x

1
eβ

)

∈ C〈x∗〉.

Of course we have q =
∑b

β=1 eβ .

We recall that

(

y = ϕβ

(

e
2ikπ
eβ x

1
eβ

)

, k = 1, ..., eβ

)

are equations of the pro-branches of

branch V (Hβ) (this notion can be found in [12, 19]).

This is summarized in the following theorem in which the pro-branches are numbered by
i ∈ I = {1, ..., q} and are denoted by gi.

Theorem 21. Let F (x, y, z) ∈ C[x, y, z] be a homogeneous polynomial. We suppose that [0 : 0 : 1]
is a point of V (F ) with multiplicity q and such that {x = 0} is not contained in the tangent cone
of V (F ) at [0 : 0 : 1]. Then there exists U(x, y) being a unit of C〈x, y〉 and g1, ..., gq ∈ C〈x∗〉
such that

F (x, y, 1) = U(x, y)

q
∏

i=1

(y − gi(x)) in C〈x∗, y〉.

Now, let us introduce now the notions of intersection numbers for pro-branches and for
branches (see [12, 19]).

Definition 22. Let F (x, y, z) and G(x, y, z) in C[x, y, z] be two homogeneous polynomials. Let
m1 ∈ V (F ) ∩ V (G) be a point of multiplicity q of V (F ). Let M ∈ GL(C3) be such that m1 =
Π(M(0, 0, 1)) and such that {x = 0} is not contained in the tangent cone of V (F ◦M) at [0 : 0 : 1].
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According to theorem 21, we have

F (M(x, y, 1)) = U(x, y)

q
∏

i=1

(y − gi(x)), with gi(x) ∈ C[[x∗]],

U(x, y) being a unit in the ring of convergent power series C〈x, y〉. We also use notations Bβ for
branches of V (F ◦M) and Tβ for tangent line to Bβ at [0 : 0 : 1].

We define

• the intersection numbers i
(i,j)
m1 of pro-branches of V (F ◦M) of equations y = gi(x)

and y = gj(x) are given by

i(i,j)m1
:= val(gi − gj),

• the tangential intersection number i
(i)
m1 of pro-branch of V (F ◦ M) of equation

y = gi(x) are given by the following formula 2

i(i)m1
= valx(gi(x) − g′i(0)x)

(i
(i)
m1 corresponds to the intersection number of the pro-branch of equation y = gi(x) with

the tangent line D
(i)
m1 = Tβ where Bβ is the branch associated to this pro-branch ; this

tangent line has equation y = g′i(0)x).
• the intersection number i[0:0:1](V (G ◦M),Bβ) of a branch Bβ of V (F ◦M) with

V (G ◦M) is defined by

i[0:0:1](V (G ◦M),Bβ) :=
∑

i∈Iβ

valx(G(M(x, gi(x), 1))),

where Iβ is the set of indices i ∈ {1, ..., q} such that the pro-branch of V (F ◦ M) of
equation y = gi(x) is associated to branch Bβ.

We recall that, under hypotheses of this definition, the intersection number im1(V (F ), V (G))
is given by

im1(V (F ), V (G)) =

q
∑

i=1

valx (G(x, gi(x), 1)) =

b
∑

β=1

i[0:0:1](V (G ◦M),Bβ). (11)

This observation will be crucial here in computations of intersection numbers.

Remark 23. Quantity i
(i)
m1 corresponds to the degree of the smallest degree term of gi of degree

greater than or equal to 1 (i.e. gi(x) = α1x + αxi
(i)
m1 + ... with α 6= 0). It is not difficult to see

that

i(i)m1
= valx(gi(x) − g′i(0)x) = valx(xg

′
i(x) − gi(x)) = valx(g

′
i(0) − g′i(x)) + 1 = valg′′i + 2.

Another interesting observation is that, in some sense, the notion of branches as well as their
intersection numbers do not depend on the choice of matrix M . This is the oject of the following
proposition, the proof of which is postponed in appendix A.

Proposition 24. Let F (x, y, z) in C[x, y, z] be a homogeneous polynomial. Let m1 be a point of

multiplicity q of V (F ). Let M,M̂ ∈ GL(C3) be such that m1 = Π(M(0, 0, 1)) = Π(M̂ (0, 0, 1))

and such that {x = 0} is not in the tangent cones of V (F ◦M) or of V (F ◦ M̂) at [0 : 0 : 1].
Then

2The fact that X = 0 is not contained in the tangent cone of V (F ◦ M) implies that valgi ≥ 1.
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• the multiplicities of [0 : 0 : 1] on V (F ◦M) and on V (F ◦ M̂) are equal,

• V (F ◦M) and V (F ◦ M̂) have the same number b of branches at [0 : 0 : 1], B1, ...,Bb and

B̂1, ..., B̂b respectively.
• There exists a permutation σ of {1, ..., b} such that, for every β ∈ {1, ..., b},

– Bβ and B̂σ(β) have the same multiplicity eβ ,

– If Tβ and T̂σ(β) of Bβ and B̂σ(β) at [0 : 0 : 1], then M(Tβ) = M̂(T̂σ(β)),
– for every homogeneous polynomial G(x, y, z) ∈ C[x, y, z], we have

i[0:0:1](V (G ◦M),Bβ) = i[0:0:1](V (G ◦ M̂), B̂σ(β))

– In a neighbourhood of [0 : 0 : 1], if Bβ has equation Γβ(x, y) = 0 on z = 1, B̂σ(β)

has equation Γβ

(

X(x,y,1)
Z(x,y,1) ,

Y (x,y,1)
Z(x,y,1)

)

= 0 where X, Y , Z are the coordinates of map

M−1 ◦ M̂ .

Proposition 25. Let C = V (F ) with F a homogeneous polynomial of degree d ≥ 2. Let m1 be a
point of C of multiplicity q and let P ∈ C3 \{0} be such that ∆PF (m1) = 0. Assume assumptions
of Definition 22. We have

im1(C, V (∆PF )) =





∑

i∈I

∑

j∈I:j 6=i

i(i,j)m1



 +
∑

i∈I

[

(i(i)m1
− 1)1

Π(P )∈D
(i)
m1

+ 1Π(P )=m1

]

,

and

im1(C, V (HF )) =



3
∑

i∈I

∑

j∈I:j 6=i

i(i,j)m1



 +
∑

i∈I

[i(i)m1
− 2].

We will see in Remark 29 that, with the notations of Definition 22, the values of

Vm1 :=
∑

i∈I

∑

j∈I:j 6=i

i(i,j)m1
and Im1 :=

∑

i∈I

[i(i)m1
− 2]

do not depend on the choice of M .

Corollary 26. Proposition 25 combined with [10, p. 91-92] (one can also use our fundamental
lemma 17) can be used to get precised Plücker formulas for the class and for the number of
inflection points for a general plane algebraic curve. Indeed, for generic P ∈ P2, we have

d∨ = d(d− 1) −
∑

m1∈Sing(C)

im1(C, V (∆PF )) = d(d− 1) −
∑

m1∈Sing(C)

Vm1

and

3d(d− 2) −
∑

m1∈Sing(C)

im1(C, V (HF )) =
∑

m1∈Reg(C)

Im1

which corresponds to the number of inflection points. Moreover, we have
∑

m1∈Sing(C)

im1(C, V (HF )) = 3
∑

m1∈Sing(C)

Vm1 +
∑

m1∈Sing(C)

Im1 .

Applying Proposition 25 to non-singular points (including flexes), nodes and cusps, we obtain
directly:

Corollary 27. Under assumption of proposition 25,
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• If C is smooth at m1 with im1(C,Tm1C) = p (for some p ≥ 2), then we have

im1(C, V (HF )) = p− 2 and im1(C, V (∆PF )) = (p − 1) + 1m1=Π(P ).

• If F admits at m1 an ordinary node, we have q = 2, b = 2, e1 = e2 = 1, i
(1)
m1 = i

(2)
m1 = 2,

i
(1,2)
m1 = 1, and so

im1(C, V (HF )) = 6 and im1(C, V (∆PF )) =











2 if Π(P ) 6∈ (D
(1)
m1 ∪ D

(2)
m1)

3 if Π(P ) ∈ (D
(1)
m1 ∪ D

(2)
m1) \ {m1}

5 if Π(P ) = m1

.

• If F admits at m1 an ordinary cusp, we have q = 2, b = 1, e1 = 2, D
(1)
m1 = D

(2)
m1 ,

i
(1)
m1 = i

(2)
m1 = 3/2, i

(1,2)
m1 = 3/2, and so

im1(C, V (HF )) = 8 and im1(C, V (∆PF )) =











3 if Π(P ) 6∈ D
(1)
m1

4 if Π(P ) ∈ D
(1)
m1 \ {m1}

6 if Π(P ) = m1

.

In this corollary, we recognize the terms appearing in the classical Plücker formulas (see [11,
p. 278-279]). Proposition 25 is a direct consequence of (11) and of the following lemma.

Lemma 28. Under assumptions of Proposition 25, for every i = 1, ..., q, using notations Ri(x) :=
U(x, gi(x))

∏

j∈I:j 6=i(gi(x) − gj(x)) and (xP , yP , zP ) = M−1(P ), we have

∆PF (M(x, gi(x), 1)) = Ri(x)
[

yP − xP g
′
i(0) + xP (g′i(0) − g′i(x)) + zP (xg′i(x) − gi(x))

]

and

valx(∆PF (M(x, gi(x), 1)) =





∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 1)1

Π(P )∈D
(i)
m1

+ 1Π(P )=m1
.

Moreover, we have

HF (M(x, gi(x), 1)) = (detM)−2(d− 1)2(Ri(x))
3g′′i (x)

and

valx(HF (M(x, gi(x), 1)) = 3





∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 2).

Proof. We have, in C[[x∗]][y],

F (M(x, y, 1)) = U(x, y)G(x, y) with G(x, y) :=

q
∏

i=1

(y − gi(x)), and U(0, 0) 6= 0,

with gi(x) ∈ C[[x∗]]. Let i = 1, ..., q. Let us set Fi(x) := (x, gi(x), 1). We get3

(F ◦M)x(Fi(x)) = −U(x, gi(x))g
′
i(x)

∏

j∈I:j 6=i

(gi(x) − gj(x)),

(F ◦M)y(Fi(x)) = U(x, gi(x))
∏

j∈I:j 6=i

(gi(x) − gj(x)).

3On {z = 1}, we have (F ◦M)x = UxG+UGx, (F ◦M)y = UyG+UGy, Gx(x, y, 1) = −
P

i∈I g′
i(x)

Q

j∈I:j 6=i
(y−

gj(x)), Gy(x, y, 1) =
P

i∈I

Q

j∈I:j 6=i
(y − gj(x)). We conclude by using the fact that G(x, gi(x)) = 0.
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• Since ∆PF (M(x, y, 1)) = ∆M−1P (F ◦M)(x, y, 1) = WP (x, y, 1) + dF (M(x, y, 1)) with
WP (x, y, z) := (xP z − xzP )(F ◦M)x + (yP z − yzP )(F ◦M)y. So, we have

∆PF (Fi(x)) = WP (Fi(x))

= U(x, gi(x))
[

(yP − gi(x)zP ) − (xP − xzP )g′i(x)
]

∏

j∈I:j 6=i

(gi(x) − gj(x)),

which gives the first formula.

– If Π(P ) 6∈ D
(i)
m1 , i.e. yP − xP g

′
i(0) 6= 0, then

LM (∆PF (M(Fi(x)))) = LM



U(0, 0)
[

yP − xP g
′
i(0)

]

∏

j∈I:j 6=i

(gi(x) − gj(x))



 ; (12)

– if Π(P ) ∈ D
(i)
m1 , i.e. yP − xP g

′
i(0) = 0, quantity (yP − gi(x)zP ) − (xP − xzP )g′i(x)

can be rewritten

xP (g′i(0) − g′i(x)) + zP (g′i(x)x− gi(x)).

We distinguish now the cases Π(P ) ∈ D
(i)
m1 and Π(P ) = m1.

– if Π(P ) ∈ D
(i)
m1 \ {m1}, i.e. yP = xP g

′
i(0) and xP 6= 0, then

LM (∆PF (M(Fi(x)))) = LM



U(0, 0)
[

xP (g′i(0) − g′i(x))
]

∏

j∈I:j 6=i

(gi(x) − gj(x))



 . (13)

– if Π(P ) = m1, then

LM (∆PF (M(Fi(x)))) = LM



U(0, 0)
[

zP (xg′i(x) − gi(x))
]

∏

j∈I:j 6=i

(gi(x) − gj(x))



 . (14)

We conclude thanks to Remark 23.
• We have

HF (M(Fi(x))) = (detM)−2HF◦M (Fi(x))

= (detM)−2(d− 1)2hF◦M (Fi(x))

= (detM)−2(d− 1)2U3(x, gi(x))hG(x, gi(x)),

with hG := 2Gx,y+UxGy+UyGx+UGxy.
4 Now, let us compute hG(x, gi(x)). We have5

Gx(x, gi(x)) = −g′i(x)
∏

j∈I:j 6=i

(gi(x) − gj(x)), Gy(x, gi(x)) =
∏

j∈I:j 6=i

(gi(x) − gj(x)),

Gxx(x, gi(x)) = 2
∑

j∈I:j 6=i

g′i(x)g
′
j(x)

∏

k 6=i,j

(gi(x) − gk(x)) + (−g′′i (x))
∏

k 6=i

(gi(x) − gk(x)),

Gyy(x, gi(x)) = 2
∑

j∈I:j 6=i

∏

k 6=i,j

(gi(x) − gk(x)),

Gxy(x, gi(x)) =
∑

j∈I:j 6=i

(−g′i(x) − g′j(x))
∏

k 6=i,j

(gi(x) − gk(x)).

4Since, on {z = 1}, F ◦ M = UG, so (F ◦ M)x = UxG + UGx, (F ◦ M)y = UyG + UGy and (F ◦ M)xx =
UxxG + 2UxGx + UGxx, (F ◦ M)yy = UyyG + 2UyGy + UGyy and (F ◦ M)xy = UxyG + UxGy + UyGx + UGxy .
Now the fact that hF◦M (Fi(x)) = U(x, gi(x))hG(x, gi(x)) comes from G(x, gi(x)) = 0.

5Indeed we have Gx(x, y) = −
P

i∈I g′
i(x)

Q

j∈I:j 6=i
(y − gj(x)), Gy(x, y) =

P

i∈I

Q

j∈I:j 6=i
(y − gj(x)),

Gxx(x, y) =
P

i∈I

P

j∈I:j 6=i
g′

i(x)g′
j(y)

Q

k 6=i,j
(y − gk(x)) −

P

i∈I g′′
i (x)

Q

j∈I:j 6=i
(y − gj(x)), Gyy(x, y) =

P

i∈I

P

j∈I:j 6=i

Q

k 6=i,j
(y − gk(x)) and Gxy(x, y) = −

P

i∈I

P

j∈I:j 6=i
g′

i(x)
Q

k 6=i,j
(y − gk(x)).
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A direct computation gives

hG(·, gi(·), 1) =





∏

j∈I:j 6=i

(gi − gj)





3

g′′i ,

and so the two last results since val(g′′i ) = im1 − 2.

�

Let us observe that we always have 3
∑

j∈I:j 6=i val(gi − gj) + im1 − 2 ≥ 0 (if y = gi(x) is a
pro-branch of a branch Bβ with eβ = 1, then im1 ≥ 2, otherwise Bβ admits at least another

pro-branch y = gj(x) and val(gi − gj) + val(g′′i ) ≥ 2i
(i)
m1 − 2 ≥ 0).

Now, according to Proposition 24 and to Lemma 28, we have

Remark 29. Under hypotheses of Proposition 24, the following quantities are equal for M and
for M̂ :

∑

i∈Iβ

i(i)m1
= im1(Tβ,Bβ),

∑

i∈Iβ

∑

j∈I:j 6=i

i(i,j)m1
=

1

3
[im1(V (HF ),Bβ) − im1(Tβ,Bβ) + 2eβ ] = im1(Bβ,∆P ),

where Iβ is the set of indices i ∈ I = {1, ..., q} such that y = gi(x) is a pro-branch of Bβ and for
any P ∈ P2 \ Tβ.

6. Proof of Theorems 2 and 3

According to the fundamental lemma and to (11), to prove Theorems 2 and 3, we have to
compute intersection numbers of branches of V (F ◦M) at [0 : 0 : 1] with M−1(PΦ,a) for some
suitable M ∈ GL(C3) and for generic a ∈ P2. This is the aim of the following result.

Proposition 30. We suppose that C = V (F ) is irreducible with degree d ≥ 2 and that S 6∈ {I,J }.
Let m1 be a point of multiplicity q of C, that is a base point of ΦF,S. Let M ∈ GL(C3) be such
that Π(M(0, 0, 1)) = m1, such that the tangent cone of V (F ◦M) at [0 : 0 : 1] does not contain
X = 0. We write B1, ...,Bb the branches of V (F ◦M) at [0 : 0 : 1]; T1, ...,Tb their respective
tangent lines. Let also I := {1, ..., q} and y = gi(x); i ∈ I be the equations of the pro-branches of
V (F ◦M) at [0 : 0 : 1].

Let β ∈ {1, ..., b}. Let Iβ be the set of indices i ∈ I such that y = gi(x) are the equations of

the pro-branches ot V (F ◦M) associated to branch Bβ at m1 (for i ∈ Iβ, we have D
(i)
m1 = Tβ).

Then, for a generic point a ∈ P2, we have

i[0:0:1]
(

Bβ,M
−1(PΦF,S ,a)

)

=
∑

i∈Iβ



αi + 3
∑

j∈I:j 6=i

val(gi − gj)



 .

with

• Generic cases

(S1) αi := i
(i)
m1 − 2 if i

(i)
m1 < 2 and m1 6∈ (IS) ∪ (JS),

(S2) αi := 0 if i
(i)
m1 ≥ 2 and I,J ,S 6∈ D

(i)
m1

(S3) αi := 0 if i
(i)
m1 < 2, m1 ∈ (IS) ∪ (JS) and I,J ,S 6∈ D

(i)
m1 .
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• If I is in D
(i)
m1

(S4) αi := 0 if I ∈ D
(i)
m1 \ {m1}, i

(i)
m1 ≥ 2 and J ,S 6∈ D

(i)
m1 .

(S5) αi := 2(i
(i)
m1 − 1) if S ∈ D

(i)
m1 \ {m1}, I ∈ D

(i)
m1 , J 6∈ D

(i)
m1 and i

(i)
m1 6= 2.

αi := min(3, β1) if S ∈ D
(i)
m1 \ {m1}, I ∈ D

(i)
m1 , J 6∈ D

(i)
m1 , i

(i)
m1 = 2 and if β1 is the degree

of the lowest degree term of gi(x) of degree strictly larger than 2.

(S6) αi := i
(i)
m1 − 2 if I,J ∈ D

(i)
m1 \ {m1}, and S 6∈ D

(i)
m1 .

(S7) αi := 3i
(i)
m1 − 3 if I,J ,S ∈ D

(i)
m1 \ {m1}.

(S8) αi := 0 if I = m1, and J ,S 6∈ D
(i)
m1 .

(S9) αi := i
(i)
m1 − 1 if I = m1, J ∈ D

(i)
m1 , S 6∈ D

(i)
m1 .

(S10) αi = 3i
(i)
m1 − 3 if I = m1, S,J ∈ D

(i)
m1 ,

• Other cases when S is in D
(i)
m1

(S11) αi := i
(i)
m1 − 2 if S ∈ D

(i)
m1 \ {m1} and I,J 6∈ D

(i)
m1 .

(S12) αi := i
(i)
m1 if S = m1 and I,J 6∈ D

(i)
m1 .

(S13) αi := 2i
(i)
m1 − 1 if S = m1, I ∈ D

(i)
m1 and J 6∈ D

(i)
m1 .

(S14) αi := 3i
(i)
m1 − 2 if S = m1, I,J ∈ D

(i)
m1 and i

(i)
m1 6= 2.

αi := min(β2 + 2, 6) if S = m1, I,J ∈ D
(i)
m1 and i

(i)
m1 = 2 and if β2 is the degree of the

lowest degree term of gi(x) of degree 6∈ {1, 2, 3}.

For symetry reasons, once this will be proven, same formulas will also hold true if we exchange
I and J .

Scheme of the proofs of Theorems 2 and 3. Assume assumptions of Theorems 2 or 3 hold true.
According to the fundamental lemma and to (11), we have, for generic a ∈ P2,

mdeg(ΣS(C)) = δ1.deg(ΣS(C)) = 3d(d − 1) −
∑

m1∈Base((ΦF,S)|C)

im1

(

C,PΦF,S ,a

)

,

with δ1 the degree of the rational curve ΦF,S. With the notations of Proposition 30, let us write,
for every m1 as in Proposition 30,

α(m1) :=
∑

i∈I

αi and Vm1 :=
∑

i,j∈I:i6=j

i(i,j)m1
.

According to Proposition 30, we get

mdeg(ΣS(C)) = 3d(d − 1) − 3
∑

m1∈Sing(C)

Vm1 −
∑

m1∈Base((ΦF,S)|C)

α(m1)

Now, using Corollary 26, we get that

mdeg(ΣS(C)) = 3d∨ −
∑

m1∈Base((ΦF,S)|C)

α(m1).

We conclude the proofs by using the expressions of αi given in Proposition 30. �

We will use the following technical lemma concerning changes of coordinates. For any A,B, S′, P ∈
C3 \ {0} and any homogeneous polynomial F ∈ C[X,Y,Z], we define

Φ̃
(A,B)
F,S′ = −

2HF .fA,S′.fB,S′

(d− 1)2
.Id+ ∆AF.∆BF.∆S′F.S′ − (∆S′F )2[∆AF.B + ∆BF.A], (15)
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where fA,B(C) = det(A|B|C), for every A,B,C ∈ C3. We recall that V (fA,B) is the line
(Π(A)Π(B)). We have already observed in (9) that

Φ̃F,S = Φ̃
(I,J)
F,S .

Lemma 31. For any M in GL(C3), any A,B, S, P in C3 and any homogeneous polynomial F ,
we have

Φ̃
(M(A),M(B))
F◦M−1,M(S)

(M(P )) = M(Φ̃
(A,B)
F,S (P )).

Proof. The lemma is a direct consequence of the following facts :

HF◦M−1(M(P )) = (detM)−2HF (P ),

fM(A),M(B)(M(P )) = det(M)fA,B(P ),

∆M(A)(F ◦M−1)(M(P )) = ∆AF (P ).

�

Proof of Proposition 30. Let m1 be a point of C with multiplicity q. We use notations of Propo-
sition 30, in particular I := {1, ..., q}. Let us write M1 := (0, 0, 1). Now, proposition 24 and
Remark 29 allow us to consider each branch separately and to adapt our change of variable to
each of them.

Consider a branch Bβ of C at m1. Let i ∈ Iβ. We suppose that our change of variable is
such that g′i(0) = 0 (i.e. Tβ has equation Y = 0). We define A := M−1(I), B := M−1(J),

S′ := M−1(S) and F̂ := F ◦M . According to Lemma 31, we have

Φ̃
(I,J)
F,S (M(P )) = MΦ̃(A,B)(P ), with Φ̃(A,B) := Φ̃

(A,B)

F̂ ,S′
.

To simplify notations, we write

Fi(x) := (x, gi(x), 1) and Ri(x) = U(x, gi(x))
∏

j∈I:j 6=i

(gi(x) − gj(x)).

We know that, for every a = [a1 : a2 : a3]

i[0:0:1]
(

Bβ,M
−1(PΦF,S ,a)

)

=
∑

i∈Iβ

val





3
∑

j=1

(tM · a)jΦ̃
(A,B)
j ◦ Fi



 .

We notive that, for a generic a ∈ P2, we have

val





3
∑

j=1

ajΦ̃
(A,B)
j ◦ Fi



 = min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

.

Let us rewrite formula (15):

Φ̃(A,B) = ψ1.Id+ ψ2.S
′ − ψ3.B − ψ4.A, (16)

with

ψ1 := −
2HF̂ .fA,S′ .fB,S′

(d− 1)2
, ψ2 := ∆AF̂ .∆BF̂ .∆S′F̂ ,

ψ3 := (∆S′F̂ )2∆AF̂ and ψ4 := (∆S′F̂ )2∆BF̂ .
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Therefore, val
(

∑3
j=1 ajΦ̃

(A,B)
j ◦ Fi

)

is greater than or equal to the minimum of the four following

quantities (the computation of which comes directly from lemma 28):

val (ψ1 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



+(i(i)m1
−2)+1m1∈(IS)+1m1∈(JS)+(i(i)m1

−1)(1
D

(i)
m1

=(IS)
+1

D
(i)
m1

=(JS)
),

val (ψ2 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 1)

(

1
I∈D

(i)
m1

+ 1
J∈D

(i)
m1

+ 1
S∈D

(i)
m1

)

+ 1m1∈{I,J ,S},

val (ψ3 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 1)

(

1
I∈D

(i)
m1

+ 2 × 1
S∈D

(i)
m1

)

+ 1m1∈{I,S},

val (ψ4 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 1)

(

1
J∈D

(i)
m1

+ 2 × 1
S∈D

(i)
m1

)

+ 1m1∈{J ,S}.

But it is not clear whether or not it is equal to this minimum. Hence, in some cases, we will need
more than the values of these valuations. It will be useful to notice that, according to Lemma
28, we have

∆P F̂ ◦ Fi(x) = Ri(x)
[

yP − g′i(x)xP + zP (xg′i(x) − gi(x))
]

; (17)

∆P F̂ ◦ Fi(x) = Ri(x)
(

−g′i(x)xP + zP (xg′i(x) − gi(x))
)

if Π(P ) ∈ D(i)
m1

; (18)

∆P F̂ ◦ Fi(x) = zPRi(x)(xg
′
i(x) − gi(x)) if Π(P ) = m1; (19)

HF̂ ◦ Fi(x) = (d− 1)2(Ri(x))
3g′′i (x). (20)

(S1) Suppose that i
(i)
m1 < 2, that m1 does not belong to lines (IS) and (JS).

Thanks to lemma 31 and to formulas (17), (18), (19), (20) of the proof of Proposition
25, we have

val

(

−
2HF̂ .fA,S′.fB,S′

(d− 1)2
◦ Fi

)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 2)

is strictly less than the valuation of the three others terms. Therefore


3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 2) ≤ min

(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

and

val
(

Φ̃
(A,B)
3 ◦ Fi

)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 2).

So

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + (i(i)m1
− 2).
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(S2) Suppose that i
(i)
m1 ≥ 2 and if I,J ,S 6∈ D

(i)
m1 .

Thanks to lemma 31 and to formulas (17), (18), (19) and (20), we have

3
∑

j∈I:j 6=i

i(i,j)m1
≤ min

(

valx

(

Φ̃
(A,B)
j (x, gi(x), 1)

)

, j = 1, 2, 3
)

.

Adapting our change of variable, we can suppose that S′ = (0, 1, 0) and that g′i(0) = 0.
This implies that yA 6= 0 and yB 6= 0. We have

LM(∆AF̂ ◦ Fi) = yALM(Ri), LM(∆BF̂ ◦ Fi) = yBLM(Ri),

LM(∆S′F̂ ◦ Fi) = LM(Ri) and val(HF̂ ◦ Fi) ≥ 3
∑

j∈I:j 6=i

i(i,j)m1
.

So

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥ 3
∑

j∈I:j 6=i

i(i,j)m1

LM((∆AF̂∆BF̂∆S′F̂ ) ◦ Fi) = yAyBLM((Ri)
3)

and

LM(((∆S′ F̂ )2(∆AF̂ yB + ∆BF̂ yA)) ◦ Fi) = −2yAyBLM((Ri)
3).

Therefore

LM(Φ̃
(A,B)
2 ◦ Fi) = −yAyBLM((Ri)

3)

and finally

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

= 3
∑

j∈I:j 6=i

i(i,j)m1
.

(S3) We suppose that i
(i)
m1 < 2, that m1 is in line (IS) and that I,J ,S 6∈ D

(i)
m1 .

Again, we suppose that S′ = (0, 1, 0) and that g′i(0) = 0. Since i
(i)
m1 > 1, we observe

that

val([HF̂ fA,S′fB,S′ ] ◦ Fi) > 3
∑

j∈I:j 6=i

i(i,j)m1
,

LM((∆AF̂∆BF̂∆S′F̂ ) ◦ Fi) = yAyBLM((Ri)
3)

LM([(∆S′ F̂ )2(∆AF̂ yB + ∆BF̂ yA)] ◦ Fi) = −2yAyBLM((Ri)
3).

As in the previous point, we get that

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

= 3
∑

j∈I:j 6=i

i(i,j)m1
.

(S4) Suppose that I ∈ D
(i)
m1 \ {m1}, i

(i)
m1 ≥ 2, J ,S 6∈ D

(i)
m1 .

Assume that M1 = (0, 0, 1), S′ = (0, 1, 0), that A = (1, 0, 0). We have g′i(0) = 0. Using
(17) for B and S′, (18) for A, we get

val([HF̂ fA,S′fB,S′ ] ◦ Fi) ≥ 3
∑

j∈I:j 6=i

i(i,j)m1
,

val((∆AF̂∆BF̂∆S′F̂ ) ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 1 > 3

∑

j∈I:j 6=i

i(i,j)m1
,

val([(∆S′F̂ )2∆BF̂ ] ◦ Fi) = 3
∑

j∈I:j 6=i

i(i,j)m1
,
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val([(∆S′ F̂ )2∆AF̂ ] ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 1.

So

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥ 3
∑

j∈I:j 6=i

i(i,j)m1
.

Moreover val(Φ̃
(A,B)
1 ◦ Fi) = val([(∆S′ F̂ )2∆BF̂ ] ◦ Fi). So

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

= 3
∑

j∈I:j 6=i

i(i,j)m1
.

(S5) Suppose that S ∈ D
(i)
m1 \ {m1}, I ∈ D

(i)
m1 and J 6∈ D

(i)
m1 .

Assume that M1 = (0, 0, 1), S′ = (1, 0, 0), B = (0, 1, 0), g′i(0) = 0. We have yA = 0,
zA 6= 0, fA,S′(x, y, 1) = zAy − yA = zAy and fB,S′(x, y, 1) = −1. Using (17) for B, (18)
for A and S′ and (20), we get

−
2[HF̂ fA,S′fB,S′ ](Fi(x))

(d− 1)2
= 2zA(Ri(x))

3g′′i (x)gi(x),

∆S′F̂ (Fi(x)) = −Ri(x)g
′
i(x), ∆BF̂ (Fi(x)) = Ri(x),

∆AF̂ (Fi(x)) = Ri(x)[−g
′
i(x)xA + zA(xg′i(x) − gi(x))]

and so

(∆AF̂∆BF̂∆S′F̂ )(Fi(x)) = Ri(x)
3(−g′i(x))[−g

′
i(x)xA + zA(xg′i(x) − gi(x))],

[(∆S′ F̂ )2∆BF̂ ](Fi(x)) = Ri(x)
3(g′i(x))

2,

[(∆S′F̂ )2∆AF̂ ](Fi(x)) = Ri(x)
3(g′i(x))

2[−g′i(x)xA + zA(xg′i(x) − gi(x))].

We cannot conclude since three terms have the smallest valuation. We will see that if
i
(i)
m1 = 2, the smallest degree terms are cancelled. The situation here requires some precise

estimate. Therefore we have

Φ̃
(A,B)
1 (Fi(x)) = zA(Ri(x))

3[2g′′i (x)gi(x)x− g′i(x)(xg
′
i(x) − gi(x))],

Φ̃
(A,B)
2 (Fi(x)) = (Ri(x))

3[2zAg
′′
i (x)(gi(x))

2 − (g′i(x))
2[−g′i(x)xA + zA(xg′i(x) − gi(x))]

Φ̃
(A,B)
3 (Fi(x)) = zA(Ri(x))

3[2g′′i (x)gi(x) − (g′i(x))
2].

We use the fact that there exists α 6= 0 and β = i
(i)
m1 > 1 such that

LM(gi(x)) = αxβ , LM(g′i(x)) = αβxβ−1 and LM(g′′i (x)) = αβ(β − 1)xβ−2.

We get that

LM(Φ̃
(A,B)
1 (Fi(x))) = LM(zA(Ri(x))

3[α2β(β − 1)x2β−1].

So

val(Φ̃
(A,B)
1 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + 2i(i)m1
− 1.

Moreover

val(Φ̃
(A,B)
2 ◦ Fi) ≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3(i(i)m1
− 1).
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Oberve now that

val(Φ̃
(A,B)
3 ◦ Fi) ≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 2i(i)m1
− 2

and that term of degree 2i
(i)
m1 − 2 of 2g′′i (x)gi(x) − (g′i(x))

2 is

α2(2β(β − 1) − β2)x2β−2 = α2β(β − 2)x2β−2.

Therefore

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + 2i(i)m1
− 2 if i(i)m1

6= 2 .

Now, if β = 2 and if LM(gi(x) − αx2) = α1x
β1 (with α1 6= 0 and β1 > 2), we get that

val(Φ̃
(A,B)
1 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3, val(Φ̃
(A,B)
2 ◦ Fi) ≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3

and

LM(2g′′i (x)gi(x) − (g′i(x))
2) = 2αα1(β1 − 1)(β1 − 2)xβ1

and so

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

= 3





∑

j∈I:j 6=i

i(i,j)m1



 + min(3, β1) if i(i)m1
= 2 .

(S6) Suppose that I,J ∈ D
(i)
m1 \ {m1} and that S 6∈ D

(i)
m1 .

We suppose that M1 = (0, 0, 1), S′ = (0, 1, 0), A = (1, 0, 0). We have g′i(0) = 0,
yB = 0, xB 6= 0, zB 6= 0, fB,S′(x, y, 1) = xB − xzB and fA,S′(x, y, 1) = 1.

We have

LM

(

−
2[HF̂ fA,S′fB,S′ ](Fi(x))

(d− 1)2

)

= LM
(

−2xB(Ri(x))
3g′′i (x)

)

,

LM(∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3xB(g′i(x))

2),

LM([(∆S′F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))xB),

LM([(∆S′ F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))).

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 2.

Moreover

LM(Φ̃
(A,B)
3 (Fi(x))) = LM(−2(Ri(x))

3g′′i (x)xB).

Therefore

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 2.
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(S7) Suppose that I,J ,S ∈ D
(i)
m1 \ {m1}.

We suppose that M1 = (0, 0, 1), S′ = (1, 0, 0). We have g′i(0) = 0, yA = yB = 0,
xA 6= 0, zA 6= 0, xB 6= 0, zB 6= 0, fA,S′(x, y, 1) = zAy fB,S′(x, y, 1) = zBy.

We have

−
2[HF̂ fA,S′fB,S′ ](Fi(x))

(d− 1)2
= −2zAzB(Ri(x))

3g′′i (x)(gi(x))
2,

LM(∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3xAxB(−g′i(x))

3),

LM([(∆S′ F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))

3xB),

LM([(∆S′F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))

3xA).

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3(i(i)m1
− 1).

Since

val
(

Φ̃
(A,B)
1 ◦ Fi

)

= val
(

(Ri(x))
3(g′i(x))

3xAxB
)

;

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3(i(i)m1
− 1).

(S8) Suppose that I = m1 and J ,S 6∈ D
(i)
m1 .

We suppose that M1 = A = (0, 0, 1), S′ = (0, 1, 0). We have g′i(0) = 0, yB 6= 0,
fB,S′(x, y, 1) = xB − xzB , fA,S′(x, y, 1) = xA − xzA = −x.

We have

−
2[HF̂fA,S′fB,S′ ](Fi(x))

(d− 1)2
= 2(Ri(x))

3g′′i (x)x(xB − xzB),

LM(∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3yB(xg′i(x) − gi(x))),

LM([(∆S′F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3yB),

LM([(∆S′ F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(xg′i(x) − gi(x))).

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥ 3
∑

j∈I:j 6=i

i(i,j)m1
.

Since

val
(

Φ̃
(A,B)
3 ◦ Fi

)

= val
(

[(∆S′F̂ )2∆BF̂ ] ◦ Fi
)

,

we have
min

(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

= 3
∑

j∈I:j 6=i

i(i,j)m1
.

(S9) Suppose that I = m1, J ∈ D
(i)
m1 , S 6∈ D

(i)
m1 .

We suppose that M1 = A = (0, 0, 1), S′ = (0, 1, 0), B = (1, 0, 0). We have g′i(0) = 0,
fB,S′(x, y, 1) = xB − xzB = xB , fA,S′(x, y, 1) = xA − xzA = −x.

We have

−
2[HF̂ fA,S′fB,S′](Fi(x))

(d− 1)2
= 2xB(Ri(x))

3g′′i (x)x,

LM(∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3(xg′i(x) − gi(x))xB(−g′i(x))),

LM([(∆S′F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))xB),
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LM([(∆S′ F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(xg′i(x) − gi(x))).

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 1.

Observe that

val
(

Φ̃
(A,B)
3 ◦ Fi

)

= valx
(

(Ri(x))
3(2xg′′i (x) + g′i(x))xB

)

.

Moreover, if LM(gi) = αxβ for some α 6= 0 and some β = i
(i)
m1 > 1, we get that

LM(2xg′′i (x) + g′i(x)) = αβ(2β − 1)xβ−1. Therefore

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 1.

(S10) Suppose that I = m1, S,J ∈ D
(i)
m1 .

We suppose that M1 = A = (0, 0, 1), S′ = (1, 0, 0). We have g′i(0) = 0, yB = 0,
xB 6= 0, zB 6= 0, fB,S′(x, y, 1) = zBy − yB = zBy, fA,S′(x, y, 1) = zAy − yA = y.

We have

−
2[HF̂ fA,S′fB,S′ ](Fi(x))

(d− 1)2
= −2(Ri(x))

3g′′i (x)(gi(x))
2zB ,

LM((∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3xB(xg′i(x) − gi(x))(−g

′
i(x))

2),

LM([(∆S′F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3xB(−g′i(x))

3),

LM([(∆S′F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(−g′i(x))

2(xg′i(x) − gi(x)).

Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3i(i)m1
− 3.

Moreover

LM
(

Φ̃
(A,B)
3 (Fi(x))

)

= LM(−[(∆S′ F̂ )2∆BF̂ ](Fi(x))),

we have

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3i(i)m1
− 3.

(S11) Suppose that S ∈ D
(i)
m1 \ {m1}, that I,J 6∈ D

(i)
m1 .

We suppose that S′ = (1, 0, 0) and that g′i(0) = 0. We have yA 6= 0 and yB 6= 0,

fA,S′(M1) 6= 0 and fB,S′(M1) 6= 0. Thanks to (17) for ∆AF̂ and ∆BF̂ , (18) for ∆S′F̂
and (20), we have

val([HF̂ fA,S′fB,S′ ] ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 2,

LM([∆AF̂∆BF̂∆S′F̂ ] ◦ Fi(x)) = yAyBLM((Ri)
3(−g′i(x))),

LM(((∆S′F̂ )2∆AF̂ ) ◦ Fi(x)) = yALM((Ri)
3(−g′i(x))

2),

LM(((∆S′ F̂ )2∆BF̂ ) ◦ Fi(x)) = yBLM((Ri)
3(−g′i(x))

2).
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Hence,

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 2

and

val(Φ̃
(A,B)
3 ◦ Fi) = val([HF̂ fA,S′fB,S′ ] ◦ Fi).

So

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
− 2.

(S12) Suppose that S = m1 but that I and J do not belong to D
(i)
m1 .

We suppose that g′i(0) = 0, that S′ = (0, 0, 1), yA 6= 0 and yB 6= 0, fA,S′(x, y, 1) =

yAx− yxA and fB,S′(x, y, 1) = yBx− yxB. Thanks to (17) for ∆AF̂ and ∆BF̂ , (19) for

∆S′F̂ and (20), we have

LM

([

−
2HF̂ fA,S′fB,S′

(d− 1)2

]

◦ Fi(x)

)

= −2LM(Ri(x)
3g′′i (x))yAyBx

2,

LM([∆AF̂∆BF̂∆S′F̂ ](Fi(x))) = yAyBLM((Ri)
3(xg′i(x) − gi(x))),

LM(((∆S′ F̂ )2∆AF̂ )(Fi(x)) = yALM((Ri)
3(xg′i(x) − gi(x))

2),

LM(((∆S′ F̂ )2∆BF̂ )(Fi(x)) = yBLM((Ri)
3(xg′i(x) − gi(x))

2).

Valuations of the two first terms are in
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ i
(i)
m1 , valuations of the two

last terms are in
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 2i
(i)
m1 . Hence

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
.

Suppose that LM(gi) = αxβ with β > 1, then LM(xg′i(x)) = αβxβ and LM(x2g′′i (x)) =
αβ(β − 1)xβ . Therefore

LM(Φ̃
(A,B)
3 (Fi(x))) = LM(Ri(x))

3yAyBα[−2β(β − 1) + β − 1]xβ .

So

min
(

val
(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + i(i)m1
.

(S13) Suppose that S = m1, I ∈ D
(i)
m1 and J 6∈ D

(i)
m1 .

We suppose that M1 = S′ = (0, 0, 1), A = (1, 0, 0), B = (0, 1, 0). We have g′i(0) = 0,
fB,S′(x, y, 1) = yBx− yxB = x, fA,S′(x, y, 1) = yAx− yxA = −y.

We have

−
2[HF̂ fA,S′fB,S′](Fi(x))

(d− 1)2
= −2(Ri(x))

3g′′i (x)(−gi(x))x,

LM(∆AF̂∆BF̂∆S′F̂ )(Fi(x))) = LM(Ri(x)
3(−g′i(x))(xg

′
i(x) − gi(x)),

LM([(∆S′ F̂ )2∆BF̂ ](Fi(x))) = LM(Ri(x)
3(xg′i(x) − gi(x))

2),

LM([(∆S′F̂ )2∆AF̂ ](Fi(x))) = LM(Ri(x)
3(xg′i(x) − gi(x))

2(−g′i(x)).
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Hence

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 2i(i)m1
− 1.

Moreover, if LM(gi(x)) = αxβ with α 6= 0 and β = i
(i)
m1 > 1, we have

LM
(

Φ̃
(A,B)
3 ◦ Fi)

)

= LM((Ri(x))
3)α2β(β − 1)x2β−1,

and so

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + 2i(i)m1
− 1.

(S14) Suppose that S = m1 and I,J ∈ D
(i)
m1 .

Assume that M1 = S′ = (0, 0, 1), A = (1, 0, 0). We have g′i(0) = 0, yB = 0, xB 6= 0,
zB 6= 0, fA,S′(x, y, 1) = yAx−yxA = −y and fB,S′(x, y, 1) = yBx−yxB = −yxB. Thanks
to (20), we have

−
2[HF̂ fA,S′fB,S′](Fi(x))

(d− 1)2
= −2(Ri(x))

3g′′i (x)(gi(x))
2xB

the valuation of which is equal to
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 3i
(i)
m1 − 2. Using (18) for A and B,

(19) for S′, we get

∆S′F̂ (Fi(x)) = Ri(x)(xg
′
i(x) − gi(x)), ∆AF̂ (Fi(x)) = Ri(x)(−g

′
i(x)),

∆BF̂ (Fi(x)) = Ri(x)[−g
′
i(x)xB + zB(xg′i(x) − gi(x))],

and so

(∆AF̂∆BF̂∆S′F̂ )(Fi(x)) = Ri(x)
3(−g′i(x))(xg

′
i(x) − gi(x))[−g

′
i(x)xB + zB(xg′i(x) − gi(x))],

with valuation
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 3i
(i)
m1 − 2,

[(∆S′ F̂ )2∆BF̂ ](Fi(x)) = Ri(x)
3(xg′i(x) − gi(x))

2[−g′i(x)xB + zB(xg′i(x) − gi(x))],

with valuation
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 3i
(i)
m1 − 1

[(∆S′F̂ )2∆AF̂ ](Fi(x)) = Ri(x)
3(xg′i(x) − gi(x))

2(−g′i(x)),

with valuation
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 3i
(i)
m1 − 1. We cannot conclude directly. Notice that

Φ̃
(A,B)
1 ◦ Fi = R3

i [2[(xg
′
i − gi)

2g′i − g′′i (gi)
2x]xB − zB(xg′i − gi)

3] (21)

which has valuation greater than or equal to
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+3i
(i)
m1 − 1. Moreover, we

have

Φ̃
(A,B)
2 (Fi(x)) = −2(Ri(x))

3g′′i (x)(gi(x))
3xB , (22)

which has valuation
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 4i
(i)
m1 − 2.

Let α 6= 0 and β = i
(i)
m1 > 1 be such that

LM(gi(x)) = αxβ , LM(g′i(x)) = αβxβ−1 and LM(g′′i (x)) = αβ(β − 1)xβ−2.

We have

Φ̃
(A,B)
3 (Fi(x)) = (Ri(x))

3
[

xB{−2g′′i (x)gi(x)
2 + (g′i(x))

2(xg′i(x) − gi(x))}]
]
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and so its term of order
(

3
∑

j∈I:j 6=i i
(i,j)
m1

)

+ 3i
(i)
m1 − 2 is equal to

LM((Ri(x))
3α3β(β − 1)xB(β − 2)x3β−2.

Therefore

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + 3i(i)m1
− 2 if i(i)m1

6= 2 .

• Now, we suppose that β = 2 and that LM(gi(x) − αx2) = α1x
β1 (with α1 6= 0 and

β1 > 2). If β1 6= 3, we get that

LM(−2g′′i (x)gi(x)
2 + (g′i(x))

2(xg′i(x) − gi(x))) = −2α2α1(β1 − 2)(β1 − 3)xβ1+2

and so

val(Φ̃
(A,B)
3 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + β1 + 2.

Moreover,

val(Φ̃
(A,B)
2 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + 6.

If β1 < 3, we have

LM(Φ̃
(A,B)
1 ◦ Fi) = −2LM((Ri(x))

3)xBα
2α1(β1 − 2)(β1 − 4)x3+β1 ;

if β1 ≥ 3, we have

val(Φ̃
(A,B)
1 ◦ Fi) ≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 6.

Therefore

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + min(β1 + 2, 6) if i(i)m1
= 2 and β1 6= 3 .

• Now, assume that i
(i)
m1 = 2, that β1 = 3 and that

LM(gi(x) − αx2 − α1x
β1) = α2x

β2 ,

with α2 6= 0 and β2 > β1.
If β2 < 4, we have

LM(Φ̃
(A,B)
3 ◦ Fi) = −2LM((Ri(x))

3)xBα
2α2(β2 − 2)(β2 − 3)x2+β2 ;

if β2 ≥ 4, we have

val(Φ̃
(A,B)
3 ◦ Fi) ≥



3
∑

j∈I:j 6=i

i(i,j)m1



 + 6.

Moreover

val(Φ̃
(A,B)
2 ◦ Fi) =



3
∑

j∈I:j 6=i

i(i,j)m1



 + 6 ≤ val(Φ̃
(A,B)
1 ◦ Fi).
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Finally,

min
(

valx

(

Φ̃
(A,B)
j ◦ Fi

)

, j = 1, 2, 3
)

=



3
∑

j∈I:j 6=i

i(i,j)m1



 + min(β2 + 2, 6) if i(i)m1
= 2 and β1 = 3 .

�

7. Proof of Corollary 5

We apply Theorem 2. To simplify notations, let us write im1 for im1(C,Tm1C) for every non-
singular point m1 of C. According to Remark 4, we have

3d∨ − v1 = 3d+
∑

m1∈F lex(C)

(im1 − 2).

Suppose first that S 6∈ ℓ∞. We have

v2+v
′
2 =

∑

m1∈F lex(C)\{S},S∈Tm1C

(im1−2)+
∑

m1 6=S,Tm1C⊆(IS)∪(JS)

im1+
∑

m1∈C\(F lex(C)∪{S}),Tm1C⊆(IS)∪(JS)

1,

v3 = iS1S∈C + (iS − 1)1S∈C,TSC⊆(IS)∪(JS).

So

v2 + v′2 + v3 =





∑

m1∈F lex(C),S∈Tm1C

(im1 − 2)



 + t0 + n0 + 2 × 1S∈C − 1S∈C;{I,J}∩TSC6=∅.

Finally

v4 =





∑

m1∈F lex(C),Tm1C=ℓ∞

(im1 − 2)



 + 1I∈C,TIC=ℓ∞ + 1J∈C,TJ C=ℓ∞ .

From which we get the first formula.

Suppose now that S ∈ ℓ∞. We have

v2 + v′2 =
∑

m1∈C\{S},S∈Tm1C

[

(im1 − 2) + (2im1 − 1)1Tm1C=ℓ∞

]

and

v3 = iS1S∈C + 4 × 1S∈C,TSC=ℓ∞,iS=2 + (2iS − 2) × 1S∈C,TSC=ℓ∞,iS 6=2.

Therefore, we have

v2 + v′2 + v3 =
∑

m1∈C,S∈Tm1C

[

(im1 − 2) + (2im1 − 1)1Tm1C=ℓ∞

]

+ 3×1S∈C − 2×1S∈C,TSC=ℓ∞,iS 6=2.

The second result follows.
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Appendix A. Proof of Proposition 24

Observe that M−1M̂ corresponds to the left-multiplication by





a b 0
c d 0
e f h



 for some complex

numbers a, b, c, d, e, f, h such that ad − bc 6= 0 and h 6= 0. We define X(x, y, z) := ax + by,
Y (x, y, z) := cx+ dy, Z(x, y, z) := ex+ fy + hz and

Θ(x, y) :=

(

X(x, y, 1)

Z(x, y, 1)
,
Y (x, y, 1)

Z(x, y, 1)

)

.

Let d0 be the degree of polynomial F . By homogeneity of F , we have

(F ◦ M̂)(x, y, 1)) = (h+ ex+ fy)d0(F ◦M)(Θ(x, y), 1).

Hence, F ◦M and F ◦ M̂ have same valuation in x, y so same multiplicity at [0 : 0 : 1].

According to the Weierstrass theorem, there exist U, Û two units of C〈x, y〉, two integers b, b̂

and b+ b̂ irreducible monic polynomials Γ1, ...,Γb, Γ̂1, ..., Γ̂b̂ ∈ C〈x〉[y] with respective degrees in
y: e1, ..., eb, ê1, ..., êb̂ such that

F (M(x, y, 1)) = U(x, y)
b

∏

β=1

Γβ(x, y) and F (M̂(x, y, 1)) = Û(x, y)
b̂

∏

β̂=1

Γ̂β̂(x, y).

Branches Bβ of V (F ◦M) at [0 : 0 : 1] have equations Γβ = 0 on z = 1. Branches B̂β̂ of V (F ◦M̂)

at [0 : 0 : 1] have equations Γ̂β̂ = 0 on z = 1. We have

F (M̂ (x, y, 1)) = (h+ ex+ fy)d0U(Θ(x, y))

b
∏

β=1

Γβ(Θ(x, y)).

Let β ∈ {1, ..., b}. Applying the Weierstass theorem to Γβ(Θ(x, y)) ∈ C〈x, y〉, we get the existence
of a unit Uβ of C〈x, y〉, an integer κβ ≥ 1 and κβ irreducible monic polynomials Pβ,1, ..., Pβ,κβ

∈
C〈x〉[y] such that

Γβ(Θ(x, y)) = Uβ(x, y)

κβ
∏

k=1

Pβ,k(x, y).

Hence, we have

F (M̂(x, y, 1)) = (h+ ex+ fy)d0U(Θ(x, y))

b
∏

β=1

Uβ(x, y)

κβ
∏

k=1

Pβ,k(x, y).

By unicity of factorisation, this implies that every Pβ,k is equal to Γ̂β̂ for some β̂. Hence b ≤
∑b

β=1 κβ = b̂. Doing the same with exchanging the roles of M and of M̂ , we finally get that b = b̂

and κβ = 1 for every β ∈ {1, ..., b}. This implies the existence of a permutation σ of {1, ..., b}
such that

Γβ(Θ(x, y)) = Uβ(x, y)Γ̂σ(β)(x, y). (23)

Let us prove that Tβ = M−1M̂(T̂σ(β)). The tangent line Tβ to Bβ at [0 : 0 : 1] has equation

(Γβ)x(0, 0)X + (Γβ)y(0, 0)Y = 0. Hence, M̂−1(M(Tβ)) has equation

(Γβ)x(0, 0)X(x, y, z) + (Γβ)y(0, 0)Y (x, y, z) = 0.
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Moreover, the tangent line T̂σ(β) to B̂σ(β) at [0 : 0 : 1] has equation (Γ̂σ(β))x(0, 0)X+(Γ̂σ(β))y(0, 0)Y =
0. According to (23), this last equation can be rewritten

(Uβ(0, 0))
−1[(Γβ)x(0, 0)(ax + by) + (Γβ)y(0, 0)(cx + dy)] = 0,

which is an equation of M̂−1(M(Tβ)).

According to (23), Γβ(Θ(x, y)) = 0 is an equation of Bσ(β). Hence, y-roots ĝσ(β),1(x), ..., ĝσ(β),êβ
(x)

of Γ̂σ(β)(x, y) coincides with y-roots of Γβ(Θ(x, y)).

Let us write eβ and êβ the respective multiplicities of Bβ and B̂σ(β).

Since X = 0 is not in the tangent cone of V (F ◦M̂ ) and of V (F ◦M), we have (Γβ)y(0, 0) 6= 0,

(Γ̂σ(β))y(0, 0) 6= 0, the function ĝσ(β),k is differentiable at 0 and

ĝ′σ(β),k(0) = −
(Γ̂σ(β))x(0, 0)

(Γ̂σ(β))y(0, 0)
.

The map Θ defines a local diffeomorphisms between two neighbourhood of (0, 0). There exists
a differentiable function Hβ,k such that, for every (x, y) and (X,Y ) in a neighourhood of (0, 0)
satisfying (X,Y ) = Θ(x, y), we have

y = ĝσ(β),k(x) ⇔ Y = Hβ,k(X), with H ′
β,k(0) =

ĝ′(0)d + c

ĝ′(0)b+ a
= −

(Γβ)x(0, 0)

(Γβ)y(0, 0)
.

We have ĝ′(0) =
aH′

β,k
(0)−c

d−bH′
β,k

(0)
. Functions Hβ,1, ...,Hβ,êβ

are y-roots of Γβ(x, y). Hence we have

êβ ≤ eβ . For symetry reason, we get that êβ = eβ. Let G ∈ C[x, y, z] be a homogeneous
polynomial of degree d1. We have

i[0:0:1](V (G ◦M),Bβ) =

eβ
∑

k=1

valx((G ◦M)(x,Hβ,k(x), 1))

and

i[0:0:1](V (G ◦ M̂), B̂σ(β)) =

eβ
∑

k=1

valx(G(M̂ (x, ĝβ,k(x), 1)))

=

eβ
∑

k=1

valx

(

(G ◦M)(M−1M̂(x, ĝσ(β),k(x), 1))
)

=

eβ
∑

k=1

valx

(

(1 + ex+ f ĝσ(β),k(x))
d1(G ◦M)(X(x, ĝσ(β),k(x)), Y (x, ĝσ(β),k(x)), 1))

)

=

eβ
∑

k=1

valx
(

(G ◦M)(X(x, ĝσ(β),k(x)),Hβ,k(X(x, ĝσ(β),k(x), 1)))
)

.

Moreover, since we have

LM(X(x, ĝσ(β),k(x))) = αx, with α :=
a+ bĝ′σ(β),k(0)

h
x =

ad− bc

h(d− bH ′
σ(β),k(0))

x,

we get

valx((G ◦M)(X(x, ĝσ(β),k(x)),Hβ,k(X(x, ĝσ(β),k(x), 1)))) = valx ((G ◦M) (x,Hβ,k(x), 1)) .
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