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CONTINUOUS CONVEX SETS AND ZERO DUALITY GAP FOR

CONVEX PROGRAMS

EMIL ERNST AND MICHEL VOLLE

ABSTRACT. This article uses classical notions of convex analysis over

euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of

a convex set, or the inner aperture directions defined by Larman and

Brøndsted for the same class of sets, to provide a new zero duality gap

criterion for ordinary convex programs.

On this ground, we are able to characterize objective functions and

respectively feasible sets for which the duality gap is always zero, re-

gardless of the value of the constraints and respectively of the objective

function.

1. INTRODUCTION

The aim of this paper is to refine the well-known convex optimization

Theorem of primal attainement (see for instance [2, Proposition 5.3.3], and

also the Appendix of this article) which proves that the duality gap of a

convex program defined over an euclidean space amounts to zero provided

that it does not possess any direction of recession (that is a direction of

recession which is common to both the objective function and the feasible

set).

Indeed, an observant analysis points out that, beside the class of convex

programs free of directions of recession, another remarkable family of zero

duality gap convex programs may also be addressed.

More precisely, our main result identifies among the directions of reces-

sion of a closed and convex function or set, a special sub-class of vectors

with the following property: a convex program has no duality gap pro-

vided that at least one of its directions of recession is special in the above-

mentioned way for its objective function or for its feasible set.
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We are thus able to characterize all the directions of recessions of a con-

vex program which may entail a positive duality gap. On this ground, we

achieve a complete characterization of the objective functions and respec-

tively feasible sets, such that the duality gap is zero regardless of the con-

straints and respectively of the objective function of the convex program.

1.1. Basic notions and definitions for convex programs. Throughout this

article, X stands for an euclidean space, while 〈·, ·〉, and respectively ‖ · ‖
denote the dot-product over X , and respectively the associated norm; the

class of convex and lower semi-continuous functions f : X → R ∪ {+∞}
which are proper (meaning that their effective domain

dom (f) = {x ∈ X : f(x) < +∞}

is non-empty) is denoted by Γ0(X). Another standard notation used in the

sequel is [f ≤ r] for the sub-level set {x ∈ X : f(x) ≤ r} of the set f .

An important use will be made of notions of recession analysis (for a

detailed approach of this topic, the reader is referred to [13, §8]). Thus,

the recession cone C∞ of a closed and convex set C is defined as being

the maximal closed convex cone whose translate at every point of C lies

in C; if f is a function from Γ0(X), the recession function f∞ of f is the

function whose epigraph is the recession cone of the epigraph of f . A non-

null vector v from X is a direction of recession of the closed and convex C

if it belongs to C∞, and of the function f from Γ0(X) if f∞(v) ≤ 0.

Equivalently, it is possible to define the directions of recession of a func-

tion f from Γ0(X) as the non-null vectors v such that f is non-increasing

over any half-line of direction v, and the recession directions of a closed

and convex set C as being the directions of recession of the ιC , the indica-

tor function of C,

ιC(x) =

{

0 x ∈ C

+∞ x /∈ C
.

Let us consider the ordinary convex program

P (f, gi) : Find inf {f(x) : gi(x) ≤ 0, ∀ 1 ≤ i ≤ n} ,

where the objective function f and the n constraint mappings g1, . . . , gn
belong to Γ0(X). We assume that the program is consistent, meaning that
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the feasible set A, that is the set over which all the constraint mappings are

non-positive, is non-void:

A =
n
⋂

i=1

[gi ≤ 0] 6= ∅.

Remark 1. Our results do not assume any qualification condition on the

objective function and feasible set. In particular, we do not suppose that

dom f ∩ A 6= ∅; accordingly, the infimum of f over A may take one of the

values −∞ or +∞.

The most obvious way to address this problem, is to adapt to the con-

strained case one of the algorithms used to minimize the objective func-

tion f alone. To this respect, it is customary to address a sequential min-

imizing algorithm, by modifying the input needed in computing the next

term of the minimizing sequence (xn)n∈N: instead of imputing into the

algorithm the previous term xn−1, we use a convex combination of form

[αn−1 xn−1 + (1− αn−1) yn−1], between xn−1 and yn−1, its projection on

the feasible set A. Cases αn = 0 and αn = 1/2 are among the most occur-

rent choices for the relaxation parameter αn.

However, as stated by Bauschke and Borwein in their highly influential

article [4, p. 368], it is possible to numerically implement this approach

only if ”[the feasible set] is ”simple” in the sense that the projection [. . . ]

onto [it] can be calculated explicitly”.

Indeed, if it is an easy job to compute the projection operator onto A when

an affine or a quadratic mapping is the only constraint of the problem, this

is no longer the case for most of the real word applications. For instance,

computing the projection onto the feasible set A may be a very difficult task

even when all the constraint mappings gi are affine. In this case, a projection

algorithm onto A which is polynomial-time with respect to M has recently

been provided - see [12] - but it works only for the particular case when A

is a cone, and the dot product of any pair of vectors of A is non-negative; at

our best knowledge, the general problem is still open.

A different method, less sensitive to the shape of the effective set, consists

in solving the dual problem of P (f, gi):

D(f, gi) : sup

{

inf

{

f(x) +
n
∑

i=1

ri gi(x) : x ∈ X

}

: r1, . . . , rn ≥ 0

}

;

we make the convention asking that 0 · (+∞) = +∞.
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We are interested in the apparently more complicated dual problem sim-

ply because it demands to minimize convex functions over the whole under-

lying space; from a numerical point of view, it is much easier to compute

its solution, sup D(f, gi) than the solution inf P (f, gi) of the initial convex

program. Characterizing the convex programs for which the duality gap

δ(f, gi) = inf P (f, gi) − sup D(f, gi) amounts to zero (by convention,

(+∞) − (+∞) = 0 and (−∞) − (−∞) = 0), is thus of an important

concern in constrained convex optimization.

Remark 2. Even when the duality gap is non-null, it may still be possible

to reduce the convex program to an unconstrained setting, by using instead

of the combination
∑n

i=1
ri gi(x) a different convex mapping. One of the

most prevailing such examples is provided by [10, Theorem 1.2.3, Chapter

VII], a result which proves that

inf
A

f = sup {inf {f(x) + r dist(x,A) : x ∈ X} : r ≥ 0} .

However, the practical interest of this result is meager, as it is impossible to

actually compute the distance to A when the feasible set is not simple in the

sense of Bauschke and Borwein. In other words, using the distance to the

feasible set as a penalty function does not work for precisely the same type

of problems for which the projection-based methods fail.

Arguably one of the most versatile and useful zero duality gap criterion

is provided by the following result.

Theorem of the primal attainement [2, Proposition 5.3.3]: The convex

program P (f, gi) has no duality gap if:

(Q1) there is no direction of recession common to all the functions f , gi.

Moreover, the primal value inf P (f, gi) is attained when finite.

Remark 3. In their textbook [2], Auslender and Teboulle prove Proposition

5.3.3 under the blanket assumption that

(1) dom f ⊂ dom gi, ri(dom f) ⊂ ri(dom gi), ∀i ∈ {1, . . . , n},
(here ri C stands for the relative interior of the convex set C), but implicitly

claim that there is no need of such conditions for the Theorem of the primal

attainement to hold true. Indeed, at page 158 of their treatise, Auslender

and Teboulle write that ”the assumption on the domains can be always en-

forced for any optimization problem by appropriately redefining the objec-

tive function when necessary”, although no indication about how this goal

may be achieved is given.
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In order to fill this gap in the mathematical literature, we provide in the

Appendix of this article, a complete proof of the Theorem of the primal

attainement, under no blanket or qualification condition.

Remark 4. A different proof of the Theorem of the primal attainement is

provided in Borwein & Lewis’ book [5, Theorem 4.3.8], for the particular

case when condition (Q1) is replaced by:

(Q2) the mapping (r0 f + Σn
i=1 ri gi) has compact sub-level sets for some

non-negative coefficients r0, ri.

Let us also recall that, given C1,. . . ,Cn, a collection of closed convex

sets in X whose intersection is not empty, then the recession cone of the

intersection of the sets Ci is the intersection of the recession cones of the

sets Ci (see [13, Corollary 8.3.3]).

Combining the theorem of the primal attainement and the above result, it

yields that the duality gap of P (f, gi) is zero provided that:

(Q3) the convex program does not have any direction of recession (that

is directions of recession common to both the objective function and the

feasible set):

(2) [f∞ ≤ 0] ∩ A∞ = {0}.

1.2. Statement of the problem and plan of the paper. Our article ad-

dresses the characterization of zero duality gap convex programs that do

have directions of recession (and thus lie outside of the scope of the Theo-

rem of primal attainement).

The main concern of our paper is to define and study, both for closed and

convex subsets of X , and for functions belonging to Γ0(X), the notion of a

special direction of recession.

Definition 1. Let v be a direction of recession of the function f from Γ0(X).

The vector v is called a special direction of recession of f if for any con-

vex program P (f, gi) admitting v as a direction of recession, it holds that

δ(f, gi) = 0.

Definition 2. Let v be a direction of recession of the closed and convex set

A. The vector v is called a special direction of recession of A if, for any

convex program P (f, gi) such that A is the feasible set of P (f, gi), and v

one of its directions of recession, it holds that δ(f, gi) = 0.
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Section 2 deals with the study of the special directions of recession for

functions and sets. Our main results (Theorems 1 and 2) characterize the

special directions by using the notion of an ia-direction of recession, which

generalizes to the closed and convex functions the inner aperture directions

defined for sets by Larman ([11]) and Brøndsted ([6]).

Our new duality gap criterion, as well as three applications of this re-

sult in which an important role is played by the continuous convex sets as

defined by Gale & Klee ([9]), are addressed in the last section of our study.

2. SPECIAL DIRECTION OF RECESSION FOR CLOSED AND CONVEX

SETS AND FUNCTIONS

The following well-known result (see [13, Theorem 8.6]) restates the no-

tion of direction of recession for a closed and convex function f . Indeed,

instead of imposing monotony properties of f over all the half-lines of a

given direction, Proposition 1 focuses on the limit of f along one half-line.

Proposition 1. Let f be a function from Γ0(X) and v a non-null vector

from X . The two following sentences are equivalent:

i) The mapping f is non-increasing over any half-line of direction v (in

other words, the vector v is a direction of recession of f )

ii) There is a half-line of direction v along which the limit of f does not

amount to +∞.

In the same spirit, let us refine the notion of direction of recession by a

more detailed investigation of the limits of a function along various half-

lines with the same direction.

Definition 3. Let f be a function from Γ0(X). A non-null vector v ∈ X

is a ba-direction of recession for f if there are two half-lines of direction v

along of which f has different limits.

A non-null vector v ∈ X is an ia-direction of recession for f if the limit

of f along any half-line of direction v amounts to infX f .

Definition 4. Given C a non-empty closed and convex subset of X , we call

ba and respectively ia-directions of recession of C the vectors which are ba

and respectively ia-directions of recession of the indicator function of C.

Let us first state a standard remark.
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Proposition 2. Let f be a function from Γ0(X) and v a non-null vector. The

two following sentences are equivalent.

i) v is a direction of recession for f

ii) v is either a ba, or an ia-direction of recession of f .

Proof of Proposition 2. i) ⇒ ii). Let us consider v, a direction of reces-

sion of f which is not a ba-direction of recession, and x a point in X . All

what we have to prove is that the limit of f along the half-line x + R+ v

amounts to infX f .

Let us assume, to the end of achieving a contradiction, that this fact does

not holds true, that is that lims→∞ f(x+ s v) > infX f . Accordingly, there

exists y ∈ X such that

(3) f(y) < lim
s→∞

f(x+ s v).

Since v is a direction of recession of f , it yields that f is non-increasing

over y + R+ v; thus

(4) lim
s→∞

f(y + s v) ≤ f(y).

Relations (3) and (4) prove that the limits of f along the two half-lines

x + R+ v and y + R+ v, both of direction v, are different; consequently, v

is a ba-direction of recession of f . This contradiction shows that our initial

assumption was false.

In other words, we have proved that any direction of recession of f which

is not a ba-direction of recession is necessarily an ia-direction of recession.

ii) ⇒ i). Let v be a ba-direction of recession of f . Accordingly, there

are two half-lines of direction v along of which the function f has different

limits. Along at least one of those two half-lines, the limit of f must be

different from +∞, so (see Proposition 1), it follows that v is a direction of

recession for f .

Let us now consider w, a ia-direction of recession of f . As f is proper,

its infimum over the underlying space X does not amount to +∞; thus, the

same holds for the limit of f along any half-line of direction w. Hence, by

using once more Proposition 1, it results that w is one of the directions of

recession of the mapping f .

Accordingly, we have proved that any ba or ia-direction of recession of

f is a direction of recession of f . �

In order to justify the notations from Definition 3, let us recall, following

Gale and Klee ([9]), that a boundary ray of a set is a half-line which is
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contained in the boundary of the set. An asymptote of a set C is a half-line

d disjoint from C, such that the gap between d and C,

gap(d, C) = inf{‖x− y‖ : x ∈ d, y ∈ C},
amounts to zero. Another key notion for our study is borrowed from Larman

([11]) and Brøndsted ([6]): a direction of inner aperture of a closed and

convex set C is a non-null vector v such that any half-line of direction v

intersects C along a half-line.

For a given closed and convex set C, Larman proved (see [11, Theorem

4, page 225]) that the set of all its inner aperture directions is an evenly

convex cone (that is a cone which is the intersection of a family of open

half-spaces) containing the interior of the recession cone of C, but not, in

general, its relative interior. It is thus possible to find an unbounded closed

and convex set with no inner aperture.

The connection between these those important notions was achieved by

Bair ([3, Theorem 1, p. 237]), who proved that any recession direction of

a closed and convex set C is either an inner aperture direction of C, or the

direction of some boundary ray or some asymptote of C

We are now in a position to give the following characterization of ba

and ia-directions of recession of a mapping in terms of the boundary rays,

asymptotes and inner aperture directions of its sub-level sets.

Proposition 3. Let f be a function from Γ0(X), and v a non-null vector

from X . Then v is a ba-direction of recession for f if and only if any sub-

level set [f ≤ r] with r > infX f possesses a boundary ray or an asymptote

of direction v.

In particular, the ba-directions of recession of a closed and convex set C

are simply the directions of its boundary rays and asymptotes.

Proof of Proposition 3. The if part: let us suppose that the half-line

d = (x0 + R+ v) is a boundary ray or an asymptote of the sub-level set

[f ≤ r], where r > infX f .

The following result is well-known (see [8, Lemma 1], and also Lemma

1.2 in [9]).

Lemma 1. Let C be a closed and convex subset of X and v ∈ X a non-null

vector. Then v is the direction of some boundary ray or asymptote of C if

and only if there are two half-lines of direction v, one completely contained

within the set C, the other disjoint from that set.
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Thus, there is x + R+ v, a half-line of direction v which lies entirely

without [f ≤ r]; in particular,

(5) lim
s→∞

f(x+ s v) ≥ r.

On the other hand, there exists a half-line of direction v which is con-

tained in [f ≤ r]; hence, the limit of f along this half-line is not +∞, and

(see Proposition 1), we may infer that v is a direction of recession of f .

Finally, let us pick a point y ∈ X such that f(y) < r; since v is a

direction of recession of f , it follows that f is non-increasing over the half-

line y + R+ v. Thus

(6) lim
s→∞

f(y + s v) ≤ f(y) < r.

Relations (5) and (6) prove that v fulfills the definition of a ba-direction

of recession of f .

The only if part: let us suppose that v is a ba-direction of recession of

f . Accordingly, there are two half-lines of direction v along of which the

function f has different limits.

On one hand, we deduce that the limit of f along one of this two half-

lines (say x + R+ v) is greater then infX f . Pick now a real number t such

that

(7) inf
X

f < t < lim
s→∞

f(x+ s v),

and a point y ∈ X such that f(y) ≤ t.

On the other hand, we know (see Proposition 2), that v is a direction

of recession for f . In particular, the mapping f is non-increasing over the

half-line y + R+ v, fact which allows us to write that

(8) lim
s→∞

f(y + s v) ≤ f(y) ≤ t.

From relation (7) it results that the half-line x + R+ v lies without the

sub-level set [f ≤ t], while relation (8) proves that the half-line y + R+ v

lies within this set. Let us invoke once again Lemma 1 to deduce that v

is the direction of some boundary line or asymptote of the sub-level set

[f ≤ t]. Point d) from [8, Proposition 3] proves that the directions of the

boundary lines or asymptotes are common to all the sub-level sets of f ,

perhaps excepting argminX f ; we may therefore deduce that any sub-level

set [f ≤ r] with r > infX f , possesses a boundary ray or an asymptote of

direction v. �
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Let us complete this sub-section with the following corollary of Proposi-

tions 2 and 3, Theorem 1 from [3], and point d) from [8, Proposition 3].

Proposition 4. Let f be a function from Γ0(X), and v a non-null vector

from X . Then v is a ia-direction of recession for f if and only if v is an

inner aperture direction for any sub-level set [f ≤ r] with r > infX f .

In particular, the ia-directions of recession of a closed and convex set C

are its inner aperture directions.

2.1. Special directions of recession for a closed and convex function.

Theorem 1. Let f be a function from Γ0(X), and v one of its directions of

recession. The two following statements are equivalent.

i) v is a ia-direction of recession of f

ii) δ(f, gi) = 0 provided that v is a direction of recession for the convex

program P (f, gi).

Proof of Theorem 1. i) ⇒ ii) Let us consider f an element of Γ0(X), v

one of its ia-directions of recession, and P (f, gi), a convex program such

that v is a direction of recession for its feasible set, A.

Pick x0, a point belonging to the set A; as v is a direction of recession of

A, the entire half-line x0 + R+ v lies within A, and hence

(9) inf
A

f ≤ inf
x0+R+ v

f ≤ lim
s→∞

f(x0 + s v).

Let us also pick a real number r > infX f ; Proposition 4 implies that v

is an inner aperture direction for the set [f ≤ r]. Accordingly, the half-line

x0 + R+ v meets [f ≤ r] over a half-line; it follows that

(10) lim
s→∞

f(x0 + s v) ≤ r ∀r > inf
X

f.

From relations (9) and (10) it yields that infA f = infX f . Since for any

convex program it obviously holds that

(11) inf
X

f ≤ sup D(f, gi) ≤ inf P (f, gi) = inf
A

f,

we may infer that the duality gap of the convex program P (f, gi) amounts

to zero.

ii) ⇒ i) Let us consider f a mapping belonging to Γ0(X), and v one

of its ba-directions of recession; without restraining the generality, we may

assume that ‖v‖ = 1.
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Theorem 1 is completely proved provided that we define a convex pro-

gram P (f, gi) with a positive duality gap such that v is a recession direction

for the feasible set A.

As v is a ba-direction of recession, there are two half-lines of direction v

along which the limits of f are different. One of those two limits must be

greater then infX f ; hence, there are a real number r > infX f , and a point

x0 ∈ X such that

(12) lim
s→∞

f(x0 + s v) ≥ r.

Let us define the mapping g : X → R by the formula

g(x) = ‖x− x0‖ − 〈x− x0, v〉 .
Obviously, g belongs to Γ0(X), and [g ≤ 0] = x0 + R+ v. As v is a ba-

direction of recession of f , let us use Proposition 2 and deduce that the

objective function f in non-increasing over any half-line of direction v; in

particular, it holds that

(13) inf P (f, g) = inf
x0+R+ v

f = lim
s→∞

f(x0 + s v).

To the purpose of estimating sup D(f, g), let us consider a point y ∈ X

such that f(y) < r. As v is a direction of recession of f , it results that

(14) lim
s→∞

f(y + s v) ≤ f(y) < r.

On the other hand,

g(y + s v) = ‖y − x0 + s v‖ − 〈y − x0 + s v, v〉
=

√

‖y − x0‖2 + 2 s 〈y − x0, v〉+ s2 − (〈y − x0, z〉+ s) .

Let us remark that the expression
√

‖y − x0‖2 + 2 s 〈y − x0, v〉+ s2 may

be written under the form
√

(

‖y − x0‖2 − 〈y − x0, v〉2
)

+ (〈y − x0, v〉+ s)2;

moreover, when s is greater than | 〈y − x0, z〉 |, then it holds that

〈y − x0, z〉+ s =

√

(〈y − x0, z〉+ s)2.

Consequently, when s > | 〈y − x0, z〉 |, it follows that

g(y + s v) =
√

α + β2 −
√

β2,

where

α = ‖y − x0‖2 − 〈y − x0, v〉2 ≥ 0, β = 〈y − x0, z〉+ s > 0.
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But when α ≥ 0 and β > 0 it holds that
√

α + β2 −
√

β2 =
α

√

α + β2 +
√

β2
;

thus

g(y + s v) =
‖y − x0‖2 − 〈y − x0, v〉2

‖y − x0 + s v‖+ 〈y − x0, z〉+ s
∀s > | 〈y − x0, z〉 |.

It is obvious that

(15) lim
s→∞

g(y + s v) = 0.

By combining relations (14) and (15), we infer that

(16) lim
s→∞

(f(y + s v) + t (y + s v)) < r ∀t ≥ 0.

As a direct consequence of relation (16) we deduce that

inf
X

(f + t g) ≤ inf
y+R+ v

(f + t g) < r ∀t ≥ 0,

fact which implies that

(17) supD(f, g) < r.

Relations (12), (13) and (17) prove that δ(f, g) > 0. �

2.2. Special directions of recession for a closed and convex set.

Theorem 2. Let A be a non-void closed and convex subset of X , and v one

of its directions of recession. The two following statements are equivalent.

i) v is a ia-direction of recession of A

ii) δ(f, gi) = 0 provided that v is a direction of recession for the convex

program P (f, gi).

Proof of Theorem 2. i) ⇒ ii) Let us consider a convex program such that

v, one of its directions of recession, is an ia-direction of recession of the

feasible set A.

Pick a real number r > infX f , and a point x ∈ X such that f(x) ≤ r.

As v is a direction of recession for the objective mapping, it follows that f

is non-increasing over the half-line x+ R+ v; accordingly,

(18) f(x+ s v) ≤ f(x) ≤ r ∀s ≥ 0.

On the other hand, v is a ia-direction of recession for A; Proposition 4

proves that the half-line x+ R+ v meets the feasible set. Hence

(19) ∃s ≥ 0 s.t. (x+ s v) ∈ A.
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Combining relations (9) and (10), it results that infA f = infX f ; as

already noticed (see relation (11), this fact entails that the duality gap of the

convex program P (f, gi) amounts to zero.

ii) ⇒ i) Let us consider A a non-void closed and convex subset of X , and

v one of its ba-directions of recession; without restraining the generality, we

may assume that ‖v‖ = 1.

Our aim is to define a convex program P (f, gi) with a positive duality

gap such that v is a recession direction for the objective function f . To this

respect, we distinguish two cases: a), when A admits a boundary line of

direction v, and b), when there is an asymptote of A of direction v.

• Case a). Let x0 + R+ v be a boundary ray of A. The point x0 + v

belongs accordingly to the boundary of the closed and convex subset A

of the euclidean space X . Thus (see [13, Theorem 11.6]), there exists an

element y ∈ X such that

(20) 〈x− (x0 + v), y〉 ≤ 0 ∀x ∈ A.

Let us consider the convex program P (f, g), where relations

(21) f(x) =

{

−
√
λ s, x = x0 + λ y + s v

+∞, x /∈ (x0 + [0, 1] y + R+ v)

denotes the objective function, while the constraint mapping is defined by

the formula

g(x) = dist (x,A) = inf{‖x− y‖ : y ∈ A}.
In order to determine inf P (f, g), let us first study the intersection be-

tween the half-strip (x0+[0, 1] y+R+ v) and the feasible set A. Set x = x0

and respectively x = x0 + 2 v in relation (20) to deduce that 〈v, y〉 ≤ 0 and

respectively 〈v, y〉 ≥ 0. Thus,

(22) 〈v, y〉 = 0.

Pick two real numbers, λ ∈ [0, 1] and s ≥ 0; relation (22) implies that

(23) 〈x0 + λ y + s v, y〉 = 〈x0, y〉+ λ ‖y‖2;
by combining relations (20), (22) and (23) it results that :

(24) (x0 + [0, 1] y + R+ v) ∩ A = (x0 + R+ v) .

From relation (24) it yields that

(25) inf
A

f = inf
x0+R+ v

f,
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while definition (21) implies that

(26) f(x0 + s v) = 0 ∀s ≥ 0.

Accordingly,

(27) inf P (f, g) = 0.

Let us now compute sup D(f, g). As for any s ≥ 0 it obviously holds

that x0 + s v ∈ A, we deduce that

(28) g(y + s v) ≤ ‖(y + s v)− (x0 + s v)‖ = ‖y − x0‖ ∀s ≥ 0;

let us combine relations (21) and (28) to obtain that

f(y + s v) + r g(y + s v) ≤ r ‖y − x0‖ −
√
s ∀s ≥ 0.

Thus

inf
X

(f + r g) ≤ inf
y+R+ v

(f + r g) = −∞ ∀r ≥ 0,

and so

(29) supD(f, g) = −∞.

Since relations (27) and (29) imply that the duality gap of P (f, g) is equal

to infinity, the proof of case a) is complete.

• Case b). Let x0 + R+ v be an asymptote of the feasible set A.

The convex program addressed in order to prove Theorem 2 under the

assumptions of case b) is P (f, g), where the objective mapping f is the in-

dicator function of the half-line x0+R+ v, and the constraints are expressed

by the function g(x) = dist(x,A).

On one hand, the half-line x0 + R+ v and the feasible set A are disjoint,

and so it results that inf P (f, g) = +∞.

On the other hand, the gap between the set A and the half-line x0 +R+ v

is zero. Accordingly,

inf
x0+R+ v

g = 0,

and hence

inf
X
(f + r g) ≤ inf

x0+R+ v
(f + r g) = 0 ∀r ≥ 0.

It results that sup D(f, g) ≤ 0; the vector v is thus a direction of reces-

sion for the positive duality gap convex program P (f, g). �
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3. A NEW ZERO DUALITY GAP CRITERION AND APPLICATIONS

An obvious consequence of Theorems 1 and 2, combined with the clas-

sical Theorem of primal attainement is the following zero duality result.

Theorem 3. The duality gap of a convex program over an euclidean space

is zero provided that either:

a) it doesn’t admit directions of recession, or

b) at least one of its directions of recession is an ia-direction of recession

of the objective function, or an ia-direction of recession of the feasible set.

An unexpected result of Theorem 3 is the following ”folk theorem” (that

is a known result which does not figure in the mathematical literature).

Theorem 4. If X = R, then any convex program has a zero duality gap.

Proof of theorem 4. Let f be a function from Γ0(R) and v one of its

directions of recession. Assume that v > 0 (the case v < 0 is similar).

Then f is a non-increasing mapping, so

(30) lim
x→+∞

f(x) = inf
R

f.

Remark also that each and every of the half-lines of direction v is neces-

sarily of form [a,+∞], with a ∈ R. From relation (30) it follows that the

limit of f along any half-line of direction v amounts infR f ; in other words,

v is an ia-direction of recession of f .

We have thus proved that any direction of recession of a function belong-

ing to Γ0(R) is an ia-direction of recession (in dimension one, there are no

ba-directions of recession). The desired conclusion stems now from point

ii) of Theorem 3. �

The following example states that, unlike for the convex programs ful-

filling the condition Q1 of the Theorem of primal attainement, the primal

value of a convex program satisfying point ii) of Theorem 3 is not neces-

sarily attained when finite.

Example 1. Let X = R, f(x) = exp(x) and g(x) = x.

Clearly, Theorem 4 proves that the duality gap of the problem P (f, g)

amounts to zero. Moreover, it is well-known that the infimum of the function

exp(x) over the half-line ] − ∞, 0] is zero, and that the mapping exp(x)

does not achieve it.

We have thus defined a convex program with no duality gap, whose primal

value, although finite, is not attained.
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To the respect of giving more amenable versions of Theorem 3, let us

recall, following Gale & Klee ([9]), that a closed and convex set without

any boundary rays or asymptotes is called a continuous convex set.

The class of functions f belonging to Γ0(X), such that all their sub-level

sets, excepting perhaps argmin f , are continuous convex sets, have been

extensively studied in [7, §4] (see also [1]). Of a particular interest for our

study is the statement [7, Corollary 4. 1], which proves that a mapping f

belongs to the above-defined class if and only if for each and every of its

directions of recession v, its limit along any half-line of direction v amounts

to infX f .

We are now in a position to state the main consequences of our previous

results.

Theorem 5. The duality gap of the convex program P (f, gi) over the eu-

clidean space X is zero provided that the function f + ιA is proper and all

its sub-level sets, excepting perhaps its argmin set, are continuous convex

sets.

Proof of Theorem 5. Let us first remark that a vector v is a direction

of recession of the mapping f + ιA if and only if it is simultaneously a

direction of recession for the objective function f and for the feasible set

A. Accordingly, the function f + ιA is coercive if and only if the convex

program does not admit directions of recession, so the conclusion of the

theorem in this case yields from point a), Theorem 3.

In order to address the remaining case, that is when the mapping f + ιA
admits a direction of recession, say v, let us first recall the obvious fact that

any inner aperture direction of some closed and convex set C is also an

inner aperture direction for any closed and convex set D which contains C

as a subset.

Pick r a real number such that r > infX (f + ιA). The set [(f + ιA) ≤ r]

is a continuous convex set and v is one of its directions of recession; hence

v is an inner aperture direction for [(f + ιA) ≤ r].

Both the closed and convex sets [f ≤ r] and A contain [(f + ιA) ≤ r]

as a subset. Accordingly, v is an inner aperture direction of [f ≤ r], and

thus, by Proposition 3, it is an ia-direction of recession of f , as well as an

inner aperture direction for A, and hence, by Proposition 4, an ia-direction

of recession of A. The duality gap of the convex program is zero by virtue

of the point b) of Theorem 3. �
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Remark 5. As any bounded closed and convex subset of X is continuous,

Theorem 5 allows us to recapture the well-known result which states that

the duality gap of the convex program P (f, gi) is zero provided that the

function f + ιA is coercive.

The last two statements (obvious corollaries of Theorems 1 and 2) char-

acterize the objective functions and the feasible sets for which any convex

program has a zero duality gap.

Theorem 6. Let f be a function from Γ0(X). The two following sentences

are equivalent:

i) the sub-level sets [f ≤ r] with r > infX f are continuous convex sets,

ii) the duality gap of any convex program whose objective function is f

amounts to zero.

Theorem 7. Let A be a non-empty closed and convex subset of X . The two

following sentences are equivalent:

i) A is a continuous convex set,

ii) if A is the feasible set of a convex program, then its duality gap is

zero.

4. APPENDIX

The main concern of this appendix is to prove that the Theorem of the pri-

mal attainement holds true even if the blanket conditions given by relation

(1) are not satisfied.

A standard manner to address the duality gap of a convex program, is to

study the extended-real-valued mapping v : Rn → {−∞} ∪ R ∪ {+∞},

customary called the infimal (or marginal) function, and defined, for every

y = (y1, . . . , yn) ∈ R
n, as the infimum of the objective function f over the

closed and convex set Xy, where

Xy = {x ∈ X : gi(x) ≤ yi, ∀1 ≤ i ≤ n}.

At this point of our study, we need to recall a central notion in convex

analysis. Given Y a locally convex space, Y ∗ its topological dual and 〈·, ·〉Y
the bilinear form between Y and Y ∗, to any extended-real-valued mapping

h : Y → {−∞}∪R∪{+∞} we associate its Fenchel-Legendre conjugate,

a function h∗ : Y ∗ → {−∞} ∪ R ∪ {+∞} defined by the formula

h∗(y∗) = Sup {〈y∗, y〉Y − h(y) : y ∈ Y } .
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Let us get back to the infimal function of the convex program, and con-

sider v∗∗ : Rn → {−∞}∪R∪{∞}, its Fenchel-Legendre bi-conjugate, as

well as v : Rn → {−∞} ∪ R ∪ {∞}, its lower semi-continuous envelope,

v(z) = lim inf
y→z

v(y);

as v is convex, both v∗∗ and v are convex functions which are lower semi-

continuous, and it holds that

v∗∗ ≤ v ≤ v.

A main result in the theory of the convex programs (a very complete

account of the problem may be found in [14, Chapters 2.6 and 2.9], or in [5,

Chapter 4.3]) states that

(31) v(0) = inf P (f, g), v∗∗(0) = sup D(f, g).

It has already been remarked that for some classes of convex programs,

it is possible to sharpen the second part of relation (31) to

(32) v(0) = sup D(f, g).

Indeed, relation (32) is obviously satisfied if sup D(f, g) amounts to +∞;

a more significant result is provided by the Corollary 4.3.6 from [5], which

proves that the same holds true provided that the primal value inf P (f, g)

is finite.

The following result is a first step in proving that any convex program

with no directions of recession also fulfills relation (32).

Lemma 2. Let P (f, gi) a convex program without any direction of reces-

sion. Then

(33) −∞ < v(y) ∀ y ∈ R
n.

Moreover,

(34) [v(y) ∈ R] ⇒ [∃x ∈ Xy, v(y) = f(x)].

Prof of Lemma 2. Let y be a vector from R
n. If the effective domain of

f and Xy are two disjoint sets, it obviously results that v(y) = +∞.

In order to address the case when the objective function f does take a

finite value at some point of the closed and convex set Xy, let us invoke

the well-known result (see [13, Theorem 8.7]) which states that any two

non-void sub-level sets of a function from Γ0(X) have the same recession

cone.
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Hence, for any 1 ≤ i ≤ n, the recession cones of the sets [gi ≤ yi] and

[gi ≤ 0] coincide. The set Xy is the intersection of all the sets [gi ≤ yi],

while the intersection of all the sets [gi ≤ 0] is the efficient set A; the stan-

dard result ([13, Corollary 8.3.3]) which states that, given a family of closed

and convex subsets of X with a non-empty intersection, then the recession

cone of the intersection amounts to the intersection of the recession cones

of all the sets in the family, proves now that the sets Xy and A have the

same recession cone.

Accordingly, the mapping f from Γ0(X) and the closed and convex set

Xy have no common directions of recession; moreover, f takes a finite

value at some point of Xy. We are thus in a position to apply Corollary

27.3.3 from [13], which reads that there is (at least) a point x lying both in

dom f and Xy, such that f(x) = v(y). �

Let us recall the classical result (see for instance [2, Theorem 1.2.5]),

which proves that

(35) [∀y ∈ R
n, −∞ < v(y)] ⇒ [∀y ∈ R

n, −∞ < v∗∗(y) = v(y)];

putting together relation (35) and relation (33) from Lemma 2, we may state

the following result.

Proposition 5. The duality gap of a convex program without any direction

of recession amounts to zero if and only if the infimal function v is lower

semi-continuous at y = 0.

Let us conclude this appendix by proving the Theorem of the primal at-

tainement in the absence of any blanket or qualification conditions.

Theorem 8. The duality gap of a convex program amounts to zero provided

that it does not posses any direction of recession.

Proof of Theorem 8. In view of Proposition 5, all what we have to prove

is that the infimal function v is lower semi-continuous. To this end, let us

introduce the closed convex set

C =
n
⋂

i=0

Ci,

where

C0 = {(x,y, t) ∈ X × R
n × R : f(x) ≤ t},

and

Ci = {(x,y, t) ∈ X × R
n × R : gi(x) ≤ yi}.
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Obviously,

(C0)
∞ = {(x,y, t) : (x, t) ∈ (epif)∞}(36)

= {(x,y, t) : f∞(x) ≤ t},
while, for any 1 ≤ i ≤ n, it holds that

(Ci)
∞ = {(x,y, t) : (x, yi) ∈ (epi gi)

∞}(37)

= {(x,y, t) : g∞i (x) ≤ yi}.
Denoting by episv = {(y, t) ∈ R

n × R : v(y) < t} the strict epigraph

of the infimal function v, and by L the projection of , X × R
n × R onto

R
n × R; one clearly has

(38) epis v ⊂ L(C) ⊂ epi v.

We claim that the epi v is a closed subset of Rn × R.

If C = ∅, thus epi v = ∅, that is a closed set.

If C 6= ∅, the family of closed and convex sets Ci, 0 ≤ i ≤ n, has a

non-empty interior. We may thus apply Corollary 8.3.3, [13], and infer that

C∞ =
⋂n

i=0
(Ci)

∞. By virtue of relation (37), this fact implies that

(39) C∞ = {(x,y, t) : f∞(x) ≤ t} ∩
(

n
⋂

i=1

{(x,y, t) : g∞i (x) ≤ yi}
)

.

Let us also remark that

(40) L−1(0, 0) = (X,0, 0);

combining relations (39) and (40), we obtain that

L−1(0, 0) ∩ C∞ =
n
⋂

i=1

{(x,y, t) : f∞(x) ≤ 0, g∞i (x) ≤ 0}(41)

= ([f∞ ≤ 0] ∩ A∞,0, 0) .

But the convex program P (f, gi) does not have any direction of recession.

Consequently, [f∞ ≤ 0] ∩ A∞ = {0}, so relation (41) yields that

L−1(0, 0) ∩ C∞ = {(0,0, 0)}.
Let us now apply Theorem 9.1 from [13], which states that L(C) is

closed; relation (38) implies that

cl(epi v) = cl(epis v) ⊂ L(C) ⊂ epi v ⊂ cl(epi v).

Consequently, epi v is a closed set, and hence v is a lower semi-continuous

mapping. �



CONVEX PROGRAMS WITH ZERO DUALITY GAP 21

REFERENCES

[1] A. Auslender, P. Coutat, Closed Convex Sets without Boundary Rays and Asymptotes,

Set-Valued Anal., 2 (1994), p. 19-33.

[2] A. Auslender, M. Teboulle, Asymptotic cones and functions in optimization and vari-

ational inequalities Springer Monographs in Mathematics. New York, 2003.

[3] J. Bair, A geometric description of the inner aperture of a convex set, Acta Math.

Hungar. 38(1981), p. 237-240.

[4] H. Bauschke, J. Borwein, On projection algorithms for solving convex feasibility

problems, SIAM Rev. 38 (1996), p. 367-426.

[5] J. Borwein, A. Lewis, Convex Analysis and Nonlinear Optimization: Theory and

Examples, Birkhäuser, 2006.
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