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ZERO DUALITY GAP FOR CONVEX PROGRAMS: A
GENERAL RESULT

EMIL ERNST AND MICHEL VOLLE

Abstract. This article addresses a general criterion providing a

zero duality gap for convex programs in the setting of the real

locally convex spaces. The main theorem of our work is formulated

only in terms of the constraints of the program, hence it holds

true for any objective function fulfilling a very general qualification

condition, implied for instance by standard qualification criteria of

Moreau-Rockafellar or Attouch-Brézis type. This result generalizes

recent theorems by Champion, Ban & Song and Jeyakumar & Li.

1. Introduction

Recently, several important breakthroughs (Champion [3] in 2004,

Ban & Song [1] in 2009 and Jeyakumar & Li [8] in 2009), were made in

characterizing convex programs with a zero duality gap. The aim of our

work is to prove a very general result, implying all the above-mentioned

theorems.

In order to clearly state the problems to which our work attempts

to answer, we ask the reader to bear with us as we describe the main

classical results in this field.

1.1. Convex programs. Throughout this article, X will be a locally

convex space over the field of real numbers, and (Y, ‖ · ‖, ≤S) will be

a real normed space endowed with the partial ordering associated to

S, a closed convex and pointed cone of Y . To the space Y we add a

singular element, denoted ∞Y ; we assume that the following conditions

are satisfied:

y ≤S ∞Y , y +∞Y = ∞Y ∀y ∈ Y, r · ∞Y = ∞Y ∀r ≥ 0.
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Of special concern is the class of the S-convex mappings, that is

functions g : X → Y ∪ {∞Y }, such that relation

(1) g (λx1 + (1− λ)x2) ≤S λ g(x1) + (1− λ) g(x2)

holds true for any two vectors x1, x2 ∈ dom(g) and λ ∈ [0, 1], where

dom(g) = {x ∈ X : g(x) 6= ∞Y } is the effective domain of g. An-

other important class of mappings is composed from the S-lower semi-

continuous (S-l.s.c. for short) functions; we recall that the function

g : X → Y ∪ {∞Y } is S-l.s.c. at x0 ∈ X if, for every ε > 0 and y ∈ Y ,

y ≤S g(x0), there is U , a neighborhood of x0 , such that

g (U) ⊂ ((y + εBY ) + S) ∪ {∞Y },

where BY is the closed unit ball from Y . It is easy to see that each

and every of the sub-level sets [g ≤S y] = {x ∈ X : g(x) ≤S y} of a

S-convex and S-l.s.c. mapping is a closed and convex subset of X.

As customary, the set of all the mappings g defined over X with

values within Y ∪ {∞Y }, which are proper (that is dom(g) 6= ∅) and

S-convex is denoted by Λ0(X, Y, S); the class of all the functions from

Λ0(X, Y, S) which are also S-l.s.c. is denoted by Γ0(X, Y, S). An im-

portant case is achieved when (Y, ‖ · ‖,≤S) = (R, | · |,≤); to simplify

the notations, we write Λ0(X) and Γ0(X) instead of Λ0(X,R,R+) and

Γ0(X,R,R+).

We are now in a position to define the main notion of our article.

Definition 1. Let g be a mapping from Γ0(X, Y, S), and f be a function

from Λ0(X) such that dom(f) ∩ [g ≤S 0] 6= ∅. The problem P (f, g),

asking to minorize the objective function f over the closed and convex

set of constraints A = [g ≤S 0], is called a convex program:

P (f, g) : Find InfA f, where A = {x ∈ X : g(x) ≤S 0} ;

its value is denoted by Inf P (f, g).

Remark 1. When Y = R
k, S = R

k
+, and g(x) = (g1(x), . . . , gk(x)),

gi ∈ Γ0(X), we recover the classical notion of an ordinary convex pro-

gram:

P (f, gi) : Find Inf {f(x) : g1(x) ≤ 0, . . . , gk(x) ≤ 0} .
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Remark 2. Definition 1 states that for every convex program it holds

that

dom(f) ∩ [g ≤S 0] 6= ∅;

accordingly,

(2) Inf P (f, g) < +∞.

A classical way to study P (f, g) is to address the dual convex problem

D(f, g) : Find Sup
{

Inf{f(x) + 〈λ, g(x)〉Y : x ∈ X} : λ ∈ S+
}

;

here Y ∗ is the topological dual of Y , 〈·, ·〉Y : Y ∗ × Y → R represents

the bilinear form between Y and Y ∗, S+ is the positive dual cone of S,

S+ = {y∗ ∈ Y ∗ : 〈y∗, s〉Y ≥ 0 ∀s ∈ S} ,

and we make the convention that

(3) 〈y∗,∞Y 〉 = +∞ ∀y∗ ∈ S+.

Obviously, the dual convex problem of an ordinary convex program

takes the form:

D(f, gi) : Sup

{

Inf

{

f(x) +
k

∑

i=1

λi gi(x) : x ∈ X

}

: λ1, . . . λk ≥ 0

}

.

Remark 3. The convention stated in the general case by relation (3)

entails for the case of the dual problem of an ordinary convex program

the standard convention asking that

0 · (+∞) = +∞.

The ground of our interest in the apparently more complicated dual

problem is that, from a numerical point of view, it is much easier

to compute its solution, Sup D(f, g) than the solution Inf P (f, g) of

the convex program. We are thus interested in characterizing convex

programs for which the duality gap δ(f, g) = Inf P (f, g)− Sup D(f, g)

amounts to zero, simply because such programs are easier to solve.

A standard manner to address the duality gap of a convex program, is

to study the extended-real-valued mapping v : Y → {−∞}∪R∪{+∞},

customary called the infimal (or marginal) function, and defined by the

following formula:

v(y) = Inf{f(x) : x ∈ [g ≤ y]} ∀y ∈ Y.
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At this point of our study, we need to recall a central notion in convex

analysis. Given Z a locally convex space, Z∗ its topological dual and

〈·, ·〉Z the bilinear form between Z and Z∗, to any extended-real-valued

mapping h : Z → {−∞}∪R∪{+∞} we associate its Fenchel-Legendre

conjugate, a function h∗ : Z∗ → {−∞} ∪ R ∪ {+∞} defined by the

formula

h∗(z∗) = Sup {〈z∗, z〉Z − h(z) : z ∈ Z} .

Let us get back to the infimal function of the convex program, and

consider v∗∗ : Y → {−∞}∪R∪{∞}, its Fenchel-Legendre bi-conjugate,

as well as v : Y → {−∞}∪R∪{∞}, its lower semi-continuous envelope,

v(y) = lim inf
z→y

v(z);

as v is convex, both v∗∗ and v are convex functions which are lower

semi-continuous, and it holds that

v∗∗ ≤ v ≤ v.

More precisely, it holds that either v∗∗ does not take the value −∞,

and then v∗∗ = v, or v∗∗ = −∞, and then

v(y) =

{

−∞ y ∈ C

+∞ y /∈ C

for some closed and convex subset C of Y (which clearly depends upon

the mappings f and g). It results that v∗∗(y) and v(y) can differ ony

when v∗∗(y) = −∞ and v(y) = +∞, so every time when v(y) < +∞,

it follows that v∗∗(y) = v(y).

It can be proved (a very complete account of the problem may be

found in [10, Chapters 2.6 and 2.9]), or in [2, Chapter 4.3] that, for each

and every convex program P (f, g), it holds that v(0) = Inf P (f, g) and

v∗∗(0) = Sup D(f, g).

Moreover, relation (2) in Remark 2 reads that v(0) < +∞; thus

v∗∗(0) = v(0). We may hence conclude that ([2, Corollary 4.3.6]), the

duality gap of a convex program is always non-negative, and amounts

to zero if and only if the infimal function is lower semi-continuous at 0.

Remark 4. If one allows convex programs for which the sets dom(f)

and [g ≤S 0] can be disjoint, then v(0) may take the value +∞, and so

the duality gap may be non-null despite the lower semi-continuity at 0

of the infimal mapping.
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The characterization of convex programs with zero duality gap by

using the lower semi-continuity of the infimal function is a profound,

powerful and very elegant statement. It provides, in particular, easy

and clear proofs of the fact that the duality gap is zero when the Slater’s

condition, g(X) ∩ Int(S) 6= ∅, is fulfilled, or when one of the mappings

fλ(x) = f(x) + 〈λ, g(x)〉Y , λ ∈ S+ is inf-compact (meaning that all its

sub-level sets are compact subsets of X).

Yet, the marginal function depends upon both the objective function

f , and the function g which expresses the constraints; hence, it is often

difficult to decide whether v is l.s.c. or not at 0. An alternative to

overcome this difficulty is to seek a zero duality gap criterion formulated

only in terms of the mapping g. Such a criterion is bound to be less

general, but, hopefully, it might be more amenable.

Following this line of reasoning, several authors have independently

addressed the following problem over the last decade:

Find all the mappings g from Γ0(X, Y, S) such that the duality gap of

the convex program P (f, g) amounts to zero for each and every objec-

tive function f from Λ0(X), provided that f satisfies the qualification

condition:

(Q1): f is finite and continuous at some point of A.

1.2. Primal criterions: theorems by Champion and Ban &

Song. In his article [3], Champion tackles this problem in the par-

ticular case of ordinary convex programs, and achieves (Theorem 2.6)

an answer, provided that X is a real normed space, and f ∈ Γ0(X).

In order to clearly state Champion’s result, let us recall that the

non-negative mapping p ∈ Γ0(X) penalizes in the sense of Motzkin

([9]) the objective function f from Λ0(X) if

(4) InfA f = lim
n→∞

InfX(f + n p),

where A = p−1(0). As p is non-negative, it follows that

(5) Sup {Inf {f(x) + s p(x) : x ∈ X} : s ≥ 0} = lim
n→∞

InfX(f +n p);

accordingly, p is a penalty function for f if and only if the convex

program P (f, p) (in this case (Y, ‖ · ‖,≤S) = (R, | · |,≤)), has a zero

duality gap: δ(f, p) = 0.
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Theorem [Champion, 2004]. Let X be a real normed space, and

consider a finite set {gi : i = 1, . . . , k} of functions from Γ0(X). The

following sentences are equivalent.

(i) The duality gap of the ordinary convex program P (f, gi) is zero

for every objective function f from Γ0(X) fulfilling condition (Q1)

(ii) The Courant-Beltrami mapping

(6) pCB(x) = max {0, g1(x), . . . , gk(x)}

penalizes every function f from Γ0(X) fulfilling condition (Q1),

(iii) Relation

[pCB ≤ 0] + L =
⋂

ε>0

[pCB ≤ ε] + L

holds for every closed and linear subspace L of X.

The same assumptions (X is a real normed space, and f ∈ Γ0(X))

underline the article of Ban & Song ([1]); their study extends Cham-

pion’s result to the case of general convex programs, but only provided

that the norm-interior of S is non-void, fact which allows us to define,

for y1, y2 ∈ Y the relation y1 < y2, as y2 − y1 ∈ Int(S).

Moreover, the authors provide no mapping of Courant-Beltrami type,

fitted for the the general case.

Theorem [Ban & Song, 2009]. Assume that X is a real normed

space, and that the norm-interior of the cone S is non-void. The fol-

lowing sentences are equivalent.

(i) The duality gap of the convex program P (f, g) is zero for every

objective function f from Γ0(X) fulfilling condition (Q1)

(ii) Relation

[g ≤S 0] + L =
⋂

y>0

[g ≤S y] + L

holds for every closed hyperplane L of X.

1.3. A dual criterion: a theorem by Jeyakumar & Li. A dual

approach is given to this problem by Jeyakumar & Li ([8, Theorem

4.1]), at least for the case whenX is a real Banach space and f ∈ Γ0(X).

To this respect, the authors addressed the problem P (−x∗, g), for each

and every linear and continuous mapping x∗ from X∗. One has clearly

σA(x
∗) = −Inf P (−x∗, g) ∀x∗ ∈ X∗,
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where σA is the support function of A:

σA : X∗ → R ∪ {∞}, σA(x
∗) = SupA x∗.

The authors denote by h⋄(x∗) the opposite of the value of the dual

problem whose objective function is −x∗: h⋄(x∗) = −SupD(−x∗, g).

Accordingly,

h⋄(x∗) = Inf
{

Sup{〈x∗, x〉X − 〈y∗, g(x)〉Y : x ∈ X} : y∗ ∈ S+
}

(as customary, X∗ stands for the topological dual of X, and the bilinear

form between X and X∗ is denoted by 〈·, ·〉X : X∗ ×X → R).

It is easy to see that, for any g ∈ Γ0(X, Y, S), h⋄ is a sublinear map-

ping; moreover, as the value of the primal problem always majorizes

the value of the dual one, it results that

h⋄(x∗) ≥ σA(x
∗) ∀x∗ ∈ X∗.

Theorem [Jeyakumar & Li, 2009]. Assume that X is a real

Banach space, and that the mapping g is such that 〈λ, g(x)〉 is a lower

semi-continuous application for each and every vector λ from S+. The

following sentences are equivalent.

(i) The duality gap of the convex program P (f, g) is zero for every

objective function f from Γ0(X) fulfilling condition (Q1)

(ii) The mapping h⋄ is lower semi-continuous.

1.4. Plan and scope of the paper. Like many works opening up

a new field, the above-mentioned articles solve important problems,

whereas rising pertinent questions.

a) Champion’s theorem reposes upon the fact that the duality gap of

an ordinary convex program P (f, gi) is zero if and only if the associates

Courant-Beltrami mapping penalizes the objective function f .

Accordingly, Ban & Song’s theorem may be viewed as an indication

that a similar result may exists even for general convex programs (al-

though the authors did not provided it), and clearly rises the following

question:

Is it possible to define a mapping of Courant-Beltrami type for a con-

vex program (non necessarily an ordinary one)? In other words, is it

always possible to reduce the problem of the duality gap to a penalty

problem?
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b) Champions’s and respectively Jeyakumar & Li’s theorems provide

a primal and respectively a dual scalar criteria for a zero duality gap

convex program. It is thus a legitimate concern to ask whether:

Is there any relationship between the Courant-Beltrami mapping intro-

duced by Champion (a mapping defined over the primal space X), and

Jeyakumar & Li’s application h⋄, defined over the dual space X∗?

c) The qualification condition (Q1) is currently used in convex anal-

ysis, as it allows to achieve a large variety of results. However, many

(if not all) among these results are valid provided that the underlining

space X is locally convex, but not necessarily normed, and that the

function f whose continuity at some point is required is convex, but

not necessarily l.s.c.

Do the theorems by Champion, Ban & Song and Jeyakumar & Li re-

main true when X is a locally convex space, and the objective function

f belongs only to Λ0(X)? Is it possible to achieve similar theorems for

other classical qualification condition, for instance of Attouch-Brézis

type, or even in the absence of such a condition?

It is our aim to answer positively to these questions. To be more

specific, Corollary 1 proves that a Courant-Beltrami map may be de-

fined for any convex program, Theorem 2 shows that the mapping h⋄

is nothing but the directional derivative at 0 of the conjugate of the

Courant-Beltrami map, and finally, Theorem 4 provides a family of

very general zero duality gap criteria.

2. Courant-Beltrami mappings for general convex

programs: an answer to questions a) and b)

2.1. Definition and general properties of Courant-Berltrami

functions.

Definition 2. Let g be a mapping from Γ0(X, Y, S). The function

pCB : X → R ∪ {+∞} defined by the formula

pCB(x) =

{

dist(g(x), −S) x ∈ dom g

+∞ g(x) = ∞Y

∀x ∈ X

is called the Courant-Beltrami function associated to g; as customary,

dist(y,D) = Inf{‖y − z‖ : z ∈ D}

denotes the distance between a vector y ∈ Y and a subset D of Y .
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Remark 5. If Y = R
n, S = R

n
+, and

‖(y1, . . . , yn)‖ = max{|yi| : i = 1 . . . n},

then the Courant-Beltrami mapping previously defined coincides with

the one used by Champion.

The following result collects several classical properties of Courant-

Beltrami mappings, whose standard proofs are omitted.

Proposition 1. The Courant-Beltrami function associated to the map-

ping g from Γ0(X, Y, S) lies within the set Γ(A), where

Γ(A) =
{

f ∈ Γ0(X) : f(x) ≥ 0 ∀x ∈ X, f−1(0) = A
}

,

and A = g−1(−S).

An important feature of the newly defined map is provided by the

following theorem.

Theorem 1. The convex programs P (f, g) and P (f, pCB) share the

same primal and dual values.

Proof of Theorem 1: Let us denote by v : Y → {−∞} ∪ R ∪ {∞}

and respectively vCB : R → {−∞} ∪ R ∪ {∞} the infimal functions

associated to the convex programs P (f, g) and respectively P (f, pCB).

Set y ∈ Y ; it is easy to prove that,

[g(x) ≤S y] ⇒ [dist(z,−S) ≤ ‖y‖] ;

accordingly,

(7) v(y) ≥ vCB(‖y‖) ∀y ∈ Y.

Set now a, ε > 0, and pick x ∈ X such that

dist(g(x),−S) ≤ a, f(x) ≤

{

vCB(a) + ε vCB(a) > −∞

−1

ε
vCB(a) = −∞

;

it easily yields that there is y ∈ Y and v ∈ −S such that

g(x) = y + v, ‖y‖ ≤ a+ ε.

As g(x) ≤S y, it follows that v(y) ≤ f(x). We have thus proved

that, for any a, ε > 0,

(8) ∃y ∈ (a+ ε)BY , v(y) ≤

{

vCB(a) + ε vCB(a) > −∞

−1

ε
vCB(a) = −∞

.
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Relation (7) implies that v(0) ≥ vCB(0), while from relation (8)

we deduce that v(0) ≤ vCB(0). As from Proposition 1 it follows

that v(0) = vCB(0), it results that Inf P (f, g) = Inf P (f, pCB) and

SupD(f, g) = SupD(f, pCB). �

The following obvious corollary of Theorem 1 establishes the rele-

vance to our study of the above defined Courant-Beltrami map, and

answers positively to question a).

Corollary 1. Let P (f, g) be a convex program. The two following

statements are equivalent.

(i) The duality gap of P (f, g) amounts to zero.

(ii) The Courant-Beltrami mapping associated to g penalizes f .

2.2. The directional derivate of the Courant-Beltrami map-

ping. Let us consider a mapping f : X → {−∞} ∪ R ∪ {+∞}, x0 a

point at which f takes a real value, and v a vector from X; when it

exists, the extended-real-valued limit

lim
r→0, r>0

f(x0 + r v)− f(x0)

r

is called the directional derivative of f along v. It is well-known that

if f is a convex application, then the directional derivative exists along

any vector from X; accordingly, at any point x0 at which the convex

function f takes a finite value, it is possible to consider the mapping

Df (x0) : X → {−∞}∪R∪ {∞} (the directional derivative of f at x0)

defined by the following relation:

(Df (x0))(x) = lim
r→0, r>0

f(x0 + r x)− f(x0)

r
.

The following two lemmas collect standard results concerning the

directional derivative of the conjugate of an application from Λ0(X).

Lemma 1. Let p be a function from Λ0(X) such that InfX p = 0. Then

(9) (Dp∗(0)) (x∗) = − lim
n→∞

(InfX(〈−x∗, x〉X + n p(x))).
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Proof of Lemma 1: Since InfX p = 0, it results that p∗(0) = 0.

Accordingly,

InfX(〈−x∗, x〉X + n p(x)) = −SupX(〈x
∗, x〉X − n p(x))(10)

= −n SupX

(〈

x∗

n
, x

〉

X

− p(x)

)

= −n p∗
(

x∗

n

)

= −
p∗

(

x∗

n

)

− p∗(0)
1

n

Relation (9) follows by letting n go to infinity in relation (10). �

Let A be a closed and convex non-void subset of X; its indicator

function ιA is currently defined as

ιA : X → R ∪ {+∞} ιA(x) =

{

0 x ∈ A

+∞ x /∈ A
;

one has that (ιA)
∗ = σA and (σA)

∗ = ιA. Remark also that ιA belongs

to the set Γ(A).

Lemma 2. Let p be a function from Γ(A). Then

(11) Dp∗(0) = σA.

Proof of Lemma 2: Since p∗(0) = −infX p = 0, one has that

(Dp∗(0)) (x) = infn∈N n p∗
(x

n

)

,

and so

(Dp∗(0))
∗ = supn∈N (n p)∗∗ = supn∈N (n p) = ιA.

Accordingly,

(12) (Dp∗(0))
∗∗ = ι∗A = σA.

We have thus proved thatDp∗(0) is a convex mapping whose bi-conjugate

does not achieve the value −∞; hence

(13) Dp∗(0) = (Dp∗(0))
∗∗ .

The conclusion of Lemma 2 stems by combining relations (12) and

(13). �

The following result answers question b), by providing the researched

connection between the penalty function of Courant-Beltrami type as-

sociated to a mapping g from Γ0(X, Y, S), and the mapping h⋄.
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Theorem 2. Let g be a mapping from Γ0(X, Y, S), and assume that

the set A = g−1(−S) is non-void. Then

(14) Dp∗
CB

(0) = h⋄.

Proof of Theorem 2: In view of the definition of the function h⋄, all

what we have to prove is that

(15)
[

Dp∗
CB

(0)
]

(x∗) = −SupD(−x∗, g) ∀x∗ ∈ X∗.

As proved by Theorem 1, SupD(−x∗, g) = SupD(−x∗, pCB). By

applying relation (5) to the non-negative mapping pCB, we deduce that

(16) −SupD(−x∗, g) = − lim
n→∞

InfX(〈−x∗, x〉X + n pCB(x)),

and relation (15) easily follows from relation (16) and Lemma 1. �

3. Towards an abstract zero duality gap criterion

In order to achieve a general zero duality gap criterion, let us first

define and study a class of convex functions in relation with our main

concern, namely the convex programs.

3.1. A class of convex functions. Given A a convex subset of X,

let us denote by Ξ(A) the class of all the functions f from Λ0(X) whose

effective domain meets A and for which holds the following geometrical

property:

(G): Let s be a real number such that InfX f < s < InfA f . Then,

the set A may be strictly separated by the means of a closed hyperplane

from the sub-level set [f ≤ s] of f .

In other words, the convex mapping f is an element of the class Ξ(A)

if InfA f < +∞, and if, for any real number s inferior to InfA f and

such that [f ≤ s] 6= ∅, the relation

(17) Sup{〈x∗, x〉X : x ∈ [f ≤ s]} < Inf{〈x∗, x〉X : x ∈ A}

holds for some linear and continuous functional x∗ ∈ X∗.

Remark 6. It is easy to see that, when the set A is the singleton {x0}

and f ∈ Λ0(X), then the two following statements are equivalent:

(i): f belongs to Ξ(A)

(ii): f is l.s.c. at x0.
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Unlike for the case of a set A reduced to a point, no simple char-

acterization of elements from Ξ(A) seems to exists in general. This

subsection uses standard convex analysis techniques to prove that sev-

eral well-known sets of convex functions are contained in Ξ(A).

To this end, let us first recall that a closed and convex subset C of

a reflexive Banach space X is called slice-continuous if:

(a): its interior is non-void, and

(b): its support function σC is continuous at every element x∗ of X∗,

provided that x∗ 6= 0.

In the case of the Euclidean spaces, the closed convex sets satisfying

(b) were first studied in [7] under the name of continuous convex sets.

The general Banach reflexive case was subsequently addressed in [5]

and [6] (see also [4]).

The main interest of this class of convex sets is the following re-

sult ([5, Proposition 2, p. 194]): any two disjoint closed and convex

nonempty subsets from a reflexive Banach space may be strictly sep-

arated by a closed hyperplane provided that at least one of them is

slice-continuous.

It is now obvious that the following statement holds true.

Proposition 2. Let X be a reflexive Banach space, and A a closed

and convex subset of X. The following two sentences hold true.

(i) Any mapping from Γ0(X) whose sub-level sets are slice-continuous

and whose effective domain meets A belongs to Ξ(A).

(ii) Any mapping from Γ0(X) whose effective domain intersects A

lies within Ξ(A), provided that A is slice-continuous.

In order to describe a second manner of tackling the problem of char-

acterizing elements from Ξ(A), let us recall that, given two mappings

f, g : X → R ∪ {+∞}, it is customary to define the function f�g,

called the inf-convolution of f and g and defined as

(f�g)(x) = inf{f(x+ y) + g(−y) : y ∈ X} ∀x ∈ X.

Lemma 3. Any function f from Λ0(X) belongs to Ξ(A) provided that

its effective domain meets the set A and the following condition holds:

(Q): (f + ιA)
∗ (0) = (f ∗

�ι∗A)(0).

Proof of Lemma 3: Let f be a function from Λ0(X) whose effective

domain meets A. Obviously, if InfA f = −∞, then f belongs to Ξ(A).
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Let us address the remaining case when InfA f ∈ R. Relation (Q)

implies that, for any positive real number ε, there is an element x∗
ε of

X∗ such that

(18) f ∗(x∗
ε) + ι∗A(−x∗

ε) ≤ ε− InfA f.

Recall that

f ∗(x∗
ε) = Sup{〈x∗

ε, x〉 − f(x) : x ∈ X}

and that

ι∗A(−x∗
ε) = Sup{〈x∗

ε;−y〉 : y ∈ A},

to infer from relation (18) that for every x ∈ X and y ∈ A it holds that

(19) 〈x∗
ε, x− y〉 − f(x) ≤ ε− InfA f.

Let now s be a real number such that InfX f < s < InfA f . Relation

(19) implies that

〈x∗
ε, x− y〉 ≤ s+ ε− InfA f

for each and every x ∈ [f ≤ s] and y ∈ A. It is now obvious that the

linear and continuous mapping x∗
ε fulfills relation (17) provided that

0 < ε < InfA f − s. �

Apparently, using Lemma 3 with the intent to characterize functions

from the class Ξ(A) would lead us to replace the rather simple geometric

condition (G) with the very technical statement (Q).

The utility of Lemma 3 become however more apparent in view the

so-called theorems of qualification (a very complete account of this

topic may be found in [10, Theorem 2.8.7]), which provide a large

number of sufficient and esay to handle conditions for the validity of a

relation much stronger than (Q).

Let us recall two among the most well-known such results.

Theorem. Let X be a locally convex space, pick f , g two elements

from Λ0(X), and assume that at least one of the two statements holds

true.

• (Moreau-Rockafellar) f is finite and continuous at some point

where g takes a real value

•• (Attouch-Brézis) X is a Banach space, f, g ∈ Γ0(X) and the cone

R+(dom(f)− A) is a closed linear subspace of X.

Then (f + g)∗ = f ∗
�g∗, and the inf-convolution is exact, meaning

that the infimum in the definition of f ∗
�g∗ is in fact a minimum.
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Accordingly, by invoking Moreau-Rockafellar’s theorem jointly with

Lemma 3, one can establish the following result.

Proposition 3. Let X be a locally convex space, and A a closed and

convex subset of X. Any function f from Λ0(X) belongs to Ξ(A) pro-

vided that the following qualification condition holds:

(Q1): f is finite and continuous at some point of A.

The next statement is an obvious consequence of Proposition 3. It

can also be easily checked directly.

Proposition 4. The class Ξ(A) contains each and every linear and

continuous functional x∗ from X∗.

When the underline space X is a real Banach space, and f ∈ Γ0(X),

then property (G) is implied by a more general condition, of Brezis-

Attouch type.

Proposition 5. Let (X, ‖ · ‖) be a real Banach space, and A be one of

its closed and convex subsets. Any function f from Γ0(X) belongs to

Ξ(A) provided that the following qualification condition holds:

(Q2): R+(dom(f)− A) is a non-void closed linear subspace of X.

3.2. An abstract zero duality gap theorem. Our main result pro-

vides an abstract version of the above-mentioned results by Champion,

Ban & Song and Jeyakumar & Li.

Theorem 3. Let X be a locally convex space, A a closed and convex

subset of X, p a mapping from Γ(A) and F a subset of Ξ(A) which

contains X∗. The following four statements are equivalent.

(i): The function p is a penalty functional for all the mappings f ∈ F

(ii) The directional derivative at 0 of p∗, the conjugate of p, coincides

with σA, the support functional of A

(iii): The directional derivative at 0 of p∗ belongs to Γ0(X
∗)

(iv): For any L, closed linear subspace of X it holds that

(20) [p ≤ 0] + L =
⋂

ε>0

[p ≤ ε] + L.
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Proof of Theorem 3: We shall prove that each and every of the

statements (i), (iii) and (iv) is equivalent with the statement (ii).

(i) ⇒ (ii) Let x∗ ∈ X∗; p is a penalty function for all the mappings

from F , and in particular for −x∗. It results that

(21) InfA 〈−x∗, x〉 = lim
n→∞

(InfX(〈−x∗, x〉+ n p(x))) .

But

(22) InfA 〈−x∗, x〉 = −SupA 〈x∗, x〉 = −σA(x
∗),

while Lemma 1 proves that

(23) (Dp∗(0)) (x∗) = − lim
n→∞

(InfX(〈−x∗, x〉+ n p(x))) .

Finally, from relations (21), (22) and (23) it follows that

σA(x
∗) = (Dp∗(0)) (x∗) ∀x∗ ∈ X∗.

(ii) ⇒ (i) Suppose, to the end of obtaining a contradiction, that

there is a function f belonging to the class Ξ(A) and two real numbers

s1 and s such that s1 < s < InfA f and

(24) InfX(f(x) + n p(x)) ≤ s1 ∀n ∈ N.

Accordingly, there is a sequence (xn)n∈N ⊂ X such that

(25) f(xn) + n p(xn) < s ∀n ∈ N.

As p takes only positive values, it results that (xn)n∈N ⊂ [f ≤ s].

The sub-level set [f ≤ s] is thus non-void, s < InfA f , and f ∈ Ξ(A).

It follows that the set [f ≤ s] may be strictly separated by the means

of a closed hyperplane from the set A: there are two real numbers a

and b and a linear and continuous functional x∗ ∈ X∗ such that

(26) Sup{〈x∗, x〉 : x ∈ [f ≤ s]} < a < b < Inf{〈x∗, x〉 : x ∈ A}.

Our claim is that σA(−x∗) < (Dp∗(0)(−x∗).

Indeed, from relation (26) it stems that

(27) b < −σA(−x∗).

In order to estimate Dp∗(0)(−x∗), let us pick x0 ∈ dom f ∩ A, and

define the real numbers

λn =
〈x∗, x0〉 − a

〈x∗, xn − x0〉
∀n ∈ N.
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When combined with the fact that x0 ∈ A, relation (26) implies that

〈x∗, x0〉 > b; when we take into account that (xn)n∈N ⊂ [f ≤ s], the

same relation yields that 〈x∗, xn〉 < a for all n ∈ N. Clearly, this means

that all the real numbers λn belong to [0, 1], and that

(28) 〈x∗, yn〉 = a ∀n ∈ N,

where yn = λn xn + (1− λn) x0.

Combine once again relation (26), this time with relation (28), to

deduce that

(29) f(yn) > s ∀n ∈ N,

and use Jensen’s inequality for the convex functions f and respectively

p, to infer that

(30) f(yn) ≤ λn f(xn) + (1− λn) f(x0) ∀n ∈ N,

and respectively that

(31) p(yn) ≤ λn p(xn) ∀n ∈ N

(recall that p(x0) = 0, as x0 ∈ A = p−1(0)).

From relations (25), (29) and (30) it yields that

0 < (1− λn)(f(x0)− s)− nλn p(xn) ∀n ∈ N

inequality which, combined with relation (31) proves that

0 ≤ p(yn) <
(1− λn)(f(x0)− s)

n
∀n ∈ N.

But for any n ∈ N we have that 0 ≤ λn ≤ 1; thus

0 ≤
(1− λn)(f(x0)− s)

n
≤

f(x0)− s

n
.

Accordingly, limn→+∞ p(yn) = 0. Pick m ∈ N; then

(32) lim
n→∞

(〈x∗, yn〉+mp(yn)) = a ∀m ∈ N.

As a consequence of relation (32) it results that

(33) InfX(〈x
∗, x〉+ n p(x)) ≤ a ∀n ∈ N,

and Lemma 1 together with relation (33) reads that

(34) −(Dp∗(0)(−x∗) ≤ a.
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From relations (34) and (27) it results that σA(−x∗) < (Dp∗(0)(−x∗),

fact which contradicts assumption (ii). Statement (24) is accordingly

false, so relation (i) is true.

(ii) ⇒ (iii) This implication is obvious.

(iii) ⇒ (ii) This implication is an easy consequence of Lemma 2.

(ii) ⇒ (iv) Let L, a closed linear subspace of X, and assume, to the

purpose of achieving a contradiction, that there is some point x0 ∈ X

such that

(35) x0 ∈
⋂

ε>0

[p ≤ ε] + L, x0 /∈ A+ L.

In the framework of the real locally convex spaces, it is always pos-

sible to strictly separate by the means of a closed hyperplane a point

from a disjoint closed and convex set. In particular, this statement is

valid for the point x0 and for the closed and convex set A+ L; hence

(36) 〈x∗, x0〉 < Inf
{

〈x∗, x〉 : x ∈ A+ L
}

for some linear and continuous functional x∗ ∈ X∗. Let us also remark

that relation (36) implies that

(37) 〈x∗, x〉 = 0 ∀x ∈ L.

We claim that (Dp∗(0))(−x∗) < σA(−x∗).

Indeed, as A ⊂ A+ L, from relation (36) it yields that

(38) 〈x∗, x0〉 < −σA(−x∗).

In order to estimate (Dp∗(0))(−x∗), let us pick η > 0 and n ∈ N,

and apply relation (35) for ε = η

n
. It results that there are two nets

(yi)i∈I ⊂ X and (zi)i∈I ⊂ L, such that

(39) x0 = lim
i∈I

(yi + zi), p(yi) ≤
η

n
∀i ∈ I.

In view of relations (37) and (39), we deduce that

(40) lim
i∈I

〈x∗, yi〉 = lim
i∈I

〈x∗, yi + zi〉 = 〈x∗, x0〉 ;

as n p(yi) ≤ η, it follows that

(41) InfX(〈w
∗, x〉+ n p(x)) ≤ 〈x∗, x0〉+ η ∀n ∈ N, ∀η > 0.

Let η go to 0 in relation (41); then

(42) InfX(〈x
∗, x〉+ n p(x)) ≤ 〈x∗, x0〉 ∀n ∈ N.
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From relation (42) and Lemma 1 it results that

(43) −(Dp∗(0))(−x∗) ≤ 〈x∗, x0〉 .

Our claim follows from relations (38) and (43); this fact contradicts

assumption (ii). We may henceforth state that relation (35) is false;

accordingly, the statement (iv) holds true.

(iv) ⇒ (ii) To the purpose of achieving a contradiction, let us assume

that there exists a linear and continuous functional x∗ ∈ X∗ such that

(44) (Dp∗(0))(x
∗) > σA(x

∗).

Set L = {x ∈ X : 〈x∗, x〉 = 0}, and pick x0 ∈ X such that

(45) (Dp∗(0))(x
∗) > 〈x∗, x0〉 > σA(x

∗).

It is obvious that

(46) 〈x∗, x〉 ≤ σA(x
∗) ∀x ∈ A+ L;

relation (46), combined with the second inequality of relation (45) im-

plies that

(47) x0 /∈ A+ L.

We claim that

(48) x0 ∈ [p ≤ ε] + L ∀ε > 0;

in other words, we want to prove that, for any ε > 0, there is xε ∈ X

such that

(49) 〈x∗, x0〉 = 〈x∗, xε〉 , p(xε) ≤ ε.

To the end of achieving a contradiction to this new claim, let us

assume that there is a real positive number a such that

(50) p(x) ≥ a ∀x s.t. 〈x∗, x〉 = 〈x∗, x0〉 .

Pick x ∈ X such that 〈x∗, x〉 ≥ 〈x∗, x0〉; our aim is to estimate p(x).

To this end, let us consider an element x1 ∈ A; from relation (45) it

follows that

(51) p(x1) = 0, 〈x∗, x1〉 < 〈x∗, x0〉 .

The inequality in relation (51) allows us to define the element

y =
〈x∗, x− x0〉

〈x∗, x− x1〉
x1 +

〈x∗, x0 − x1〉

〈x∗, x− x1〉
x,
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and to remark that 〈x∗, y〉 = 〈x∗, x0〉. Relation (50) and the equality

in relation (51) may now be used to show that

a ≤ p(y) ≤
〈x∗, x− x0〉

〈x∗, x− x1〉
p(x1) +

〈x∗, x0 − x1〉

〈x∗, x− x1〉
p(x)(52)

=
〈x∗, x0 − x1〉

〈x∗, x− x1〉
p(x).

Accordingly,

(53) p(x) ≥ a

(

1 +
〈x∗, x− x0〉

〈x∗, x0 − x1〉

)

∀x s.t. 〈x∗, x〉 ≥ 〈x∗, x0〉 .

An easy computation proves that, for any n ∈ N and x ∈ X such

that 〈x∗, x〉 ≥ 〈x∗, x0〉, it holds that

〈−x∗, x〉+ n p(x) ≥ na− 〈x∗, x0〉(54)

+ 〈x∗, x− x0〉

(

na

〈x∗, x0 − x1〉
− 1

)

.

Set n0 an integer such that n0 ≥
〈x∗,x0−x1〉

a
; relation (54) proves that

(55) 〈−x∗, x〉+ n p(x) ≥ −〈x∗, x0〉

for any n ≥ n0 and x ∈ X such that 〈x∗, x〉 ≥ 〈x∗, x0〉. As, for any

integer n and any x ∈ X such that 〈x∗, x〉 < 〈x∗, x0〉, it is obvious that

(56) 〈−x∗, x〉+ n p(x) ≥ −〈x∗, x0〉 ,

one obtains, by combining relations (55) and (56), that

(57) 〈−x∗, x〉+ n p(x) ≥ −〈x∗, x0〉 ∀n ≥ n0 ∀x ∈ X.

Lemma 1 together with relation (57) yield that

(58) (Dp∗(0))(x
∗) ≤ 〈x∗, x0〉 ;

the contradiction between the first inequality in relation (45) and re-

lation (58) proves that relation (50) is false. In other words, our claim

(48) holds true, fact which means that

(59) x0 ∈
⋂

ε>0

([p ≤ ε] + L).

Relations (47), (59) and assumption (iv) are mutually incompatible;

this second contradiction proves that relation (44) is false, so statement

(ii) holds true. �
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4. A general zero duality gap theorem: an answer to

question c)

The following result, whose proof is a direct consequence of the re-

sults in the previous sections, generalizes the theorems of Champion,

Ban & Song and Jeyakumar & Li, answering positively the third ques-

tion of our study.

Theorem 4. Let g ∈ Γ0(X, Y, S) such that the set A = g−1(−S) is

non-void, and let F be one of the following sets of functions:

α) given X a locally convex space, F is the set of all the elements

from Λ0(X) which are finite and continuous at some point of A

β) given a Banach space X, F is the set of all the elements f from

Γ0(X) such that R+(dom(f)− A) is a non-void closed subspace of X.

The following four statements are equivalent.

(i): The duality gap of the convex program P (f, g) is zero for any

objective function f belonging to F

(ii) The Courant-Beltrami functional pCB penalizes all the mappings

f from F

(iii): For any L, closed linear subspace of X it holds that

[pCB ≤ 0] + L =
⋂

ε>0

[pCB ≤ ε] + L.

(iv) The directional derivative at 0 of p∗CB, the conjugate of pCB, is

a lower semi-continuous application.

Moreover, when, given a reflexive Banach space X, F is the set of

all the elements from Γ0(X) whose effective domain meets A and whose

sub-level sets are slice-continuous, then the equivalent statements (iii)

and (iv) imply both statements (i) and (ii).
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