CLOSED MEANS CONTINUOUS IFF POLYHEDRAL: A CONVERSE OF THE GKR THEOREM - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

CLOSED MEANS CONTINUOUS IFF POLYHEDRAL: A CONVERSE OF THE GKR THEOREM

Emil Ernst
  • Fonction : Auteur
  • PersonId : 7306
  • IdHAL : emil-ernst

Résumé

Given x, a point of a convex subset C of an Euclidean space, the two following statements are proven to be equivalent: (i) any convex function f : C → R is upper semi-continuous at x, and (ii) C is polyhedral at x. In the particular setting of closed convex mappings and Fσ domains, we prove that any closed convex function f : C → R is continuous at x if and only if C is polyhedral at x. This provides a converse to the celebrated Gale-Klee-Rockafellar theorem.
Fichier principal
Vignette du fichier
convex.pdf (123.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00652630 , version 1 (16-12-2011)

Identifiants

  • HAL Id : hal-00652630 , version 1

Citer

Emil Ernst. CLOSED MEANS CONTINUOUS IFF POLYHEDRAL: A CONVERSE OF THE GKR THEOREM. 2011. ⟨hal-00652630⟩
89 Consultations
131 Téléchargements

Partager

More