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Abstract— Visual localization and mapping for mobile robots
has been achieved with a large variety of methods. Among
them, topological navigation using vision has the advantage of
offering a scalable representation, and of relying on a common
and affordable sensor. In previous work, we developed such an
incremental and real-time topological mapping and localization
solution, without using any metrical information, and by relying
on a Bayesian visual loop-closure detection algorithm. In this
paper, we propose an extension of this work by integrating
metrical information from robot odometry in the topological
map, so as to obtain a globally consistent environment model.
Also, we demonstrate the performance of our system on the
global localization task, where the robot has to determine its
position in a map acquired beforehand.

I. INTRODUCTION

Over the last years, vision in robotics has become more

and more important, due to the remarkable characteristics

of the vision systems available at low costs. The small

size, low weight and low energy requirements of a simple

camera make it an integrated sensor that can be easily

embedded on most mobile robots, while vision provides a

rich qualitative description of the environment that is suitable

for robotics applications like place recognition ([1], [2], [3]).

Moreover, vision can be employed for the extraction of

metrical information about the environment, as in certain

SLAM solutions ([4]).

SLAM (Simultaneous Localization And Mapping, [5]) is

the process of localizing a mobile robot while concurrently

building a map of the environment. Historically, the field

of SLAM has been divided into metrical and topological

approaches. In the former case, the environment is repre-

sented using a metrical map where the robot can be localized

in a continuous manner. In the latter family of approaches,

the environment model is a graph of discrete locations: the

nodes of this topological map identify distinct places in

the environment, while edges link them according to their

similarity or distance. Number of approaches have attempted

to capitalize on the advantages of the two representations. For

instance, metrical maps can be embedded in graphs of higher

level to enhance scalability ([6]). Also, other graph-based

solutions can be used to infer a precise metrical position for

the robot, while still allowing for large scale mapping ([7]).

In previous work [8], we have demonstrated how a vision-

based loop-closure detection method (i.e. BayesianLCD, [1])

could be turned into a reliable incremental and real-time

topological SLAM solution, using appearance information

from a single monocular camera only. One limitation of this

work was the lack of metrical information which lead to

the impossibility to use the map to guide a robot. We have

enhanced this mapping solution with the addition of such

information, taking advantage of the odometry measurements

provided by a mobile robot. Also, we have adapted this

framework to the context of global localization, as this

problem can be considered as a particular case of loop-

closure detection where the robot is assumed to be in

known terrain. We demonstrate the quality of our approach

using image sequences acquired with a single monocular

camera on a Pioneer 3 DX mobile robot, in indoor and

urban environments, and under strong perceptual aliasing

conditions (i.e. when several distinct places look similar).

II. RELATED WORK

Several approaches have been designed to add metrical

information in a visual topological map. A first solution is to

match images coming from neighbouring nodes to estimate

the robot displacement between these nodes ([7], [9], [10])

using visual odometry [11] and to store this displacement

in the edges. Another similar method is to rely on visual

servoing, which makes it possible to directly guide the

robot toward the position of a neighbouring node, without

explicitly computing the corresponding relative positions

[12]. Other authors ([13], [14], [15]) use the odometry mea-

surements provided by a mobile robot during the movement

between nodes. Depending on the scenario, this last approach

may be more relevant than the aforementioned vision-based

techniques, as it can still provide an estimation of the robot’s

position in situations where vision is no longer reliable (e.g.

during temporary sensor occlusion, or in featureless scenes

such as those caused by a dark spot in the environment). It

also has the advantage of being computationally simpler, as

it does not require any image processing.

The metrical information that relates neighbouring nodes

may be used directly to guide the robot between nodes

([10], [12]). However, it is also possible to capitalize on

this information to build a globally consistent map of the

environment. This can be achieved by using a relaxation

algorithm that relies on the relative information between the

nodes to estimate a global position for them ([13], [14],

[15]). Similar approaches were also applied to build metrical



maps of the environment ([9], [16]), following the seminal

work of [17]. In particular, the relaxation method proposed

in [9] allows to rapidly converge to low average error when

considering 3D-6DoF camera poses.

The topological global localization problem consists in

determining the node corresponding to the actual robot’s

position, without any a priori information on this position.

Several vision-based techniques ([10], [18], [19]) consider

this problem in a simple image-to-nodes matching scheme,

where the location of the current image is determined as

the location of the most likely node in the map. To this

end, a similarity measure between an image and a node is

defined (i.e. this generally entails counting the number of

correspondences between them), while some authors ([10],

[18]) also rely on a final multiple-view geometry validation

step in order to confirm the retrieved location. In the afore-

mentioned approaches, global localization is achieved in a

maximum likelihood (ML) scheme, which may suffer sever

limitations and lead to transient errors in the presence of

perceptual aliasing.

In order to circumvent these limitations, Bayesian filtering

methods can be employed, leading to a maximum a pos-

teriori (MAP) scheme that ensures the time coherency of

the estimation (i.e. information from past estimates is fused

with current ones). The authors of [20] and [21] use MAP

frameworks to estimate the probability of the location of

the current image. Before the first localization attempt, this

probability is uniformly distributed over all the nodes of

the map. Then, an iterative predict-update procedure helps

refining the estimation of this probability, as the robot moves

and acquires new images. To this end, a time evolution model

predicts the probability distribution at time t, given this

distribution one step before, while an observation model is

used to update the probability of each node, by computing the

likelihood of the current image given the description of this

node. This update step relies on a image-to-nodes matching

scheme that is similar to those used in ML approaches.

At each iteration of the filtering process, the location of

the current image can be determined confidently when the

probability of a particular node is high.

Finally, learning techniques can also be employed to

address the visual topological global localization problem,

as shown in [22] and [3] where a monocular camera is used

to recognize the different rooms of an indoor environment.

III. TOPOLOGICAL SLAM

The environment model used in this paper is an en-

hancement of the model described in [8]. It consists in a

topological map of the environment (i.e. the graph of the

locations linked in order of traversal) that is constructed from

image sequences, and where each node is characterized using

the bags of visual words paradigm.

A. Model overview

Bags of visual words is a popular method for image

categorization [23] that relies on a representation of images

as a set of unordered elementary visual features (the words)

taken from a dictionary (or codebook). Over the last years,

this method has been successfully adapted to several robotics

applications (e.g. [2], [10], [19]).

An example of the visual features typically used for

image characterization in the bags of visual words scheme

is the Scale Invariant Feature Transform (SIFT, [24]). As

these features are sensitive to noise and are represented

in high dimension spaces, they are not directly used as

words, but are categorized using vector quantization tech-

niques like k-means. The output of this discretization is

the dictionary. Instead of building the dictionary off-line on

an image database, as performed in most applications ([2],

[10], [19], [23]), we rather rely on an incremental dictionary

construction mechanism [3]. This makes it possible to start

with an empty structure that is filled as the robot discovers

its surroundings: our system therefore makes no a priori

hypotheses on the type of environment it will face.

Fig. 1. Illustration of the environment model. The visual words of the
dictionary (right part of the figure) are used to describe the locations of
the topological map (left part of the figure). The integration of metrical
information makes it possible to compute an absolute position for each node,
using the relative displacements between them (see figure 2 for details about
the metrical information added here).

The input information used to build the dictionary of

the environment model described in this paper is the SIFT

descriptor ([24]): interest points are detected as maxima over

scale and space in differences of Gaussians convolutions.

The keypoints are memorized as histograms of gradient

orientations around the detected point at the detected scale.

The corresponding descriptors are of dimension 128 and are

compared using L2 distance.

In [8], we have shown how the model can be learned

on-line, in real-time and without any a priori information

about the environment. To this end, when a new image

is acquired, our Bayesian loop-closure detection algorithm

(i.e. BayesianLCD, [1]) is used to determine the robot’s

location, so as to update the topological map. In case of

successful detection, the image is considered as pertainning

to the loop-closing location. Otherwise, it is used to define

a new location. An edge is added to the map between the

current node and the previously recognized one. Then, the

visual dictionary is updated, by adding all the features of the

current image that did not match existing words.

B. Image selection strategy

In our previous work, images taken from a hand held

camera were processed at 1Hz for map building. In order



to avoid loop-closure detections due to the resemblance

between consecutively acquired images, frames exhibiting

too much similarities with the last considered image were

discarded. In this paper, as the camera is mounted on a

mobile robot, it is possible to use information from odometry

measurements as an additional constraint to decide which

image to process and, as a consequence, how the nodes of the

map should be distributed. Hence, we now also impose that

the robot must have moved a given distance or rotated a given

angle (50cm and π
6 radians in the reported experiments) for

the image to be considered.

C. Embedding metrical information in the map

Each node of the graph has an associated 2D position

and orientation [xi, yi, θi] initialized to the robot odometry

position when the node is created. A variance vi is also

associated to each node and is initialized with the variance

of the previous node in the map plus 2% of the distance

travelled by the robot since this previous node. When a node

is added or recognized in the map, a new edge is created to

link this node with the previous one (i.e. the node where

the robot was last located). The relative metrical position

of the two nodes obtained through the robot odometry

measurements is memorized in this link (see figure 2):

Eij = [dij , θij , ϕij ]

a variance vij is also associated to the edge. In this paper, it

is taken as 2% of the edge length dij . Note that uncertainty

is modelled very simply here by a single value for both posi-

tion coordinates and orientation, which provides surprisingly

good results in our experiments as odometry has a reasonable

precision, notably on orientation. However, for larger scale

experiments, a more precise model (e.g. the one presented

in [25]) would be required.

d ij

ϕ ij

θ ij

Fig. 2. Odometric information stored in the edges of the topological map.

After a loop-closure detection, the robot is assumed to

have returned exactly at the position of the previous passing

(i.e. the position of the loop-closing node), thus relative

position and uncertainty for the loop closing edge is taken

from odometry information like for any other edge. This

is a reasonable assumption given that loop-closures are

only detected between close monocular views of a given

place, thereby exhibiting only small variations between the

corresponding positions and orientations. A solution relying

on the relative image position given by the multiple-view

geometry algorithm (see section III-D) would be hardly

feasible here due to scale ambiguity.

As a consequence of the cumulative noise of odometry, the

graph is not coherent after loop closing. Thus, a relaxation

algorithm is employed to estimate the position of each node

that best satisfies the constraints imposed by the relative

odometric information. The algorithm we used for relaxation

is simple, as the maps we are building have a relatively small

number of nodes (at most few hundreds in the experiments

reported hereafter), and as the nodes only have 3 degrees of

freedom. We use the iterative algorithm described in [13], to

which we added the estimation of the orientation for each

node.

An iteration of the algorithm is made of three steps applied

to each node i of the map:

• Step 1 – Estimate the position of node i from each

neighbouring node j:

(x′

i)j = xj + dji cos(θji + θj) (1)

(y′

i)j = yj + dji sin(θji + θj) (2)

(θ′i)j = θj + ϕji (3)

and estimate variance of node i from node j:

(v′i)j = vj + vji

• Step 2 – Estimate the variance of node i using harmonic

mean of the estimates from the neighbours:

vi =
ni

∑

j
1

(v′

i
)j

(4)

(5)

where ni is the number of neighbours of node i.

• Step 3 – Estimate the position of the node as the mean

of the estimates from its neighbours:

xi =
1

ni

∑

j

(x′

i)jvi

(v′i)j

(6)

yi =
1

ni

∑

j

(y′

i)jvi

(v′i)j

(7)

θi = arctan





∑

j

sin((θ′

i)j)
(v′

i
)j

∑

j

cos((θ′

i
)j)

(v′

i
)j



 (8)

(9)

These three steps are repeated until the total change

in the nodes coordinates falls under a given threshold, or

a maximum number of iterations is reached (20 in our

experiments). The first node of the map is considered as

the reference frame: its position is fixed at [0, 0, 0] and its

variance is fixed at a small value. This algorithm was proven

to converge [13], as it corresponds to the minimization of a

quadratic energy function of a spring network equivalent to

the topological map. It is also fast enough to be executed

during the time separating two image processing during map

construction.



D. Topological global localization

In this section, we propose to derive the probabilis-

tic framework employed for loop-closure detection in

BayesianLCD for the task of global localization. The main

difference is that in this new context, we wish to recover

the location of the robot in an environment model obtained

beforehand, and it is assumed that each acquired image is

taken from an already visited place. As a consequence, the

“novelty” event that is used in loop-closure detection to take

new locations into account is not required. In our previous

work [1], this novelty event was managed by the addition

of a virtual location in the model which was updated at

each new image acquisition, in order to represent a potential

new location to which this image could pertain. In the task

considered here, this virtual location mechanism is no longer

necessary. Also, when performing global localization, the

environment model is held fixed, and so neither the map nor

the visual dictionary should be updated after the processing

of an image.

The probability that the current image comes from an

already visited location can be recursively evaluated using

a discrete Bayes filter, as follows:

p
(

St|zt,M
)

= ηp
(

zt|St,M
)

n
∑

j=0

p
(

St|St−1 = j, M
)

p
(

St−1 = j|M
)

(10)

where η is a normalization term, M = {N0, . . . , Nn}
is the set of nodes forming the topological map, and zt is

the set of visual words found in current image It. St = i

is the event that It comes from the location corresponding

to Ni. Computing the full posterior p
(

St|zt,M
)

according

to equation 10 using a discrete Bayes filter then makes it

possible to find the node Nj whose characterization is similar

enough to It to consider that It comes from Nj .

As usual in classical Bayesian filtering problems, the esti-

mation of the full posterior requires a time evolution model

p
(

St|St−1 = j, M
)

, and an observation model p
(

zt|St,M
)

.

The time evolution model makes it possible to predict the

probability distribution at time t, given this distribution at

time t−1, and according to possible displacements in the map

between t−1 and t. Here, it is simply represented as a sum of

Gaussians over the nodes neighbouring a given location (see

figure 3): according to the image selection strategy given in

section III, it is assumed that the robot has moved between

two images, implying that it is more likely to be situated in

a different node rather than in its last location.

Fig. 3. Sum of Gaussians for the time evolution model: the sum of
Gaussians model gives more emphasis to neighbouring states than to centre
one, making it adapted to a non-stationary system.

The observation model computes the likelihood of the

currently observed words zt given the descriptions of all

the locations of the environment model. In other words, it

evaluates the relevance of each position hypothesis St = i,

based on the observed similarities between It and Ni. To this

end, each word of the current image votes for all the locations

in which it has been seen, using a score derived from the

tf–idf [26] coefficient (i.e. the product of the frequency

of a word in a location by the inverse frequency of the

locations containning this word). Once all the words of the

current image have voted, the more likely locations are those

receiving the more important number of votes, and their

likelihood score is obtained from these votes.

Finally, when the sum of the probabilities taken over

neighbouring locations is above a threshold (i.e. 0.8 in the

following experiments), a multiple-view geometry algorithm

[11] is employed to verify that a consistent camera trans-

formation can be found between the current image and the

retrieved location. This final validation step makes it possible

to discard false alarms (i.e. locations that look similar to the

current image but that do not share a consistent structure

with it). More details regarding the observation model and

this ultimate verification procedure can be found in [8].

IV. EXPERIMENTAL RESULTS

A. Mapping

Fig. 4. Images from the sequence used in the reported experiment. Note
that some images are almost featureless (bottom row, centre).

Experiments were conducted using a Pioneer 3 DX mobile

robot from MobileRobots Inc. equipped with an on-board

camera providing images of size 320x240 pixels (automatic

exposure control). The robot’s trajectory started with a small

loop around a room, before taking one longer loop in a

corridor. Along this trajectory, 209 images were selected

(through the appearance and position threshold described in

section III) and processed for mapping (see figure 4).

During this experiment, 7 loop-closures were correctly

detected, and in spite of strong perceptual aliasing in the

environment, no false detections were made (i.e. when a

loop-closure is detected whereas none occurred). The final

map contains a total of 202 nodes. The robot took 5m10s to

complete the whole trajectory, while the total computation

time was 2m58s: all images were thus processed in the

required time frame. Figure 5 shows that the relaxation al-

gorithm effectively compensated the odometry drift and map



Fig. 5. The map constructed during the reported experiment without relaxation (top) and with relaxation overlaid on a metrical map of the environment
(bottom). The yellow circled nodes indicate nodes where loop-closures were detected. The red dot indicate the final robot position estimated with the robot
odometry from the last node of the map.

inconsistencies. As a consequence, the resulting topological

structure is coherent with a metrical map constructed using

a traditional laser range-finder based SLAM algorithm.

B. Topological global localization

Global localization has been performed in both indoor and

outdoor image sequences, under strong perceptual aliasing

conditions. To learn the environment model, a first passing

is done in the environment, visiting all the places it contains

once. After that, images from a second passing in those

places are randomly selected to attempt global localization.

Each time such a new random image is selected, the proba-

bility of the position of the robot is uniformly distributed

over all the nodes of the map. Then, our discrete Bayes

filter (see section III-D) is employed to refine this probability

with the acquisition of the following consecutive images

in the sequence, according to the image selection strategy

given in section III, until a correct location is found (i.e.

when the corresponding probability is higher than 0.8, and

the multiple-view geometry validation step is satisfied). The

number of images required before recovering a correct loca-

tion is the number of trials. After that, following consecutive

images not discarded by the image selection strategy are still

being processed, as long as their locations are also correctly

determined: the number of successfully tracked images is the

number of trackings. Once tracking is lost, a new random

image is picked, and global localization is attempted again.

The experimental results for the two aforementioned im-

age sequences are presented in table I, which gives the

mean number of trials before success (“#IMG-Loc”) and the

mean number of successful trackings (“#Trackings”) over

100 global localization attempts (corresponding standard

deviation values are given in brackets). Also, table I gives the

mean processing time per image, the total number of images

in each sequence (“#IMG”), and the number of images used

to learn the environment model (“#L-IMG”).

TABLE I

GLOBAL LOCALIZATION PERFORMANCES

Sequence #IMG #L-IMG #IMG-Loc #Trackings CPU time/IMG

Indoor 327 190 5 (4) 5 (3) 115ms
Outdoor 531 230 2 (1) 12 (10) 644ms

Table I shows that the mean number of trials is small in

both sequences, and most notably in the outdoor one: this

is due to the good reliability of the SIFT features in the

outdoor scenes. As a consequence, the number of successful

trackings is also higher in this case. Tracking usually fails in

situations such as sudden rotation of the camera around the

vertical axis (e.g. when turning around corners in the indoor

environment), or when the scene is partially obstructed (e.g.

due to the presence of pedestrians and cars in the outdoor

sequence). In both cases, the output of the Bayes filter

usually continues to correctly detect the loop closure, but

the lack of feature correspondences between previous and

actual views cause the multiple-view validation step to fail,

thus provoking the rejection of the corresponding hypothesis.

It is important to notice the high standard deviation values

for the indoor sequence. The reason for this is the higher

level of perceptual aliasing, but also the characteristics of

this environment (i.e. medium sized corridors, with curved

shape and suddenly appearing corners) that make it difficult

to rapidly recognize a place and track the following images

confidently. Finally, processing outdoor images takes longer

due to the more important number of features they contain.



V. DISCUSSION

We showed the capacity of our system to build consistent

visual topological maps in real-time using a simple yet effi-

cient relaxation algorithm to integrate odometry information.

When compared to graph-based metrical SLAM solutions

like [7], our system estimates metrical information with

less precision (notably due to the simplistic odometry error

model), but offers very robust data association that makes

global localization, mapping and loop-closure detection pos-

sible in the same unified framework. Data association is

performed here at the location level, relying on appearance

information only by considering the image as a whole,

thereby offering robustness in challenging environment sub-

ject to strong perceptual aliasing or in large featureless areas.

A limitation of our approach is however that information on

relative position of nodes coming from vision is very sparse

as it is only obtained from detected loop-closure events, thus

relying on a reasonably precise odometry in between.

Localization in our model is performed by a loop-closure

detection algorithm, relying on a Bayes filter to estimate

the probability that an image comes from a known location:

this makes it possible to prevent temporary detection errors.

The probability propagation in this filter is based on the

neighbouring nodes in time, giving more importance to the

nodes that were detected just before and after each node

(see section III-D). In the metrical extension presented here,

it would be interesting to take relative position of nodes into

account for this propagation, along with a probabilistic model

of the robot odometry. Such a modification would probably

enhance the responsiveness of loop-closure detections, as

propagation would be made in the direction of the robot’s

movement, instead of in direction of all the neighbouring

nodes. This would hence make it possible to concentrate the

probability mass more efficiently at each prediction, directing

it toward the robot’s next presumed location.

VI. CONCLUSION

We have presented an enhancement to our previous work

on visual topological SLAM by integrating odometric infor-

mation from a mobile robot to obtain globally consistent

maps, and by adapting the framework to achieve global

localization. In future work, we plan to use metrical informa-

tion for more relevant bayesian filtering. Also, it would be

interesting to compare the precision of the solution employed

here with a more generic setup relying on visual odometry

instead of wheel encoded odometry.
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