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A Fast and Incremental Method for Loop-Closure
Detection Using Bags of Visual Words

Adrien Angeli, David Filliat, St́ephane Doncieux, and Jean-Arcady Meyer

Abstract—In robotic applications of visual simultaneous lo-
calization and mapping techniques, loop-closure detection and
global localization are two issues that require the capacity
to recognize a previously visited place from current camera
measurements. We present an online method that makes it
possible to detect when an image comes from an already perceived
scene using local shape and color information. Our approach
extends the bag-of-words method used in image classification
to incremental conditions and relies on Bayesian filtering to
estimate loop-closure probability. We demonstrate the efficiency
of our solution by real-time loop-closure detection under strong
perceptual aliasing conditions in both indoor and outdoor image
sequences taken with a handheld camera.

Index Terms—Loop-closure detection, localization, SLAM.

I. I NTRODUCTION

Over the last decade, the increase in computing power has
helped to supplement traditional approaches to simultaneous
localization and mapping (SLAM [1], [2], [3], [4]) with the
qualitative information provided by vision. As a consequence,
in robotics research, commonly used range and bearing sensors
such as laser scanners, radars and sonars tend to be associated
with, or replaced by, single cameras or stereo-camera rigs.For
example, in previous work [5], we performed vision-based 2D
SLAM for Unmanned Aerial Vehicles (UAV). Likewise, in [6],
the authors performed 3D SLAM in real-time at 30Hz using a
monocular handheld camera, while the authors of [7] present
visual SLAM solutions based on both monocular and stereo
vision.

However, there are still difficulties to overcome in robotic
vision in general, and in SLAM applications in particular.
Among them, the loop-closure detection issue concerns the
difficulty of recognizing already mapped areas, while the
global localization issue concerns the difficulty of retrieving
the robot’s location in an existing map. Those problems can be
addressed by detecting when the robot is navigating througha
previously visited place from local measurements. The overall
goal of the research effort reported in this article is thus to
design a vision-based framework tackling these issues so asto
make it possible for a robot to reinitialize a visual 3D-SLAM
algorithm like one of those presented in [6] or [7] in such
situations. This comes down to an online image retrieval task
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that consists in determining if current image has been taken
from a known location. Such task bears strong similarities with
image classification methods like those described in [8] and
[9], but an important difference is our commitment to online
processing.

In this paper, we present a real-time vision-based method
to detect loop-closures in a Bayesian filtering scheme: at each
new image acquisition, we compute the probability that the
current image comes from an already perceived scene. To this
end, we designed a scene recognition framework that relies
on an incremental version [10] of the bag-of-words method
[9]. Loop-closure hypotheses whose probability is above some
threshold are confirmed when a coherent structure between
the corresponding images is found - i.e. when the epipolar
geometry constraint is satisfied. This ultimate validationstep
is accomplished using a multiple-view geometry algorithm
similar to the one proposed in [11]. We provide experimental
results demonstrating the quality of our approach by per-
forming loop-closure detection in incremental and real-time
conditions in both indoor and outdoor image sequences using
a single monocular camera.

In section 2, we present a review of related work on
visual loop-closure and global localization. Section 3 briefly
introduces our implementation of the bag-of-words paradigm.
The filtering scheme is detailed in section 4 and experimental
results are given in section 5. The last two sections are devoted
to discussion and conclusion.

II. RELATED WORK

The Monte Carlo Localization (MCL) method was origi-
nally designed [12] to make global localization capitalizing
on range and bearing sensors possible. Although successfully
adapted to vision [13], this method does not match our require-
ments since it relies on the existence of a map obtained before-
hand. From the same principle, the Rao-Blackwellised particle
filter (RBpf) enables loop-closure capabilities in SLAM algo-
rithms (e.g the FastSLAM [14] framework). It has also been
adapted to vision [15], but it suffers degeneration when closing
a loop due to inaccurate resampling policies [3]. In addition,
RBpf are not loop-closure detection methods per se, but rather
SLAM methods robust to loop-closure events.

Loop-closure detection has also been performed using an
Extended Kalman Filter (EKF) application to visual SLAM
([16], [17]). The overall idea is to detect loop-closures from
advanced data association techniques that try to match visual
features found in current images with those stored in the
map. This approach limits the information used to detect loop-
closure to the information used for mapping (which is designed
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for SLAM, and not optimized for loop-closure detection). It
is also linked to a particular SLAM algorithm, whereas our
approach may be adapted to any SLAM method (even not
vision-based).

In this work, we wish to design a simple visual system
able to perform loop-closure detection and global localiza-
tion, within the framework of an online image retrieval task.
Following a similar approach, but in a non-incremental per-
spective, voting methods presented in [18] and [19] call upon
maximum likelihood estimation to match the current image
with a database of images acquired beforehand. The likelihood
depends upon the number of feature correspondences between
the images, and leads to a vote assessing the amount of
similarity. In [18], the authors also use multiple-view geom-
etry to validate each matching hypothesis, while in [19] the
accuracy of the likelihood is qualitatively evaluated in order
to reject outliers. Even though they are easy to implement, the
aforementioned voting methods rely on an offline construction
of the image database and need expensive one-to-one image
comparisons when searching for the most likely hypotheses.
Moreover, the maximum likelihood framework is not suitable
for managing multiple hypotheses over time, as it does not
ensure the time coherency of the estimation (i.e. information
from past estimates is not integrated over time so as to be
fused with actual ones). As a consequence, this framework
is prone to transient detection errors, especially under strong
perceptual aliasing conditions.

In [20] and [21], bag-of-words methods are used to perform
global localization and loop-closure detection in an image
classification scheme (see also [22] for an extended version
of [21], with multi-robot map-joining addressed as a loop-
closure problem). Bag-of-words methods ([8], [9]) rely on
a representation of images as a set of unordered elementary
features (the visual words) taken from a dictionary. The dictio-
nary is built by clustering similar visual descriptors extracted
from the images into visual words. Using a given dictionary,
image classification is based on the occurrence of the words
in an image to infer its class. In [20] and [21], images are
represented as vectors of visual words’ statistics with size
equal to the number of words in the dictionary. The dictionary
is built beforehand in an offline process, clustering the visual
features extracted from a training database of images into
representative words of the environment. Matching between
current and past images is defined as a Nearest Neighbor (NN)
search among the cosine distances separating the correspond-
ing vectors. In [20], a simple voting scheme selects then best
candidates from the NN search and multiple-view geometry
is used to discard outliers. In [21], the NN search results are
used to fill asimilarity matrix whose off-diagonal elements
represent loop-closure events, thus providing a powerful way
to manage multiple hypotheses. In both approaches, the use
of a dictionary enhances the robustness of matches, enabling
a good tolerance to image noise, but the NN search involved,
relying on exhaustive one-to-one vector comparisons, is very
expensive.

More recently, the authors of [23] have proposed a vision-
based probabilistic framework that makes it possible to es-
timate the probability that two observations originate from

the same location. This approach, based on the bag-of-words
scheme, is very robust to perceptual aliasing: a generative
model of appearance is learned in an offline process, ap-
proximating the probabilities of co-occurrences of the words
contained in the offline-built dictionary. Using this model,
loop-closure detection can be performed with a complexity
linear in the number of locations. The main asset of this model
is its ability to evaluate the distinctiveness of each word,thus
accounting for perceptual aliasing at the word level, whileits
principal drawback lies in the offline process needed for model
learning and dictionary computation.

In the majority of the methods presented above, SIFT
(Scale Invariant Feature Transform [24]) features are the
preferred input information because of their robustness to
reasonable 2D affine transformations, scale and viewpoint
changes. However, other visual features could be used for
loop-closure detection and global localization (see [25] for
a comparison of visual local descriptors). For example, as
stated in [19], color histograms are powerful features providing
a compact geometry-less image representation that exhibits
some attractive invariance properties to viewpoint changes.
Hence, it may be suitable to merge several complementary
visual information, like shape and color for example, in order
to obtain a reliable solution in different contexts.

III. V ISUAL DICTIONARY

The implementation of the bag-of-words method used here
is detailed in [10]: the dictionary construction is performed
online along with the image acquisition, in an incremental
fashion. The words are stored using a tree structure (see
[26] for more details), enabling logarithmic-time complexity
when searching for a word and thereby entailing real-time
processing. In the work reported here, we used two different
feature spaces to describe the images:

• SIFT features [24]: interest points are detected as max-
ima over scale and space in differences of Gaussians
convolutions. The features are memorized as histograms
of gradient orientations around the detected point at
the detected scale. The corresponding descriptors are of
dimension 128 and are compared using L2 distance.

• Local color histograms: the image is decomposed in a set
of regularly spaced windows of several sizes to improve
scale invariance. The normalized H histograms in the
HSV color space for each window are used as features.
The windows used here are of size 20x20 (respectively
40x40) taken every 10 (respectively 20) pixels. The
descriptors are of dimension 16 and are compared using
diffusion distance [27].

A dictionary is built for each feature space.

IV. BAYESIAN LOOP-CLOSUREDETECTION

In this paper, we address the problem of loop-closure
detection as an image retrieval task: we are seeking for the past
image, if it exists, that looks similar enough to the currentone
to consider that they come from close viewpoints. The overall
processing, illustrated in the diagram of figure 1, is achieved
in a Bayesian filtering framework estimating the probability
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that current and past images pertain to the same scene: we
thus look for the past image that maximizes the probability
of loop-closure with the current image. When such an image
is found (i.e. when probability is high for a particular loop-
closure hypothesis), the consistency of the structure underlying
those two images is checked by a multiple-view geometry
algorithm [11]. When perceptual aliasing is present in the
environment (i.e. when different places look similar), epipolar
geometry provides a powerful way to reject outliers (i.e. past
images that look like the current image but do not come
from the same scene). In order to take advantage of different
types of information, several feature spaces (i.e. SIFT features
and H histograms) are used here for representing the images.
Compared to maximum likelihood methods, the Bayesian
filtering scheme proposed here takes temporal coherency of
image acquisition into account in order to bring robustnessto
transient detection errors.

Fig. 1. Overall processing diagram (see text for details).

In this section, we first give the mathematical derivation of
the filtering scheme used for the estimation of loop-closure
probability. Then, we focus on issues regarding temporal co-
herency, likelihood computation and hypotheses management.

A. Discrete Bayes Filter

Let St be the random variable representing loop-closure
hypotheses at timet. The eventSt = i is the event that current
imageIt “closes the loop” with past imageIi. This implies
that the corresponding viewpointsxt and xi are close, and
that It andIi are similar. The eventSt = −1 is the event that
no loop-closure occurred at timet. In a probabilistic Bayesian
framework, the loop-closure detection problem can hence be
formulated as searching for the past imageIj whose index
satisfies:

j = argmaxi=−1,...,t−pp(St = i|It) (1)

whereIt = I0, . . . , It, with j = −1 if no loop-closure has
been detected. This search is not performed over the lastp

images becauseIt always looks similar to its neighbors in time
(since they come from close locations), and doing so would
result in loop-closure detections betweenIt and recently seen

images (i.e.It−1, It−2, . . . , It−(p+1)). This parameter, set to
10 in our experiments, is adjusted depending on the frame
rate and on the velocity of camera motion.

We therefore need to estimate thefull posterior,
p(St|I

t) for all i = −1, . . . , t − p, in order to find, if a loop-
closure occurred, the corresponding past image.

Following Bayes’ rule and under the Markov assumption
the posterior can be decomposed into:

p
(
St|I

t
)

= ηp
(
It|St

)
p
(
St|I

t−1
)

(2)

whereη is the normalization term. Let(Zk)i be the state
of the dictionary associated with the feature spacek (SIFT
features or H histograms in this paper) at time indexi. The
time subscripti is inherent to the incremental aspect of the
dictionary construction:(Zk)0 ⊆ (Zk)1 ⊆ . . . ⊆ (Zk)i−1 ⊆
(Zk)i, with (Zk)0 = ∅ (features from the feature spacek
extracted inIi are used to build(Zk)i+1). Also, let the subset
(zk)i of words taken from(Zk)i and found in imageIi

denote one representation of this image:Ii ⇔ (zk)i, with
(zk)i ⊆ (Zk)i. Since several feature spaces are involved here,
several image representations exist (one per feature space).
Thus, let (zn)i be the overall representation of imageIi,
all feature spacesk = 0, . . . , n combined. The sequence of
imagesIt acquired up to timet can therefore be represented
by the sequence(zn)t = (zn)0, . . . , (z

n)t.
So, the full posterior, now rewrittenp

(
St|(z

n)t
)
, can be

expressed as follows:

p
(
St|(z

n)t
)

= ηp
(
(zn)t|St

)
p
(
St|(z

n)t−1
)

(3)

Assuming independence between the feature spaces, we
can derive a more tractable mathematical formulation for
equation 3 so as to make computation of the full posterior
easier. However, capturing the correlations existing between
the different dictionaries could provide additional information
about the occurrence of the words. Under the independence
assumption, the full posterior’s expression can be written:

p
(
St|(z

n)t
)

= η

[
n∏

k=0

p
(
(zk)t|St

)

]

p
(
St|(z

n)t−1
)

(4)

where the conditional probabilityp
(
(zk)t|St

)
is considered

as a likelihood functionL (St|(zk)t) of its second argument
(i.e. St), with its first argument (i.e.(zk)t) held fixed: we
evaluate, for each entrySt = i of the model, the likelihood of
the currently observed words(zk)t (see section IV-C).

Recursive estimation of the full posterior is made possible
by decomposing the right hand side of equation 4 as follows:

p
(
St|(z

n)t
)

=

η

[
n∏

k=0

p
(
(zk)t|St

)

]
t−p
∑

j=−1

p
(
St|St−1 = j

)
p
(
St−1 = j|(zn)t−1

)

︸ ︷︷ ︸

belief
(5)

wherep
(
St|St−1

)
is the time evolution model (see section

IV-B) of the probability density function (p.d.f.). From equa-
tion 5, we can see that the estimation of the full posterior at



4 IEEE TRANSACTIONS ON ROBOTICS, SPECIAL ISSUE ON VISUAL SLAM, OCTOBER 2008

time t is done by first applying the time evolution model to
the previous estimation of the full posterior, leading to what
we can call thebelief at time t, which is in turn multiplied
successively by the likelihoods obtained from the different
feature spaces in order to get the actual estimation for the
posterior.

Note that in our framework, the sequence of words(zn)t

evolve in time with the acquisition of new images, diverging
from the classical Bayesian framework where such sequences
would be fixed. Moreover, in spite of the incremental evolution
of the dictionary, the representation of each past image is fixed
and does not need to be updated.

B. Transition fromt − 1 to t

Betweent−1 andt, the full posterior is updated according
to the time evolution model of the p.d.f.,p

(
St|St−1 = j

)
,

which gives the probability of transition from one statej at
time t − 1 to every possible state at timet. It therefore plays
a key role in reducing transient detection errors by ensuring
the temporal coherency of the detection. Depending on the
respective values ofSt andSt−1, this probability takes one of
the following values:

• p
(
St = −1|St−1 = −1

)
= 0.9, the probability that no

loop-closure event will occur at timet is high given that
none occurred at timet − 1.

• p
(
St = i|St−1 = −1

)
= 0.1

(t−p)+1 with i ∈ [0; t − p], the
probability of a loop-closure event at timet is low given
that none occurred at timet − 1.

• p
(
St = −1|St−1 = j

)
= 0.1 with j ∈ [0; t − p], the

probability of the event “no loop-closure at timet” is
low given that a loop-closure occurred at timet − 1.

• p
(
St = i|St−1 = j

)
, with i, j ∈ [0; t−p], is a Gaussian on

the distance in time betweeni andj whose sigma value
is chosen so that it is non zero for exactly 4 neighbors
(i.e. i = j−2 . . . j +2). The size of this neighborhood is
adjusted depending on the frame rate and on the velocity
of camera motion. This corresponds to a diffusion of the
posterior in order to account for the similarities between
neighboring images.

Note that in order to havep
(
St >= −1|St−1 = j

)
= 1

when j ∈ [0; t − p], the coefficients of the Gaussian used in
the last case have to sum to 0.9.

C. Likelihood in a Voting Scheme

In section IV-A, we saw how using multiple feature spaces
gave the opportunity to represent an image in different ways.
From a perceptual point a view, each representation brings its
own piece of information about the state of the world, inde-
pendently from other feature spaces. This entails computing
a likelihood measure for the loop-closure hypothesesSt for
each of the feature spaces considered. From the computational
point of view, all the representations rely on the bag-of-
words paradigm, providing a generic interface to compute and
manage image representations. Therefore, the details given
here about the estimation of the likelihood associated to a
specific feature spacek apply identically to each other feature
space.

During the computation of the likelihood associated to the
feature spacek, we wish to avoid an exhaustive image-to-
image comparison of the visual features, as implemented in
most of the voting and bag-of-words methods cited in section
II. In order to efficiently find the most likely past imageIi

that closes the loop with the current one, we take advantage of
the inverted indexassociated with the dictionary. The inverted
index lists the images from which each word has been seen in
the past. Then, during the quantization of the current imageIt

with the words(zk)t it contains, each time a word is found,
we retrieve from the inverted index the list of the past images
in which it has been previously seen. This list is used to
update the score (originally set to 0) that is assigned to every
loop-closure hypothesisSt = i in a simple voting scheme:
when we find a word that has been seen in imageIi, statistics
about the word are added to the score (see figure 2). The
chosen statistics are inspired from theterm frequency–inverted
document frequency (tf–idf)weighting [28]:

tf–idf =
nwi

ni

log
N

nw

(6)

wherenwi is the number of occurrences of wordw in Ii, ni

is the total number of words inIi, nw is the number of images
containing wordw, andN is the total number of images seen
so far. From equation 6, we can see that the tf–idf coefficient
is the product of the term frequency (i.e. the frequency of a
word in an image), by the inverted document frequency (i.e.
the inverse frequency of the images containing this word). It
is calculated each time a likelihood score is computed, giving
increased emphasis to words seen frequently in a small number
of images, and penalizing common words (i.e. words that are
seen everywhere), according to the most recent statistics.

To summarize, when a word is found in the current image,
the images where this word has been previously seen have
their scores updated with the tf–idf coefficient associatedwith
the pair{word–image}. The score associated with each loop-
closure hypothesisSt = i will be used to compute the
corresponding likelihood, as we shall see later on. But before,
we must give some details about the computation of the score
associated to the event “no loop-closure occurred at timet”.
Indeed, it is evaluated here as the event “a loop-closure is
found withI−1”. I−1 is a virtual image built at each likelihood
computation step with them most frequently seen words
of (Zk)t (m being the average number of words found per
image): it is the “most likely” image.

The idea is that the score associated withI−1 will change
depending on the location of the current image, so as to behave
as the score of the “no loop-closure” event. When no loop-
closure occurs,It will be statistically more similar toI−1 than
to any otherIi, becauseIt will have more words in common
with I−1 than with any otherIi. On the other hand, in a real
unambiguous loop-closure situation, the score ofI−1 will be
low compared to the score of the loop-closing imageIi: as
the words responsible for this detection are only present in
two images (i.e.It andIi), they are not frequently seen words
and they are in consequence unlikely to be found inI−1. The
design of the virtual image proposed here is also relevant in
case of perceptual aliasing (i.e. whenIt comes from a location
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that is similar to several previously visited places). In such
situation, as multiple past images have equivalent likelihoods,
it is important to ensure thatI−1 receives a score that is in the
same order of magnitude as the score of these images, so as to
prevent an erroneous loop-closure detection. Here, as partof
the most common words composingI−1 will originate from
the images that are responsible for perceptual aliasing, itis
guaranteed thatI−1 will be granted with an important score
(but not necessarly the highest one).

The construction of a virtual image with existing words is
similar to the addition of new locations from words sampling
used in [23]. In our filtering scheme, the existence of the
virtual image can be simulated simply by adding aI−1 entry
to the inverted index for each of the most frequently seen
words. Therefore, if one of them is found inIt, it will vote
for I−1 as shown in figure 2 and the corresponding score will
be computed as for the “true” images.

Fig. 2. The voting scheme: the list of the past images in which current
words (zk)t have been seen is obtained from the inverted index and is used
to update the hypotheses’ scores.

Once all the words found in the current image have been
processed and the computation of the scores is complete,
we select the subset(Hk)t ⊆ It−p of images for which
the particular coefficient of variation (c.o.v.) (i.e. particular
deviation from the mean of the scores normalized by the
mean) is higher than thestandardc.o.v. (i.e. standard deviation
normalized by the mean).(Hk)t ⊆ It−p is the subset of the
most likely images according to the feature spacek. Then, if
Ii appears in(Hk)t, the belief at timet (see equation 5) is
multiplied by the difference between the particular c.o.v.of Ii

and the standard c.o.v., plus 1 (which can be simplified into
the difference between the scoresi of the hypothesis and the
standard deviationσ, normalized by the meanµ):
L (St = i|(zk)t) =

{ si−µ
µ

− σ
µ

+ 1 = si−σ
µ

if si ≥ µ + σ

1 otherwise
(7)

The update of the belief for the restricted set of the most
likely hypotheses is illustrated in figure 3. The selection done
on the hypotheses at this stage makes it possible to simplifythe
update of the posterior (as only a restricted set of hypotheses
is updated), considering that non-selected hypotheses have a
likelihood of 1 and therefore multiply the posterior by 1. When

all the images of(Hk)t have been processed for all the feature
spaces, the full posterior is normalized.

Fig. 3. The belief at timet (frame “1”, see equation 5, section IV-A),
is updated according to the likelihood model (frame “2”): whenthe score
of a hypothesis is above the mean+ standard deviation threshold, the
corresponding probability is updated.

D. A Posteriori Hypotheses Management

When the full posterior has been updated and normalized,
we search for the hypothesisSt = i whose a posteriori
probability is above some threshold (0.8 in our experiments).
However, the posterior does not necessarily exhibit a strong
single peak for a unique hypothesis even if a loop-closure
occurred. It may rather be diffused over a set of neighboring
hypotheses (except forSt = −1). This is mainly imputable
to the similarities among neighboring images in time: some
of the words commonly found inIt and Ii are also probably
in Ii−1 or Ii+1 for example. Thus, instead of searching for
single peaks among the full posterior, we look for a hypothesis
for which the sum of the probabilities over neighboring
hypotheses is above the threshold (the neighborhood chosen
here is the same as the neighborhood selected for the diffusion
in section IV-B).

When a hypothesis fulfills the above condition, a multiple-
view geometry algorithm [11] helps discarding outliers by
verifying that the two images of the loop-closure (i.e.It

andIi) satisfy the epipolar geometry constraint, which would
imply that they share some common structure and that they
could hence come from the same 3D scene. To this end, a
RANSAC procedure entails rapidly computing several camera
transformations by matching SIFT features between the two
frames, discarding inconsistent ones using a threshold on
the average reprojection error. If successful, the algorithm
returns the 3D transformation betweenxt and xi (i.e. the
viewpoints associated withIt and Ii) and the hypothesis is
accepted. Otherwise, the hypothesis is discarded. However,
even if a hypothesis has been discarded by the multiple-view
geometry algorithm, its a posteriori probability will not fall
to 0 immediately: it will diffuse over neighboring images
during the propagation of the full posterior fromt to t + 1.
Thus, correct hypotheses erroneously discarded by epipolar
geometry will be reinforced by the likelihoods of further time
instants until a valid 3D transformation is found. Note that
since SIFT features are extracted from the images and stored
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during the online dictionary construction, we do not need to
process the images again when applying the multiple-view
geometry algorithm.

V. EXPERIMENTAL RESULTS

We obtained results1 from several indoor and outdoor image
sequences grabbed with a single monocular handheld camera
(i.e. a simple camcorder with a 60◦ field of view and automatic
exposure). In this paper, we present the results obtained
from two experiments: an indoor image sequence with strong
perceptual aliasing and a long outdoor image sequence. In
both experiments, illumination conditions remained constant:
the indoor sequence has been captured under artificial lighting
conditions, while the length of the outdoor one (i.e. nearly
20 minutes) was too short to experience changes in lighting
conditions.

A. Indoor experiment

The overall camera trajectory followed during this experi-
ment is shown in figure 4 using three different styles. When the
posterior is below the threshold, the trajectory is shown with
a blue (dotted) line. When it is above the threshold and the
epipolar constraint is satisfied, a loop-closure is detected and
the trajectory is shown with a green (dashed) line. But, when
the posterior is above the threshold and the epipolar constraint
is not satisfied, the loop-closure hypothesis is rejected and the
trajectory is shown with a red (circled) line.

Fig. 4. Overall camera trajectory for the indoor image sequence. A first short
loop is done around the “New York” elevators on the left before going to the
“London” elevators on the right. The short loop is travelledagain when the
camera is back from the “London” elevators following the top-most corridor
on the plan. Then, the camera repeats the long loop (i.e. to the“London”
elevators and back) before ending in front of the “New York” elevators. The
numbers in the circles indicate the positions from which the images shown
in figure 5 were taken. See text for details about the trajectory.

As we can see in figure 4, the trajectory is shown with a blue
(dotted) line every time the camera is discovering unexplored

1Videos available at http://animatlab.lip6.fr/AngeliVideosEn, but also at
http://ieeexplore.ieee.org as supplemental material to this paper.

areas, in spite of the strong perceptual aliasing present inthe
corridors to and from the “London” elevators (see figure 5 for
examples of the images composing the sequence). During the
run, nofalse positivedetections were made (i.e. when a loop-
closure is detected whereas none occurred), thus demonstrating
the robustness of our solution to perceptual aliasing.

Fig. 5. Top-most corridor (top row) and bottom-most corridor (bottom
row) image examples, showing the high level of perceptual aliasing in the
environment. The numbers in the circles help associating the images with the
positions labelled in figure 4.

From figure 4, we can also see that the trajectory is shown
with a green (dashed) line most of the time spent in previously
visited places, indicating thattrue positivedetections were
made (i.e. when a loop-closure occurs and it is correctly de-
tected). Figure 6 gives an example of a true positive detection.

Fig. 6. First loop-closure detection for the indoor image sequence. The
full posterior and the likelihood computed from the SIFT and Hhistograms
feature spaces are shown, along with the current imageIt (top left) and the
loop-closing imageIi (bottom left). Likelihoods are obtained from the scores
(tf–idf) of the different hypotheses. Also shown with the likelihoods are the
score mean (solid green) and the score mean+ standard deviation threshold
(blue crosses). As it can be seen, the likelihood is very strong around images
corresponding to hypotheses 10 to 13, causing the sum of the corresponding
probabilities in the posterior to reach the0.8 threshold. Also, it clearly appears
here thatIt andIi come from very close viewpoints.

During passings in already explored places, it may be
noticed that the line representing the trajectory switchesfrom
green (dashed) to red (circled) each time the camera was
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turning around corners. In these particular cases, loop-closure
detection fails only because the epipolar constraint is not
satisfied: the a posteriori probability of loop-closure is above
the threshold but, due to the large and fast rotations made
by the camera, precise keypoints associations are difficult.
Indeed, in this narrow indoor environment, when the camera
is turning around corners, the viewpoint variation between
current and loop-closing images may be large, resulting in
small overlap between these images and preventing SIFT
features from matching correctly. This corresponds tofalse
negativedetections (i.e. when a loop-closure occurs but it is
not detected).

When considering the trajectory of the camera with more
attention, it may be observed that the first loop-closure detec-
tion that should be done (i.e. when the camera reaches again
its starting position for the first time, during its first travel
behind the “New York” elevators) is missed and the trajectory
remains shown with a blue (dotted) line. This is imputable
to the low responsiveness of the probabilistic framework:
the likelihood associated with a particular hypothesis hasto
be very high relative to the other likelihoods to trigger a
fast loop-closure detection. Usually, the likelihood associated
with a hypothesis must have a good support during 2 or 3
consecutive images in order to trigger a loop-closure detection.
The responsiveness of our system is governed by the transition
model of the probabilistic framework: we assume that the
probability of remaining in a “no loop-closure” event is high
(i.e. 0.9, see section IV-B). Decreasing this probability to lower
values makes it possible to detect loop-closures faster (i.e. with
fewer images required), but this also produces false positive
detections, which is not acceptable. The delay involved here
therefore enhances the robustness to transient detection errors,
considering only hypotheses with repeated support over time
as possible candidates for loop-closure.

During the run, there was only one case where the proba-
bility was above the threshold but the selected hypothesis was
wrong and it has been conveniently rejected by the multiple-
view geometry algorithm. This event, that can be consideredas
a false alarm, can be identified in figure 4 as the red (circled)
portion of the trajectory that occurs when the camera is coming
back for the first time from the “London” elevators (just near
the6th circle on the figure). This false alarm can be explained
by the strong perceptual aliasing that makes the corridors to
and from the “London” elevators look the same (see figure 7):
since our bag-of-words algorithm relies on the occurrence of
the words rather than on their position, the current image may
look like a past image but the structures of the scenes may
not be consistent, thus preventing the epipolar constraintfrom
being satisfied.

In order to test the robustness of the detection to camera
viewpoint changes, we rotated the camera around its optical
axis when passing behind the “New York” elevators for the
second and third times. As shown by the green (dashed)
line representing the trajectory during these periods, theloop-
closure detection results were not affected. The figure 8 gives
an example of loop-closure detection with different camera
orientations between current and loop-closing images. The
loop-closure detection shown in this figure corresponds to the

Fig. 7. The only false alarm due to perceptual aliasing: as wecan see,
the likelihoods are confused (we can note two similar high peaks on the
SIFT’s likelihood, while the H histograms’ likelihood does not give helpful
information) and the images look very similar. This hypothesishas been
rejected by the multiple-view geometry algorithm.

third passing of the camera behind the “New York” elevators.
This is why we observe two distinct peaks on the likelihoods:
two hypotheses are valid in this case, becauseIt closes the
loop with images from the first and the second visits. But due
to the temporal coherency of the p.d.f., the hypotheses that
have high a posteriori probabilities are those from the second
passing.

Fig. 8. Another loop-closure detection for the indoor image sequence.
Although there is a significant camera viewpoint difference between current
and past images, the loop-closure is correctly detected.

B. Outdoor experiment

During this second experiment, images were taken outdoor
with a handheld camera while turning around the laboratory’s
building (figure 9 gives examples of images from this se-
quence).
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Fig. 9. Examples of the images composing the outdoor sequence. The
numbers in the circles help associating the images with the positions labelled
in the figure 10.

The overall camera trajectory followed during this experi-
ment is shown in figure 10 using the same style conventions as
before. Here, we introduced red-green (circled-dashed) lines
to denote fast alternations of true positive and false negative
detections that occur when people or cars are passing in
front of the camera, causing correct hypotheses to be rejected
because not enough point correspondences can be found to
satisfy the epipolar geometry constraint. These events (of
which one example is given in figure 11) demonstrate the
robustness of the probabilistic framework to transient detection
errors: even though images are occluded by people or cars,
correct loop-closure hypotheses are selected (i.e. they have a
high a posteriori probability), but since the epipolar constraint
cannot be satisfied, they cannot be fully validated to be
accepted as true positive loop-closure detections.

Fig. 10. Overall camera trajectory for the outdoor image sequence. Two loops
are done around the “Lip6” laboratory, starting near the top-right end of the
building on the image (indicated by the square) and ending at its bottom-left
end. The path in front of the building (i.e. running parallelto the river) is thus
travelled three times. The style conventions for the trajectory are the same as
in figure 4, with the introduction here of red-green (circled-dashed) lines to
denote fast alternations of true positive and false negative detections. Red-
green (circled-dashed) lines are painted over white rectangles to distinguish
them easily. See text for details about the trajectory.

Fig. 11. Robustness of the probabilistic framework to transient detection
errors: although current image is partially occluded by pedestrians, a correct
loop-closure hypothesis is selected, but it is rejected by the multiple view
geometry algorithm.

As in the indoor experiment, no false positive detections
were made, whereas multiple true positives were found (see
figure 12). Also, we can see from figure 10 that the first
loop-closure detections occur tardily when the camera is
coming back to its starting position, revealing again the low
responsiveness of the probabilistic framework.

Fig. 12. Example of a true positive loop-closure detection for the outdoor
image sequence. Again, we can observe that the likelihood from the SIFT
feature space is very high and discriminative.

C. Influence of the visual dictionaries

In this section we will study the influence of the different
visual dictionaries used here (i.e. SIFT features and H his-
tograms) for loop-closure detection. To this end, we tried to
perform loop-closure detection using only either SIFT features
or H histograms. Although those tests have been done using
both image sequences, the indoor one produces more valuable
results since more loop-closures are done during the travelof
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the camera and because the indoor environment is much more
diversified.

H histograms only carry colorimetric information, without
any shape nor structure information. Therefore, the corre-
sponding likelihood is always confused, and it will never be
very peaked over one particular hypothesis unless the corre-
sponding image contains specific colors that are seen nowhere
else. However, H histograms can help distinguishing similarly
structured environments that only differ in their colors (e.g.
two corridors having the same dimensions but whose walls are
painted with different colors). When used alone, H histograms
cannot trigger a loop-closure detection. But when used in
combination with SIFT features, they enhance loop-closure
detection, improving notably the overall responsiveness of the
probabilistic framework. Indeed, as shown in figure 13, we can
see that the posterior obtained when using both SIFT features
and H histograms is higher than when using SIFT features
only. This is because H histograms’ likelihood, although not
discriminative enough to trigger a loop-closure detection, is a
higher around the loop-closing hypothesis, and so it reinforces
the votes from the SIFT feature space when updating the
posterior.

Fig. 13. Loop-closure detection enhancement using color andshape infor-
mation in the indoor image sequence: when H histograms are combined to
SIFT features (left part), the a posteriori probability is higher than when using
SIFT features alone (right part).

Using SIFT features in conjunction with H histograms there-
fore enhances the responsiveness of the algorithm, making
it able to detect loop-closures sooner, especially when the
camera is back to its starting position for the first time: loop-
closures are detected 2 or 3 images before when both feature
spaces are involved. Table I gives additional clues for this
improvement, with information about the loop-closure detec-
tion performances for the indoor and outdoor image sequences
when using SIFT features alone or in conjunction with H
histograms. Given are the number of images composing each
sequence (“#img”), the corresponding number of loop-closures
(“#LC”, determined at hand from the camera trajectory), the
rate of true positive detections (“%TP”, the percentage of loop-
closures correctly detected), and the number of false alarms

(“#FA”, erroneous hypotheses that receive a high probability
but that are rejected by the multiple-view geometry algorithm).

TABLE I
COLOR INFORMATION IMPROVEMENTS

Sequence #img #LC %TP #FA

Indoor SIFT+ H 388 217 80 1
Indoor SIFT 388 217 68 0

Outdoor SIFT+ H 531 301 71 0
Outdoor SIFT 531 301 70 0

From table I, we can see that when adding color infor-
mation, the true positive rate is improved: this is notably
remarkable in the indoor sequence where the increase in
recognition performances is 12%. On the outdoor sequence
on the other hand, improvements are less significant. This
is due to the impressive reliability of the SIFT features in
this sequence. Indeed, as SIFT features are robust to scale
variations in the images, the important depth of the outdoor
scenes enables long term recognition of these features along
the trajectory of the camera. Hence, adding color information
in this case does not dramatically improve the number of
correct loop-closure detections. We can also see in table I that
adding color information has the unwanted effect of producing
more false alarms: when using SIFT features only, no false
alarms were raised for the indoor image sequence, whereas
one was when combining them with H histograms (see section
V-A).

D. Performances

During the experiments, the dictionaries were built onlinein
an incremental fashion from images of size 240x192 pixels,
enabling real-time performances with a Pentium Core2 Duo
2.33GHz laptop in both indoor and outdoor experiments.

Table II gives the length of the different sequences tested
(with corresponding number of images), the CPU time needed
to process them, and the sizes of the different dictionariesat
the end of the run (expressed in number of words). For both
sequences (i.e. indoor and outdoor), we give the performances
obtained when SIFT features are used alone or in combination
with H histograms.

TABLE II
PERFORMANCES

Sequence Length #img CPU #SIFT #H hist.

Indoor SIFT+ H 6m28s 388 2m52s 9201 7284
Indoor SIFT 6m28s 388 1m33s 9201 0

Outdoor SIFT+ H 17m42s 531 10m16s 39175 18408
Outdoor SIFT 17m42s 531 6m48s 39175 0

For the indoor experiment, images were grabbed at 1Hz:
the camera was moved along medium sized corridors, with
curved shape and suddenly appearing corners, motivating the
choice for a reasonable framerate in order for consecutive
images to share some similarities. For the outdoor experiment
however, images were grabbed with a lower framerate (i.e.
0.5Hz): outdoor images grabbed at distant time instants share
some similarities because of the high depth of outdoor scenes.
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From table II, we logically observe that when using SIFT
features only, the CPU time needed to process a sequence
is significantly lower than when H histograms are involved
too: the overall processing is about40% faster in the first
case. However, with both feature spaces enabled, real-time
processing is still achieved and, as mentioned before, the
responsiveness of the probabilistic framework is enhanced,
without causing false positive detections to appear. When
processing an image, the most time consuming step is feature
extraction and matching with the words of the corresponding
dictionary. When trying to match a feature with the visual
words of the dictionary, the search is done with logarithmic-
time complexity in the number of words due to the tree
structure of the dictionary [26]: real-time performances could
not have been obtained with linear-time complexity in the
number of words in view of the dictionary sizes involved here.

For the outdoor experiment, the overall camera trajectory
was about 1.3km and a bit less than 40000 words were created
(when considering the SIFT case only) from 531 images. In
the results obtained by the authors of [23], the data collection
for dictionary construction has been done over 30km, using
3000 images and generating approximately 35000 words. It
is obvious that our model needs far more words than the
solution proposed in [23], and the intuitive explanation of
this is twofold. First, in our online dictionary construction,
we cannot afford data rearranging, which would make it
possible to obtain a more compact representation. Secondly,
in order for the tf–idf weighting used here to perform effi-
ciently, discriminative words are preferable in order to select
unambiguous hypotheses. As shown in [10], the size of the
cluster representing the words has a direct influence on the
word’s distinctiveness: a higher distinctiveness is obtained
with a smaller cluster size, i.e. a larger dictionary size. The
parameters used here are found experimentally to perform well
on all the encountered environments.

VI. D ISCUSSION ANDFUTURE WORK

The solution proposed in this paper is a completely in-
cremental and online vision-based method allowing loop-
closure detection in real-time. The bag-of-words framework
introduced in [10] and used here provides a simple way
to manage multiple image representations, taking advantage
of information gathered from distinct heterogeneous feature
spaces. Moreover, building the dictionaries in an incremental
fashion entails “learning” only that part of the environment in
which the robot is operating, while bag-of-words methods ap-
plied to robotics usually use a static dictionary (e.g. [20], [21],
[23]) learned beforehand from a training data set supposed to
be a good representation of the environment. The consequence
is that our system is able to work indoor and outdoor without
hand-tuning the dictionary, and without prior informationon
the environment type.

The results presented here show the robustness of our
solution to perceptual aliasing. However, the more complex
probabilistic framework described in [23] handles it more
properly, taking it into account at the word level (i.e., the
input information level) while, in our case, it is managed at

the detection level (i.e., the output level), when hypotheses
are checked by the epipolar geometry algorithm. Still, the
evaluation of the distinctiveness of every word proposed in
[23] cannot be done incrementally because, to evaluate the co-
occurrences of the words, representative images of the entire
environment have to be processed beforehand. In our method,
the distinctiveness of the words is taken into account usingthe
online calculated tf–idf coefficient: the words seen multiple
times in the same image will vote with a high score for this
image (i.e. high tf), while the words seen in every images will
have a small contribution (i.e. low idf).

The probabilistic framework presented here poorly handles
the management of loop-closure hypotheses. Indeed, a new en-
try is added to the posterior each time a new image is acquired,
while the evaluation of the corresponding hypotheses (i.e.
checking if whether or not the newly acquired image closes the
loop with one of the past images) is done afterwards: in other
words, a new image is added to the model irrespectively of
the loop-closure detection results. In future work, a topological
map of the environment could be directly created by adding
only images that do not close a loop with already memorized
ones. These events would therefore represent positions in the
environment, linked by their proximity in time and space, and
not only images linked sequentially in time. This would avoid
the presence of multiple high peaks due to the co-existence of
multiple images taken from the same position (see figure 8).

In future work, we will adapt our approach to a purely
vision-based SLAM system like [6] so as to reinitialize the
SLAM algorithm when the camera position is lost or when
there is a need to self-localize in a map acquired beforehand.
The metrical information about the camera’s pose coming from
SLAM could help improving the definition of a location’s
neighborhood, using spatial transitions between adjacentlo-
cations instead of time indexes. As mentioned above, this
would make it possible to fuse images taken from close metric
locations to build a topological map of the environment.

Finally, other feature spaces could be explored, implement-
ing for instance one of the visual descriptors tested in [25],
whereas relative spatial positions between the visual words
could be used to improve matching. Loop-closure detection at
different moments of the day should also be experienced, so
as to test the robustness of our solution to varying lighting
conditions.

VII. C ONCLUSION

In this paper, we have presented a fast and incremental
bag-of-words method for performing loop-closure detection
in real-time, with no false positive detections on the obtained
experimental results even under strong perceptual aliasing
conditions. We demonstrated the quality of our approach with
results obtained in indoor and outdoor environments, reaching
real-time performances even in long image sequences. Our
approach calls upon a Bayesian filtering framework with
likelihood computation in a simple voting scheme and should
be extended to SLAM reinitialization in a near future.
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Pierre et Marie Curie, Paris, France. He is currently
a Ph.D. student with the Université Pierre et Marie
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