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A Fast and Incremental Method for Loop-Closure
Detection Using Bags of Visual Words

Adrien Angeli, David Filliat, Séphane Doncieux, and Jean-Arcady Meyer

Abstract—In robotic applications of visual simultaneous lo- that consists in determining if current image has been taken
calization and mapping techniques, loop-closure detection and from a known location. Such task bears strong similaritigh w
global localization are two issues that require the capacity jjage classification methods like those described in [8] and

to recognize a previously visited place from current camera . . . . .
measurements. We present an online method that makes it [9], but an important difference is our commitment to online

possible to detect when an image comes from an already perceivedproceS_Sing- _ o
scene using local shape and color information. Our approach  In this paper, we present a real-time vision-based method

extends the bag-of-words method used in image classificationto detect loop-closures in a Bayesian filtering scheme: et ea
to incremental conditions and relies on Bayesian filtering to o\ image acquisition, we compute the probability that the

estimate loop-closure probability. We demonstrate the efficiency current image comes from an alreadv perceived scene. To this
of our solution by real-time loop-closure detection under strong g yp :

perceptual aliasing conditions in both indoor and outdoor image ©nd, we designed a scene recognition framework that relies
sequences taken with a handheld camera. on an incremental version [10] of the bag-of-words method
[9]. Loop-closure hypotheses whose probability is abovaeeso
threshold are confirmed when a coherent structure between
the corresponding images is found - i.e. when the epipolar
|. INTRODUCTION geometry constraint is satisfied. This ultimate validatiep
Over the last decade, the increase in computing power hasaccomplished using a multiple-view geometry algorithm
helped to supplement traditional approaches to simulasmesimilar to the one proposed in [11]. We provide experimental
localization and mapping (SLAM [1], [2], [3], [4]) with the results demonstrating the quality of our approach by per-
qualitative information provided by vision. As a consecuesn forming loop-closure detection in incremental and reaeti
in robotics research, commonly used range and bearingseng@nditions in both indoor and outdoor image sequences using
such as laser scanners, radars and sonars tend to be asbodasingle monocular camera.
with, or replaced by, single cameras or stereo-cameraFmys. In section 2, we present a review of related work on
example, in previous work [5], we performed vision-based 2@sual loop-closure and global localization. Section 3efyi
SLAM for Unmanned Aerial Vehicles (UAV). Likewise, in [6], introduces our implementation of the bag-of-words panadig
the authors performed 3D SLAM in real-time at 30Hz using &he filtering scheme is detailed in section 4 and experintenta
monocular handheld camera, while the authors of [7] preséasults are given in section 5. The last two sections aretelévo
visual SLAM solutions based on both monocular and steré® discussion and conclusion.
vision.
However, there are still difficulties to overcome in robotic Il. RELATED WORK
vision in general, and in SLAM applications in particular. The Monte Carlo Localization (MCL) method was origi-
Among them, the loop-closure detection issue concerns thally designed [12] to make global localization capitalii
difficulty of recognizing already mapped areas, while then range and bearing sensors possible. Although sucdgssful
global localization issue concerns the difficulty of retiteg adapted to vision [13], this method does not match our reguir
the robot’s location in an existing map. Those problems @n hents since it relies on the existence of a map obtaineddefor
addressed by detecting when the robot is navigating thraughand. From the same principle, the Rao-Blackwellised glarti
previously visited place from local measurements. Theailerfilter (RBpf) enables loop-closure capabilities in SLAM alg
goal of the research effort reported in this article is thois tithms (e.g the FastSLAM [14] framework). It has also been
design a vision-based framework tackling these issues sm agdapted to vision [15], but it suffers degeneration whesiolp
make it possible for a robot to reinitialize a visual 3D-SLAMR loop due to inaccurate resampling policies [3]. In additio
algorithm like one of those presented in [6] or [7] in sucliRBpf are not loop-closure detection methods per se, buerath
situations. This comes down to an online image retrievad taSLAM methods robust to loop-closure events.
Loop-closure detection has also been performed using an
Adrien Angeli (corresponding author), &thane Doncieux and Jean-gytended Kalman Filter (EKF) application to visual SLAM
Arcady Meyer are with the Univeré&t Pierre et Marie Curie - Paris . .
6, FRE 2507, ISIR, 4 place Jussieu, F-75005 Paris, France.il:em&[16], [17]). The overall idea is to detect loop-closuresnfr
firstname. | astnane@sir.fr advanced data association techniques that try to matclalvisu
David Filliat is with Ecole Nationale Supieure des Tech- fegtyres found in current images with those stored in the
nigues Avanées, 32, bvd Victor, F-75015 Paris, France. Emalil; . . . .
david.filliat@nsta.fr map. This approach limits the information used to detegbdoo
Regular Paper closure to the information used for mapping (which is deseyn

Index Terms—Loop-closure detection, localization, SLAM.
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for SLAM, and not optimized for loop-closure detection). Ithe same location. This approach, based on the bag-of-words
is also linked to a particular SLAM algorithm, whereas ouscheme, is very robust to perceptual aliasing: a generative
approach may be adapted to any SLAM method (even nobdel of appearance is learned in an offline process, ap-
vision-based). proximating the probabilities of co-occurrences of the dgor

In this work, we wish to design a simple visual systernontained in the offline-built dictionary. Using this model
able to perform loop-closure detection and global localizéoop-closure detection can be performed with a complexity
tion, within the framework of an online image retrieval tasKinear in the number of locations. The main asset of this rhode
Following a similar approach, but in a non-incremental peis its ability to evaluate the distinctiveness of each wahdis
spective, voting methods presented in [18] and [19] callup@ccounting for perceptual aliasing at the word level, witde
maximum likelihood estimation to match the current imaggrincipal drawback lies in the offline process needed for ehod
with a database of images acquired beforehand. The liladihdearning and dictionary computation.
depends upon the number of feature correspondences betwedn the majority of the methods presented above, SIFT
the images, and leads to a vote assessing the amount(Sdfale Invariant Feature Transform [24]) features are the
similarity. In [18], the authors also use multiple-view geo preferred input information because of their robustness to
etry to validate each matching hypothesis, while in [19] theeasonable 2D affine transformations, scale and viewpoint
accuracy of the likelihood is qualitatively evaluated irder changes. However, other visual features could be used for
to reject outliers. Even though they are easy to implemést, tloop-closure detection and global localization (see [2&] f
aforementioned voting methods rely on an offline constouncti a comparison of visual local descriptors). For example, as
of the image database and need expensive one-to-one imsigged in [19], color histograms are powerful features jgliag
comparisons when searching for the most likely hypothes@s.compact geometry-less image representation that exhibit
Moreover, the maximum likelihood framework is not suitablsome attractive invariance properties to viewpoint change
for managing multiple hypotheses over time, as it does nidence, it may be suitable to merge several complementary
ensure the time coherency of the estimation (i.e. inforomati visual information, like shape and color for example, inesrd
from past estimates is not integrated over time so as to tmeobtain a reliable solution in different contexts.
fused with actual ones). As a consequence, this framework
is prone to transient detection errors, especially undengt I1l. VISUAL DICTIONARY

perceptual aliasing conditions. The implementation of the bag-of-words method used here
In [20] and [21], bag-of-words methods are used to perforfg yetajled in [10]: the dictionary construction is perfat

global localization and loop-closure detection in an imagg,jine along with the image acquisition, in an incremental
classification scheme (see also [22] for an extended versiQapion. The words are stored using a tree structure (see
of [21], with multi-robot map-joining addressed as a 100Pg] for more details), enabling logarithmic-time compitgx
closure problem). Bag-of-words methods ([8], [9]) rely Oty hen searching for a word and thereby entailing real-time

a representation of images as a set of unordered elemeniaiy ossing. In the work reported here, we used two different
features (the visual words) taken from a dictionary. Théighic o4 re spaces to describe the images:

nary is built by clustering similar visual descriptors exied
from the images into visual words. Using a given dictionary,
image classification is based on the occurrence of the words
in an image to infer its class. In [20] and [21], images are
represented as vectors of visual words’ statistics witle siz
equal to the number of words in the dictionary. The dictignar
is built beforehand in an offline process, clustering theiaiis
features extracted from a training database of images into’
representative words of the environment. Matching between
current and past images is defined as a Nearest Neighbor (NN)
search among the cosine distances separating the cordespon
ing vectors. In [20], a simple voting scheme selectsriteest
candidates from the NN search and multiple-view geometry
is used to discard outliers. In [21], the NN search resulés ar
used to fill asimilarity matrix whose off-diagonal elements o ) )
represent loop-closure events, thus providing a powerfy w A dictionary is built for each feature space.
to manage multiple hypotheses. In both approaches, the use
of a dictionary enhances the robustness of matches, egablin IV. BAYESIAN LOOP-CLOSUREDETECTION
a good tolerance to image noise, but the NN search involved|n this paper, we address the problem of loop-closure
relying on exhaustive one-to-one vector comparisons, g veletection as an image retrieval task: we are seeking forake p
expensive. image, if it exists, that looks similar enough to the curren¢
More recently, the authors of [23] have proposed a visiote consider that they come from close viewpoints. The oVeral
based probabilistic framework that makes it possible to gsrocessing, illustrated in the diagram of figure 1, is acikev
timate the probability that two observations originateniro in a Bayesian filtering framework estimating the probaypilit

« SIFT features [24]: interest points are detected as max-
ima over scale and space in differences of Gaussians
convolutions. The features are memorized as histograms
of gradient orientations around the detected point at
the detected scale. The corresponding descriptors are of
dimension 128 and are compared using L2 distance.
Local color histograms: the image is decomposed in a set
of regularly spaced windows of several sizes to improve
scale invariance. The normalized H histograms in the
HSV color space for each window are used as features.
The windows used here are of size 20x20 (respectively
40x40) taken every 10 (respectively 20) pixels. The
descriptors are of dimension 16 and are compared using
diffusion distance [27].
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that current and past images pertain to the same scene:images (i.e.l;_1,l;_2,...,I;_(p4+1)). This parameter, set to

thus look for the past image that maximizes the probabilihO in our experiments, is adjusted depending on the frame

of loop-closure with the current image. When such an imagate and on the velocity of camera motion.

is found (i.e. when probability is high for a particular lcop We therefore need to estimate th&ll posterior,

closure hypothesis), the consistency of the structurenlyidg p(S;|I?) for all i = —1,...,t — p, in order to find, if a loop-

those two images is checked by a multiple-view geometnjosure occurred, the corresponding past image.

algorithm [11]. When perceptual aliasing is present in the Following Bayes’ rule and under the Markov assumption

environment (i.e. when different places look similar),pepar the posterior can be decomposed into:

geometry provides a powerful way to reject outliers (i.estpa

images that look like the current image but do not come p(Se| 1Y) = np(Le]Se)p(Se| 1) )

from the.same spene). In order to take advantage of d'ﬁeremwheren is the normalization term. LetZ); be the state

types of information, several feature spaces (i.e. SIFiufea I ) :

. ) - of the dictionary associated with the feature sp&céSIFT

and H histograms) are used here for representing the images. , S o
. o ~teatures or H histograms in this paper) at time indeXhe

Compared to maximum likelihood methods, the Bayesw*n T .

. ime subscripti is inherent to the incremental aspect of the

filtering scheme proposed here takes temporal Coherencydo

: A : . i i C Cc...C . C
image acquisition into account in order to bring robustrtess ICtionary construction(Zy)o € (Zk)1 € ... € (Zk)i-1 ©

) . (Zx)i, with (Z)o = 0 (features from the feature spaée
transient detection errors.

extracted inl; are used to buildZy);11). Also, let the subset

— Comoute (zr); of words taken from(Z;); and found in imagel;
image (bags likelihood denote one representation of this imade:< (zx);, with

of words)

® Acquire Feature space 1 3 lool:)rfgitsi R (zx): € (Z);. Since several feature spaces are involved here,
new mage probability several image representations exist (one per feature )space

3 Encode Compute
image (bags >| |ikelihood

of words)
Feature space k

Thus, let (z™); be the overall representation of imade
all feature spaceg = 0,...,n combined. The sequence of
images/® acquired up to time can therefore be represented
by the sequencé&™)! = (z")o, ..., (2™);.

So, the full posterior, now rewrittep(S¢|(z")"), can be
expressed as follows:

High
loop-closure
probability?

Loop-closure
rejected

Consistent
camera
transformation?,

Check
<«——| epipolar
geometry

p(Sel (")) = mp(EelSe)p (Sl (")) @)

Assuming independence between the feature spaces, we
can derive a more tractable mathematical formulation for
equation 3 so as to make computation of the full posterior
easier. However, capturing the correlations existing betw
the different dictionaries could provide additional infaation
In this section, we first give the mathematical derivation gfpout the occurrence of the words. Under the independence

the filtering scheme used for the estimation of loop-closuggsumption, the full posterior's expression can be written
probability. Then, we focus on issues regarding temporal co

herency, likelihood computation and hypotheses managemen

Loop-closure
accepted

Fig. 1. Overall processing diagram (see text for details).

p(Sil(z")") =n [H p((%)ﬂ&)] p(Sel (")) @)

A. Discrete Bayes Filter k=0

Let S, be the random variable representing loop-closure where the conditional probability((zx):|S;) is considered
hypotheses at time The eventS; = i is the event that current as a likelihood functionC (S;|(zx);) of its second argument
image I; “closes the loop” with past imagé. This implies (i.e. S;), with its first argument (i.e(z;);) held fixed: we
that the corresponding viewpoints and z; are close, and evaluate, for each entr§, = i of the model, the likelihood of
that I, andI; are similar. The even$;, = —1 is the event that the currently observed words;): (see section IV-C).
no loop-closure occurred at tinteln a probabilistic Bayesian ~ Recursive estimation of the full posterior is made possible
framework, the loop-closure detection problem can hence bg decomposing the right hand side of equation 4 as follows:
formulated as searching for the past imagewhose index  p(S:|(z")") =

satisfies: n t—p
, , U P((Zk)t|5t)] p(SelSi—1 = §)p(Si—1 = jl(z") 1)
j=argmax__, ,_,p(S =ill") @) LUO j;1
wherelt = Iy,...,I;, with j = —1 if no loop-closure has belief
been detected. This search is not performed over theplast (5)

images becausk always looks similar to its neighbors in time  wherep(S;|S;_1) is the time evolution model (see section
(since they come from close locations), and doing so would-B) of the probability density function (p.d.f.). From eg-
result in loop-closure detections betwegrand recently seen tion 5, we can see that the estimation of the full posterior at
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time t is done by first applying the time evolution model to During the computation of the likelihood associated to the
the previous estimation of the full posterior, leading toaivh feature space:, we wish to avoid an exhaustive image-to-
we can call thebelief at time ¢, which is in turn multiplied image comparison of the visual features, as implemented in
successively by the likelihoods obtained from the différemost of the voting and bag-of-words methods cited in section
feature spaces in order to get the actual estimation for theln order to efficiently find the most likely past image
posterior. that closes the loop with the current one, we take advantage o
Note that in our framework, the sequence of wotd8)" theinverted indexassociated with the dictionary. The inverted
evolve in time with the acquisition of new images, divergingndex lists the images from which each word has been seen in
from the classical Bayesian framework where such sequentles past. Then, during the quantization of the current image
would be fixed. Moreover, in spite of the incremental evaloti with the words(zy), it contains, each time a word is found,
of the dictionary, the representation of each past imageaeésifi we retrieve from the inverted index the list of the past ingage

and does not need to be updated. in which it has been previously seen. This list is used to
update the score (originally set to 0) that is assigned toyeve
B. Transition fromt — 1 to ¢ loop-closure hypothesi$; = ¢ in a simple voting scheme:

Betweent — 1 and¢, the full posterior is updated accordingVhen We find a word that has been seen in imagstatistics
to the time evolution model of the p.d.fp,(St\St_l _ j), about the qurd are .addgd to the score (see flgqre 2). The
which gives the probability of transition from one stateat chosen statistics are inspired from teem frequency—inverted

time ¢ — 1 to every possible state at tinelt therefore plays document frequency (tf-idfyeighting [28]:

a key role in reducing transient detection errors by engurin . Nwi. N

the temporal coherency of the detection. Depending on the ti-idf = —log— (6)
respective values of; and.S;_1, this probability takes one of . ! w _

the following values: wheren,,; is the number of occurrences of wordin I;, n;

is the total number of words ify;, n,, is the number of images
containing wordw, and NV is the total number of images seen
so far. From equation 6, we can see that the tf—idf coefficient
is the product of the term frequency (i.e. the frequency of a
word in an image), by the inverted document frequency (i.e.
the inverse frequency of the images containing this wortd). |
is calculated each time a likelihood score is computedngivi
increased emphasis to words seen frequently in a small numbe
of images, and penalizing common words (i.e. words that are
. p(St — 0[S = j), with i, j € [0: t—p|, is a Gaussian on seen everywh_ere), according to_ the mos_t recent stans‘qcs.

. L ) . : To summarize, when a word is found in the current image,

the distance in time betweenand j whose sigma value . . .

. o : the images where this word has been previously seen have
Is chosen so that it is non zero for exactly 4 ne'ghbogﬁeir scores updated with the tf—idf coefficient associatvét
(i.,e.i=j—2...j+2). The size of this neighborhood is P

adjusted depending on the frame rate and on the veIoct| F pa|r{word—|me_19e. The' score associated with each loop-
sure hypothesisS; = 4 will be used to compute the

. . e C
of camera motion. This corresponds tp a d'.ff.US'on of thceorresponding likelihood, as we shall see later on. Butieefo
posterior in order to account for the similarities betweeh . ! :
neighboring images. we mqst give some detal‘!s about the computation of the score
. . associated to the event “no loop-closure occurred at time
Notg that in order to hav?(St >= —1|51 :;7) =1 ndeed, it is evaluated here as the event “a loop-closure is
when j € [0;¢ — p], the coefficients of the Gaussian used igy,nq with7 ,”. I, is a virtual image built at each likelihood
the last case have to sum to 0.9. computation step with then most frequently seen words
o ) ) of (Zx): (m being the average number of words found per
C. Likelihood in a Voting Scheme image): it is the “most likely” image.

In section IV-A, we saw how using multiple feature spaces The idea is that the score associated with will change
gave the opportunity to represent an image in different waydepending on the location of the current image, so as to leehav
From a perceptual point a view, each representation brisgsas the score of the “no loop-closure” event. When no loop-
own piece of information about the state of the world, indeslosure occursl; will be statistically more similar td_; than
pendently from other feature spaces. This entails comgutito any otherl;, becausd; will have more words in common
a likelihood measure for the loop-closure hypotheSedor with 7_; than with any otherd;. On the other hand, in a real
each of the feature spaces considered. From the computhtiamambiguous loop-closure situation, the scord of will be
point of view, all the representations rely on the bag-ofew compared to the score of the loop-closing imageas
words paradigm, providing a generic interface to computk athe words responsible for this detection are only present in
manage image representations. Therefore, the detail® giteo images (i.el; andI;), they are not frequently seen words
here about the estimation of the likelihood associated toaad they are in consequence unlikely to be found_in. The
specific feature spadeapply identically to each other featuredesign of the virtual image proposed here is also relevant in
space. case of perceptual aliasing (i.e. whAncomes from a location

o p(S; = —1|Si—1 = —1) = 0.9, the probability that no
loop-closure event will occur at timeis high given that
none occurred at time— 1.

o p(Sy=1ilSi-1=-1) = % with i € [0;¢ — p], the
probability of a loop-closure event at tintds low given
that none occurred at timee— 1.

o p(Si = —1|S;-1 = j) = 0.1 with j € [0;¢ — p], the
probability of the event “no loop-closure at time is
low given that a loop-closure occurred at time- 1.
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that is similar to several previously visited places). Irclsu all the images of Hy,); have been processed for all the feature
situation, as multiple past images have equivalent likelds, spaces, the full posterior is normalized.
it is important to ensure thdt ; receives a score that is in the

same order of magnitude as the score of these images, so ¢ — Mean + std deviation A G
prevent an erroneous loop-closure detection. Here, asopari — Full posterior pdf
the most common words composirdg; will originate from Si —> EventS; =i

the images that are responsible for perceptual aliasinig, it

guaranteed thaf_; will be granted with an important score >

(but not necessarly the highest one). o S-1S0 S1 82 S3
The construction of a virtual image with existing words i: Likelihood A2

- " . . S

similar to the addition of new locations from words samplin core

used in [23]. In our filtering scheme, the existence of th

virtual image can be simulated simply by addin entr j » Event /\
J Py by dgaentty si- o i 'S150sI 5253

to the inverted index for each of the most frequently see
words. Therefore, if one of them is found i, it will vote

for I_; as shown in figure 2 and the corresponding score whlg. 3(;- dThe begef at tirnet (frame “1", see equation 5, section IV-A),

u " is updated according to the likelihood model (frame “2"): whie score
be CompUted as for the “true Images. of a hypothesis is above the meap standard deviation threshold, the
corresponding probability is updated.

S-1S0 S1 S2 S3 >

Past image indexes
containing the words
seen in current image

Words searching
in current image

Word wil > - . I.l ! N ..
— . D. A Posteriori Hypotheses Management
Word wj > I, I I 13 . .
Dictionary — Lo When the full posterior has been updated and normalized,
Word wn > 11 L I we search for the hypothesiS; = i whose a posteriori
Invertedindex 1111 probability is above some threshold.§ in our experiments).

However, the posterior does not necessarily exhibit a gtron
single peak for a unique hypothesis even if a loop-closure
occurred. It may rather be diffused over a set of neighboring
hypotheses (except fa$; = —1). This is mainly imputable
to the similarities among neighboring images in time: some
of the words commonly found id; and I; are also probably

. _ _ _ o in I,_, or I,,, for example. Thus, instead of searching for
Fig. 2. The voting scheme: the list of the past images in whicheot

words (z): have been seen is obtained from the inverted index and is usﬁwgle Peaks among the full pOStenorj _We look for a hypoth.es
to update the hypotheses’ scores. for which the sum of the probabilities over neighboring

hypotheses is above the threshold (the neighborhood chosen

Once all the words found in the current image have bedere is the same as the neighborhood selected for the diffusi
processed and the computation of the scores is complétesection 1V-B).
we select the subsetH,); C I*~? of images for which  When a hypothesis fulfills the above condition, a multiple-
the particular coefficient of variation (c.0.v.) (i.e. particularview geometry algorithm [11] helps discarding outliers by
deviation from the mean of the scores normalized by therifying that the two images of the loop-closure (i.B.
mean) is higher than theandardc.o.v. (i.e. standard deviationand I;) satisfy the epipolar geometry constraint, which would
normalized by the mean).H), C I'~? is the subset of the imply that they share some common structure and that they
most likely images according to the feature spac&hen, if could hence come from the same 3D scene. To this end, a
I, appears in(Hy):, the belief at timet (see equation 5) is RANSAC procedure entails rapidly computing several camera
multiplied by the difference between the particular c.ofvl; transformations by matching SIFT features between the two
and the standard c.o.v., plus 1 (which can be simplified infames, discarding inconsistent ones using a threshold on
the difference between the scorgof the hypothesis and thethe average reprojection error. If successful, the algorit

Score

o Event

Si . '
' s.=i 5150 S1 S2 S3

standard deviatiowr, normalized by the meap): returns the 3D transformation between and z; (i.e. the
L(S; =1|(zx)) = viewpoints associated witll; and I;) and the hypothesis is
si—p o o . accepted. Otherwise, the hypothesis is discarded. However
SicH g 4] = 50 if s, >pu+o . . ; . ;
z " 2 therwi (7) even if a hypothesis has been discarded by the multiple-view
otherwise geometry algorithm, its a posteriori probability will noalif

The update of the belief for the restricted set of the mosi 0 immediately: it will diffuse over neighboring images
likely hypotheses is illustrated in figure 3. The selectiam& during the propagation of the full posterior fromto ¢ + 1.
on the hypotheses at this stage makes it possible to sintpéfy Thus, correct hypotheses erroneously discarded by epipola
update of the posterior (as only a restricted set of hypethegeometry will be reinforced by the likelihoods of furthemg
is updated), considering that non-selected hypotheses &avinstants until a valid 3D transformation is found. Note that
likelihood of 1 and therefore multiply the posterior by 1. Wihe since SIFT features are extracted from the images and stored
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during the online dictionary construction, we do not need treas, in spite of the strong perceptual aliasing presetitein
process the images again when applying the multiple-viesorridors to and from the “London” elevators (see figure 5 for
geometry algorithm. examples of the images composing the sequence). During the
run, nofalse positivedetections were made (i.e. when a loop-
V. EXPERIMENTAL RESULTS closure is detected whereas none occurred), thus demtmgtra

We obtained resultsrom several indoor and outdoor imagdn® robustness of our solution to perceptual aliasing.
sequences grabbed with a single monocular handheld camer.
(i.e. a simple camcorder with a 6@ield of view and automatic
exposure). In this paper, we present the results obtai
from two experiments: an indoor image sequence with stro
perceptual aliasing and a long outdoor image sequence.
both experiments, illumination conditions remained canst
the indoor sequence has been captured under artificiaingyht
conditions, while the length of the outdoor one (i.e. nearl
20 minutes) was too short to experience changes in lighti
conditions.

A. Indoor experiment

The overall camera trajectory followed during this experiig. 5.  Top-most corridor (top row) and bottom-most corridobttom

ment is shown in figure 4 using three different styles. When thgwv) image eﬁ‘mplesybshowin% the Tighhlelvel of P?rqeptuabwi_nhthhe

. . . . .environment. e numbers in the circles help assomatmgnia@es with the
posterior is below the threshold, the trajectory is showthwi positions labelled in figure 4.

a blue (dotted) line. When it is above the threshold and the

epipolar constraint is satisfied, a loop-closure is deteeted From figure 4, we can also see that the trajectory is shown

the trajectory is shown with a green (dashed) line. But, Whefi, 5 green (dashed) line most of the time spent in previous!
the posterior is above the threshold and the epipolar cinstr | iciia places, indicating tharue positive detections were

is not satisfied, the loop-closure hypothesis is rejectetlthe 546 (i.e. when a loop-closure occurs and it is correctly de-
trajectory is shown with a red (circled) line. tected). Figure 6 gives an example of a true positive detecti

lcmNV2,7m
—

-1 10 20 30 0 50 60 kel 80
Image indexes

SIFT keypoints

Likelihood

Likelihood
g 8

W Start position =~ e No loop-closure detection

- - - Loop-closure detected
-+ Loop-closure rejected

—» Current position
1) Image viewpoint

Fig. 4. Overall camera trajectory for the indoor image seqeeAdirst short
loop is done around the “New York” elevators on the left befgping to the
“London” elevators on the right. The short loop is travellghin when the
camera is back from the “London” elevators following the tapst corridor
on the plan. Then, the camera repeats the long loop (i.e. tdLivedon”
elevators and back) before ending in front of the “New Yorlévators. The
numbers in the circles indicate the positions from which thadges shown
in figure 5 were taken. See text for details about the trajgcto

As we can see in figure 4, the trajectory is shown with a blue
(dotted) line every time the camera is discovering unexgalor

Image indexes

Fig. 6. First loop-closure detection for the indoor imageussge. The
full posterior and the likelihood computed from the SIFT andhistograms
feature spaces are shown, along with the current infagéop left) and the
loop-closing imagéd; (bottom left). Likelihoods are obtained from the scores
(tf—idf) of the different hypotheses. Also shown with thkelihoods are the
score mean (solid green) and the score me¢astandard deviation threshold
(blue crosses). As it can be seen, the likelihood is veryngtiaround images
corresponding to hypotheses 10 to 13, causing the sum ofattiesponding
probabilities in the posterior to reach tis threshold. Also, it clearly appears
here that/; and I; come from very close viewpoints.

During passings in already explored places, it may be

lvideos available at http://animatlab.lip6.fr/AngeliVmsEn, but also at noticed that the line representing the trajECtory switdhes

http://ieeexplore.ieee.org as supplemental material ®©ghper.

green (dashed) to red (circled) each time the camera was
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turning around corners. In these particular cases, looguce
detection fails only because the epipolar constraint is n
satisfied: the a posteriori probability of loop-closure ixee
the threshold but, due to the large and fast rotations ma
by the camera, precise keypoints associations are diffict
Indeed, in this narrow indoor environment, when the camel
is turning around corners, the viewpoint variation betwee g
current and loop-closing images may be large, resulting 2
small overlap between these images and preventing Sl
features from matching correctly. This correspond<faise
negativedetections (i.e. when a loop-closure occurs but it | w0
not detected). N
When considering the trajectory of the camera with mol
attention, it may be observed that the first loop-closuredet
tion that should be done (i.e. when the camera reaches ac L L]
its starting position for the first time, during its first tedv Image indexes
behin-d the “New Y-0rk" elevators) is mi;sed an-d t-he-tranCtOI;:ig. 7. The only false alarm due to perceptual aliasing: ascam see
remains shown W'th. a blue (dotted) line. Thls IS 'mpUIablﬁe likelihoods are confused (we can note two similar highkpean the'
to the low responsiveness of the probabilistic frameworkiFT's likelihood, while the H histograms’ likelihood doestrgive helpful
the likelihood associated with a particular hypothesis tuas information) and the images look very similar. This hypothesis been
be very high relative to the other likelihoods to trigger &ected by the multiple-view geometry algorithm.
fast loop-closure detection. Usually, the likelihood asated

with a hypothesis must have a good support during 2 Ortl’glird passing of the camera behind the “New York” elevators.

consecutive 'Mages in order to trlgger a loop-closure detec . This is why we observe two distinct peaks on the likelihoods:
The responsiveness of our system is governed by the tms't{wo hypotheses are valid in this case, becaliseloses the

model of the probabilistic framework: we assume that tl]e g ' Iy
it N " N .. "loop with images from the first and the second visits. But due
probability of remaining in a “no loop-closure” event is hig

(i.e. 0.9, see section IV-B). Decreasing this probabitityower to the temporal coherency of the p.d.f., the hypotheses that

values makes it possible to detect loop-closures fasenith have_high a posteriori probabilities are those from the sdco
. . . .. passing.

fewer images required), but this also produces false pesiti

detections, which is not acceptable. The delay involvea he

therefore enhances the robustness to transient detectms,e

considering only hypotheses with repeated support ovee tir

as possible candidates for loop-closure.

During the run, there was only one case where the prok
bility was above the threshold but the selected hypotheais w
wrong and it has been conveniently rejected by the multipl
view geometry algorithm. This event, that can be considased
afalse alarm can be identified in figure 4 as the red (circled
portion of the trajectory that occurs when the camera is ngmi
back for the first time from the “London” elevators (just nea T S
the 6t" circle on the figure). This false alarm can be explaine s , mn HGgrams
by the strong perceptual aliasing that makes the corridors
and from the “London” elevators look the same (see figure i “f"‘ A
since our bag-of-words algorithm relies on the occurrerfce " U‘['\y‘ﬂ
the words rather than on their position, the current imagg m Ll
look like a past image but the structures of the scenes m..,
nOF be CO,nS_IStent' thus preventing the epipolar constfeont Fig. 8.  Another loop-closure detection for the indoor imageuence.
being satisfied. Although there is a significant camera viewpoint differenetween current

In order to test the robustness of the detection to camewal past images, the loop-closure is correctly detected.
viewpoint changes, we rotated the camera around its optical
axis when passing behind the “New York” elevators for the
second and third times. As shown by the green (dasheéj)
line representing the trajectory during these periods)dabp- :
closure detection results were not affected. The figure 8sgiv During this second experiment, images were taken outdoor
an example of loop-closure detection with different camesgith a handheld camera while turning around the laboragory’
orientations between current and loop-closing images. Thailding (figure 9 gives examples of images from this se-
loop-closure detection shown in this figure correspond$¢o tquence).

0.4 l
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A posteriori pdf

®
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Image indexes

200 250 300

SIFT keypoints

Likelihood

1 W) 01 B )
50 200

150 250 3080

Image indexes

F histograms

Fig. 9. Examples of the images composing the outdoor sequere. 1
numbers in the circles help associating the images with thitiguus labelled
in the figure 10.

Likelihood
-8BEEREZELE
=

156
Image indexes

256

The_ overall (_:amera traJeCt_Ory followed durlng this e)_(penlfig. 11. Robustness of the probabilistic framework to tramisidetection
ment is shown in figure 10 using the same style conventionseagrs: although current image is partially occluded by paitens, a correct
before. Here, we introduced red-green (circled-dashed)sli loop-closure hypothesis is selected, but it is rejected Hey rhultiple view
to denote fast alternations of true positive and false megat9eCmetry algorithm.
detections that occur when people or cars are passing in
front of the camera, causing correct hypotheses to be egleCt ag in the indoor experiment, no false positive detections
because not enough point correspondences can be foundf9e made, whereas multiple true positives were found (see

satisfy the epipolar geometry constraint. These events (‘&Iure 12). Also, we can see from figure 10 that the first

which one example is given in figure 11) demonstrate th&,, closure detections occur tardily when the camera is
robustness of the probabilistic framework to transieneclibn coming back to its starting position, revealing again the lo

errors: even though images are occluded by people or C3Sponsiveness of the probabilistic framework.
correct loop-closure hypotheses are selected (i.e. they aa

high a posteriori probability), but since the epipolar doaist
cannot be satisfied, they cannot be fully validated to
accepted as true positive loop-closure detections.

150 200
Image indexes

SIFT keypoints

150 200
Image indexes

F histograms

L™ g
ALY WWT“

Likelihood

(i

Image indexes

250 Y

Start position ®m
Current position

~ No loop-closure detection
Loop-closure detected - - -
Loop-closure rejected -——

Fig. 10. Overall camera trajectory for the outdoor image secgeTwo loops
are done around the “Lip6” laboratory, starting near therigpt end of the
building on the image (indicated by the square) and endints didttom-left
end. The path in front of the building (i.e. running parattekhe river) is thus
travelled three times. The style conventions for the trajgcare the same as
in figure 4, with the introduction here of red-green (circashed) lines to

Fig. 12. Example of a true positive loop-closure detectiontfe outdoor
image sequence. Again, we can observe that the likelihoad fiee SIFT
feature space is very high and discriminative.

C. Influence of the visual dictionaries

In this section we will study the influence of the different
visual dictionaries used here (i.e. SIFT features and H his-
tograms) for loop-closure detection. To this end, we tried t
perform loop-closure detection using only either SIFT fieas

denote fast alternations of true positive and false negalstections. Red- . .
green (circled-dashed) lines are painted over white retearto distinguish Or H histograms. Although those tests have been done using

them easily. See text for details about the trajectory. both image sequences, the indoor one produces more valuable
results since more loop-closures are done during the trvel
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the camera and because the indoor environment is much m@#=A’", erroneous hypotheses that receive a high proksbili

diversified. but that are rejected by the multiple-view geometry aldponit.

H histograms only carry colorimetric information, without
any shape nor structure information. Therefore, the corre- TABLE |

. . . . . . COLOR INFORMATION IMPROVEMENTS
sponding likelihood is always confused, and it will never be
very p_eak_ed over one particulgr hypothesis unless the -cofTe Sequence #img HLC %TP HFA
sponding image contains specific colors that are seen newher ngoor SIFT+ H 388 217 30 1
else. However, H histograms can help distinguishing sityila Indoor SIFT 388 217 68 0
i i ; ; Outdoor SIFT+ H 531 301 71 0

structured environments that only differ in their colorsg(e outdoor SIFT 31 201 20 0

two corridors having the same dimensions but whose walls are

inted with different colors). When lone, H hi m . :
painted .t different colors) e us_ed ajone, stogra ._From table I, we can see that when adding color infor-
cannot trigger a loop-closure detection. But when used r'rr11ation the true positive rate is improved: this is notabl
combination with SIFT features, they enhance loop-closure ' P P ' y

detection, improving notably the overall responsivendsbe remarkable in the indoor sequence where the increase in

it i 0,
probabilistic framework. Indeed, as shown in figure 13, we Cal:GCOgI’]ItIOI’] performances is 12%. On the outdoor sequence

see that the posterior obtained when using both SIFT femtufl’ the other hand, improvements are less significant. This

IS due to the impressive reliability of the SIFT features in

and H histograms is higher than when using SIFT features
only. This is because H histograms’ likelihood, although 1Jfis sequence. Indeed, as SIFT features are robust to scale

Co . - variations in the images, the important depth of the outdoor
discriminative enough to trigger a loop-closure detectiora scenes enables long term recognition of these featureg alon
higher around the loop-closing hypothesis, and so it reae® g g 9

the votes from the SIFT feature space when updating tBhee tr_ajectory of the camera, Hgnce, gddmg color inforamafi
posterior In" this case does not dramatically improve the number of

correct loop-closure detections. We can also see in talhat| t
P ‘ adding color information has the unwanted effect of prodgci

ol more false alarms: when using SIFT features only, no false
alarms were raised for the indoor image sequence, whereas
one was when combining them with H histograms (see section

A posteriori pdf

V-A).
* mlmage i:wdexe: * Imagezi;dexe:

: “ SIFT keypoints | SIFT keypoints
5 ‘ ‘ D. Performances
g I During the experiments, the dictionaries were built onlime
B s At ) g 1 an incremental fashion from images of size 240x192 pixels,

e e SN enabling real-time performances with a Pentium Core2 Duo

Image indexes Image indexes . . }
e - 2.33GHz laptop in both indoor and outdoor experiments.

Table Il gives the length of the different sequences tested
(with corresponding number of images), the CPU time needed
T to process them, and the sizes of the different dictionaates
the end of the run (expressed in number of words). For both
sequences (i.e. indoor and outdoor), we give the perforegnc
Fig. 13. Loop-closure detection enhancement using colorsisage infor- obtained when SIFT features are used alone or in combination

mation in the indoor image sequence: when H histograms are cechbn With H histograms.
SIFT features (left part), the a posteriori probability igtrer than when using
SIFT features alone (right part). TABLE I

PERFORMANCES

Likelihood
i 8

-1 10 20 0
Image indexes

Using SIFT features in conjunction with H histograms there-
fore enhances the responsiveness of the algorithm, making Sequence _ Length #img CPU__ #SIFT _ #H hist.
it able to detect loop-closures sooner, especially when the'”doc’l:ﬁgg;; 66mm228858 338888 21':‘”53232 99220011 728‘5
camera is back to its starting position for the first time:pdoo outdoor SIFT+ H ~ 17m42s 531 10m16s 39175 18408
closures are detected 2 or 3 images before when both feature Outdoor SIFT ~ 17m42s 531  6m48s 39175 0
spaces are involved. Table | gives additional clues for this
improvement, with information about the loop-closure dete For the indoor experiment, images were grabbed at 1Hz:
tion performances for the indoor and outdoor image sequentlee camera was moved along medium sized corridors, with
when using SIFT features alone or in conjunction with lurved shape and suddenly appearing corners, motivatang th
histograms. Given are the number of images composing eativice for a reasonable framerate in order for consecutive
sequence (“#img”), the corresponding humber of loop-alesu images to share some similarities. For the outdoor expetime
(“#LC", determined at hand from the camera trajectory), theowever, images were grabbed with a lower framerate (i.e.
rate of true positive detections (“%TP”, the percentage@opt 0.5Hz): outdoor images grabbed at distant time instanteesha
closures correctly detected), and the number of false alarsome similarities because of the high depth of outdoor scene
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From table Il, we logically observe that when using SIFThe detection level (i.e., the output level), when hypoéises
features only, the CPU time needed to process a sequeaoe checked by the epipolar geometry algorithm. Still, the
is significantly lower than when H histograms are involvedvaluation of the distinctiveness of every word proposed in
too: the overall processing is abod®% faster in the first [23] cannot be done incrementally because, to evaluateghe ¢
case. However, with both feature spaces enabled, real-tioeeurrences of the words, representative images of thesenti
processing is still achieved and, as mentioned before, thevironment have to be processed beforehand. In our method,
responsiveness of the probabilistic framework is enhancéhe distinctiveness of the words is taken into account uieg
without causing false positive detections to appear. Whenline calculated tf—idf coefficient: the words seen midtip
processing an image, the most time consuming step is feattinees in the same image will vote with a high score for this
extraction and matching with the words of the correspondingnage (i.e. high tf), while the words seen in every image$ wil
dictionary. When trying to match a feature with the visudtave a small contribution (i.e. low idf).
words of the dictionary, the search is done with logarithmic The probabilistic framework presented here poorly handles
time complexity in the number of words due to the treghe management of loop-closure hypotheses. Indeed, a new en
structure of the dictionary [26]: real-time performancesild try is added to the posterior each time a new image is acquired
not have been obtained with linear-time complexity in th@hile the evaluation of the corresponding hypotheses (i.e.
number of words in view of the dictionary sizes involved herghecking if whether or not the newly acquired image closes th

For the outdoor experiment, the overall camera trajectoiyop with one of the past images) is done afterwards: in other
was about 1.3km and a bit less than 40000 words were creaj@stds, a new image is added to the model irrespectively of
(when considering the SIFT case only) from 531 images. the loop-closure detection results. In future work, a togaal
the results obtained by the authors of [23], the data cadiect map of the environment could be directly created by adding
for dictionary construction has been done over 30km, usirgly images that do not close a loop with already memorized
3000 images and generating approximately 35000 words.olies. These events would therefore represent positiortein t
is obvious that our model needs far more words than tle@vironment, linked by their proximity in time and spaceg an
solution proposed in [23], and the intuitive explanation afot only images linked sequentially in time. This would aloi
this is twofold. First, in our online dictionary construmti, the presence of multiple high peaks due to the co-existehce o
we cannot afford data rearranging, which would make jhultiple images taken from the same position (see figure 8).
possible to obtain a more compact representation. Secondiiy future work, we will adapt our approach to a purely
in order for the ti-idf weighting used here to perform effiyision-based SLAM system like [6] so as to reinitialize the
ciently, discriminative words are preferable in order te6e g AM algorithm when the camera position is lost or when
unambiguous hypotheses. As shown in [10], the size of theere is a need to self-localize in a map acquired beforehand
cluster representing the words has a direct influence on tige metrical information about the camera’s pose comingfro
word's distinctiveness: a higher distinctiveness is ottidi 5| AM could help improving the definition of a location’s
with a smaller cluster size, i.e. a larger dictionary sizee T nejghhorhood, using spatial transitions between adjakent
parameters used here are found experimentally to perfoiin Weytions instead of time indexes. As mentioned above, this

on all the encountered environments. would make it possible to fuse images taken from close metric
locations to build a topological map of the environment.
V1. DISCUSSION ANDFUTURE WORK Finally, other feature spaces could be explored, implement

. . . . .ing for instance one of the visual descriptors tested in,[25]

The solution proposed in this paper is a completely in- . . - :
; . . whereas relative spatial positions between the visual svord

cremental and online vision-based method allowing loop- . .
L . could be used to improve matching. Loop-closure detection a

closure detection in real-time. The bag-of-words framéwor. ;
: different moments of the day should also be experienced, so

ay. : S
L : . S to test the robustness of our solution to varying lighting
to manage multiple image representations, taking advantac%nditions

of information gathered from distinct heterogeneous featu

spaces. Moreover, building the dictionaries in an incretalen

fashion entails “learning” only that part of the environrhén

which the robot is operating, while bag-of-words methods ap VIl. CONCLUSION

plied to robotics usually use a static dictionary (e.g. [2P]1],

[23]) learned beforehand from a training data set suppased t In this paper, we have presented a fast and incremental

be a good representation of the environment. The consequebag-of-words method for performing loop-closure detectio

is that our system is able to work indoor and outdoor withoir real-time, with no false positive detections on the atedli

hand-tuning the dictionary, and without prior information experimental results even under strong perceptual agjasin

the environment type. conditions. We demonstrated the quality of our approach wit
The results presented here show the robustness of oesults obtained in indoor and outdoor environments, riegch

solution to perceptual aliasing. However, the more complegal-time performances even in long image sequences. Our

probabilistic framework described in [23] handles it morapproach calls upon a Bayesian filtering framework with

properly, taking it into account at the word level (i.e., théikelihood computation in a simple voting scheme and should

input information level) while, in our case, it is managed die extended to SLAM reinitialization in a near future.
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