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Stability estimates for determination of potential from the impedance boundary map

We study the impedance boundary map (or Robin-to-Robin map) for the Schrödinger equation in open bounded domain at fixed energy in multidimensions. We give global stability estimates for determining potential from these boundary data and, as corollary, from the Cauchy data set. Our results include also, in particular, an extension of the Alessandrini identity to the case of the impedance boundary map.

Introduction

We consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ D, E ∈ R, (1.1) 
where

D is an open bounded domain in R d , d ≥ 2, with ∂D ∈ C 2 , (1.2) 
v ∈ L ∞ (D).

(1.3)

We consider the impedance boundary map Mα = Mα,v (E) defined by

Mα [ψ] α = [ψ] α-π/2 (1.4)
for all sufficiently regular solutions ψ of equation (1.1) in D = D ∪ ∂D, where

[ψ] α = [ψ(x)] α = cos α ψ(x) -sin α ∂ψ ∂ν | ∂D (x), x ∈ ∂D, α ∈ R (1.5)
and ν is the outward normal to ∂D. One can show(see Lemma 3.2) that there is not more than a countable number of α ∈ R such that E is an eigenvalue for the operator -∆ + v in D with the boundary condition cos α ψ| ∂D -sin α ∂ψ ∂ν | ∂D = 0.

(1.6)

Therefore, for any energy level E we can assume that for some fixed α ∈ R E is not an eigenvalue for the operator -∆ + v in D with boundary condition (1.6) (1.7)

and, as a corollary, Mα can be defined correctly. Note that the impedance boundary map Mα is reduced to the Dirichlet-to-Neumann(DtN) map if α = 0 and is reduced to the Neumann-to-Dirichlet(NtD) map if α = π/2. The map Mα can be called also as the Robin-to-Robin map. General Robin-to-Robin map was considered, in particular, in [START_REF] Gesztesy | Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrodinger Operators on Bounded Lipschitz Domains[END_REF].

We consider the following inverse boundary value problem for equation (1.1). Problem 1.1. Given Mα for some fixed E and α, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at fixed energy (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]). At zero energy this problem can be considered also as a generalization of the Calderon problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem 1.1 with α = 0 were given for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF] in dimension d ≥ 3 and in [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] in dimension d = 2.

Global stability estimates for Problem 1.1 with α = 0 were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] in dimension d ≥ 3 and in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] in dimension d = 2. A principal improvement of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] was given recently in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] (for the zero energy case). Due to [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] these logarithmic stability results are optimal (up to the value of the exponent). An extention of the instability estimates of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] to the case of the non-zero energy as well as to the case of Dirichlet-to-Neumann map given on the energy intervals was given in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF].

Note also that for the Calderon problem (of the electrical impedance tomography) in its initial formulation the global uniqueness was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2.

It should be noted that in most of previous works on inverse boundary value problems for equation (1.1) at fixed E it was assumed in one way or another that E is not a Dirichlet eigenvalue for the operator -∆+v in D, see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]. Nevertheless, the results of [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] can be considered as global uniqueness and reconstruction results for Problem 1.1 in dimension d = 2 with general α.

In the present work we give global stability estimates for Problem 1.1 in dimension d ≥ 2 with general α. These results are presented in detail in Section 2.

In addition, in the present work we establish some basic properties of the impedance boundary map with general α. In particular, we extend the Alessandrini identity to this general case. These results are presented in detail in Section 3.

In a subsequent paper we plan to give also global reconstruction method for Problem 1.1 in multidimensions with general α.

Stability estimates

In this section we always assume that D satisfies (1.2).

We will use the fact that if v 1 , v 2 are potentials satisfying (1.3), (1.7) for some fixed E and α, then

Mα,v 1 (E) -Mα,v 2 (E) is a bounded operator in L ∞ (∂D), (2.1) 
where Mα,v 1 (E), Mα,v 2 (E) denote the impedance boundary maps for v 1 , v 2 , respectively. Actually, under our assumptions, Mα,v

1 (E) -Mα,v 2 (E) is a compact operator in L ∞ (∂D) (see Corollary 3.1). Let ||A|| denote the norm of an operator A : L ∞ (∂D) → L ∞ (∂D). (2.2)
Let the Cauchy data set C v for equation (1.1) be defined by:

C v = ψ| ∂D , ∂ψ ∂ν | ∂D :
for all sufficiently regular solutions ψ of equation (1.1) in D = D ∪ ∂D .

(2.3)

In addition, the Cauchy data set C v can be represented as the graph of the impedance boundary map Mα = Mα,v (E) defined by (1.4) under assumptions (1.7).

Estimates for d ≥ 3

In this subsection we assume for simplicity that

v ∈ W m,1 (R d ) for some m > d, supp v ⊂ D, (2.4) 
where

W m,1 (R d ) = {v : ∂ J v ∈ L 1 (R d ), |J| ≤ m}, m ∈ N ∪ 0, (2.5) 
where

J ∈ (N ∪ 0) d , |J| = d i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J 1 1 . . . ∂x J d d . (2.6) Let ||v|| m,1 = max |J|≤m ||∂ J v|| L 1 (R d ) . (2.7) 
Note also that (2.4) ⇒ (1.3). 

||v 1 -v 2 || L ∞ (D) ≤ C α ln 3 + δ -1 α -s , 0 < s ≤ (m -d)/m, (2.8) 
where

C α = C α (N, D, m, s, E), δ α = || Mα,v 1 (E) -Mα,v 2 (E)|| is defined according to (2.2).
Remark 2.1. Estimate (2.8) with α = 0 is a variation of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] (see also [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]). Proof of Theorem 2.1 is given in Section 5. This proof is based on results presented in Sections 3, 4.

Theorem 2.1 implies the following corollary: Corollary 2.1. Let D satisfy (1.2), where d ≥ 3. Let potentials v 1 , v 2 satisfy (2.4). Then

||v 1 -v 2 || L ∞ (D) ≤ min α∈R C α ln 3 + δ -1 α -s , 0 < s ≤ (m -d)/m, (2.9) 
where C α and δ α at fixed α are the same that in Theorem 2.1. Actually, Corollary 2.1 can be considered as global stability estimate for determining potential v from its Cauchy data set C v for equation (1.1) at fixed energy E, where d ≥ 3.

Estimates for d = 2

In this subsection we assume for simplicity that

v ∈ C 2 ( D), supp v ⊂ D.
( 

||v 1 -v 2 || L ∞ (D) ≤ C α ln 3 + δ -1 α -s ln 3 ln 3 + δ -1 α 2 , 0 < s ≤ 3/4, (2.11) 
where

C α = C α (N, D, s, E), δ α = || Mα,v 1 (E) -Mα,v 2 (E)|| is defined according to (2.2).
Remark 2.2. Theorem 2.2 for α = 0 was given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] with s = 1/2 and in [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF] 

||v 1 -v 2 || L ∞ (D) ≤ min α∈R C α ln 3 + δ -1 α -s ln 3 ln 3 + δ -1 α 2 , 0 < s ≤ 3/4, (2.12) 
where C α and δ α at fixed α are the same that in Theorem 2. ∈ σ α,v 1 ∪ σ α,v 2 namely for α = 0 in contrast with [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]. In addition, in fact, in Corollaries 2.1 and 2.2 there are no special assumptions on E and α at all. Actually, the stability estimates of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF] make no sense for E ∈ σ 0,v 1 ∪ σ 0,v 2 and are too weak if dist(E, σ 0,v 1 ∪ σ 0,v 2 ) is too small. Remark 2.4. The stability estimates of Subsections 2.1 and 2.2 admit principal improvement in the sense described in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF], [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF]. In particular, Theorem 2.1 with s = m -d (for d = 3 and E = 0) follows from results presented in Sections 3, 4 of the present work and results presented in Section 8 of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In addition, estimates (2.8), (2.9) for s = (m -d)/d admit a proof technically very similar to the proof of Theorem 2.1, presented in Section 5. Possibility of such a proof of estimate (2.8) for s = (m -d)/d, α = 0, E = 0 was mentioned, in particular, in [30].

Remark 2.5. The stability estimates of Subsections 2.1 and 2.2 can be extended to the case when we do not assume that supp v ⊂ D or, by other words, that v is zero near the bounadry. In this connection see, for example, [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF].

In the present work we do not develop Remarks 2.4 and 2.5 in detail because of restrictions in time.

Note also that Theorems 2.1 and 2.2 remain valid with complex-valued potentials v 1 , v 2 and complex E, α. Finally, we note that in Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 with real α, constant C α can be considered as independent of α. 

Some basic properties of the impedance boundary map

sin α Mα + cos α Î [ψ] α = ψ| ∂D , cos α Mα -sin α Î [ψ] α = ∂ψ ∂ν | ∂D , (3.1) 
∂D [ψ (1) ] α Mα [ψ (2) ] α dx = ∂D [ψ (2) ] α Mα [ψ (1) ] α dx

for all sufficiently regular solutions ψ, ψ (1) , ψ (2) of equation (1.1) in D, where Î denotes the identity operator on ∂D and [ψ] α is defined by (1.5).

Note that identities (3.1) imply that

sin(α 1 -α 2 ) Mα 1 + cos(α 1 -α 2 ) Î sin(α 2 -α 1 ) Mα 2 + cos(α 2 -α 1 ) Î = Î, (3.3) 
under the assumptions of Lemma 3.1 fulfilled simultaneously for α = α 1 and α = α 2 . Note also that from (3.2) we have that ∂D [φ (1) ] α Mα [φ (2) ] α dx = ∂D [φ (2) ] α Mα [φ (1) ] α dx (3.4) for all sufficiently regular functions φ (1) , φ (2) on ∂D.

Proof of Lemma 3.1. Identities (3.1) follow from definition (1.4) of the map Mα .

To prove (3.2) we use, in particular, the Green formula

∂D φ (1) ∂φ (2) ∂ν -φ (2) ∂φ (1) ∂ν dx = D φ (1) ∆φ (2) -φ (2) ∆φ (1) dx, (3.5) 
where φ (1) and φ (2) are arbitrary sufficiently regular functions in D. Using (3.5) and the identities

ψ (1) ∆ψ (2) = (v -E)ψ (1) ψ (2) = ψ (2) ∆ψ (1) in D, (3.6) 
we obtain that ∂D ψ (1) ∂ψ (2) ∂ν -ψ (2) ∂ψ (1) ∂ν dx = 0.

(3.7)

Using (3.7), we get that ∂D cos α ψ (1) -sin α ∂ψ (1) ∂ν sin α ψ (2) + cos α ∂ψ (2) ∂ν dx = = ∂D cos α ψ (2) -sin α ∂ψ (2) ∂ν sin α ψ (1) + cos α ∂ψ (1) ∂ν dx.

(3.8)

Identity (3.
2) follows from (3.8) and definition (1.4) of the map Mα .

Theorem 3.1. Let D satisfy (1.2). Let two potentials v 1 , v 2 satisfy (1.3), (1.7) for some fixed E and α. Let Mα,v 1 = Mα,v 1 (E), Mα,v 2 = Mα,v 2 (E) denote the impedance boundary maps for v 1 , v 2 , respectively. Then D (v 1 -v 2 ) ψ 1 ψ 2 dx = ∂D [ψ 1 ] α Mα,v 1 -Mα,v 2 [ψ 2 ] α dx (3.9)
for all sufficiently regular solutions ψ 1 and

ψ 2 of equation (1.1) in D with v = v 1 and v = v 2 , respectively, where [ψ] α is defined by (1.5).
Proof of Theorem 3.1. As in (3.6) we have that

ψ 1 ∆ψ 2 = (v 2 -E)ψ 1 ψ 2 , ψ 2 ∆ψ 1 = (v 1 -E)ψ 1 ψ 2 . (3.10) 
Combining (3.10) with (3.5), (3.1) and (3.4), we obtain that

D (v 1 (x) -v 2 (x)) ψ 1 (x)ψ 2 (x)dx = ∂D ψ 2 ∂ψ 1 ∂ν -ψ 1 ∂ψ 2 ∂ν dx = = ∂D sin α Mα,v 2 + cos α Î [ψ 2 ] α cos α Mα,v 1 -sin α Î [ψ 1 ] α dx - - ∂D sin α Mα,v 1 + cos α Î [ψ 1 ] α cos α Mα,v 2 -sin α Î [ψ 2 ] α dx = = ∂D [ψ 1 ] α Mα,v 1 -Mα,v 2 [ψ 2 ] α dx. (3.11) 
Remark 3.1. Identity (3.9) for α = 0 is reduced to Alessandrini's identity (Lemma 1 of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]). Let G α (x, y, E) be the Green function for the operator ∆-v+E in D with the impedance boundary condition (1.6) under assumptions (1.2), (1.3) and (1.7). Note that

G α (x, y, E) = G α (y, x, E), x, y ∈ D.
(3.12)

The symmetry (3.12) is proved in Section 9.

Theorem 3.2. Let D satisfy (1.2). Let potential v satisfy (1.3) and (1.7) for some fixed E and α such that sin α = 0. Let G α (x, y, E) be the Green function for the operator ∆ -v + E in D with the impedance boundary condition (1.6). Then for x, y ∈ ∂D

M α (x, y, E) = 1 sin 2 α G α (x, y, E) -ctg α δ ∂D (x -y), (3.13) 
where M α (x, y, E) and δ ∂D (x -y) denote the Schwartz kernels of the impedance boundary map Mα = Mα,v (E) and the identity operator Î on ∂D, respectively, where Mα and Î are considered as linear integral operators.

Proof of Theorem 3.2. Note that

[φ] α-π/2 = 1 sin 2 α sin α φ| ∂D -ctg α [φ] α . (3.14)
for all suffuciently regular functions φ in some neighbourhood of ∂D in D. Since G α is the Green function for equation (1.1) we have that

ψ(y) = ∂D ψ(x) ∂G α ∂ν x (x, y, E) -G α (x, y, E) ∂ψ ∂ν (x) dx, y ∈ D, (3.15) 
for all suffuciently regular solutions ψ of equation (1.1). Using (3.15) and impedance boundary condition (1.6) for G α , we get that

sin α ψ(y) = sin α ∂D ψ(x) ∂G α ∂ν x (x, y, E) -G α (x, y, E) ∂ψ ∂ν (x) dx = = ∂D [ψ(x)] α G α (x, y, E)dx, y ∈ D. (3.16) 
Due to (3.4) we have that

M α (x, y, E) = M α (y, x, E), x, y ∈ ∂D. (3.17)
Combining (1.4), (3.14), (3.16) and (3.17), we obtain (3.13).

Corollary 3.1. Let assumtions of Theorem 3.1 hold. Then

Mα,v 1 (E) -Mα,v 2 (E) is a compact operator in L ∞ (∂D). (3.18)
Scheme of the proof of Corollary 3.1. Let G α,v 1 (x, y, E) and G α,v 2 (x, y, E) be the Green functions for the operator ∆ -v + E in D with the impedance boundary condition (1.6) for v = v 1 and v = v 2 , respectively. Using (3.12), we find that

G α,v 1 (x, y, E) = D G α,v 1 (x, ξ, E) (∆ ξ -v 2 (ξ) + E) G α,v 2 (ξ, y, E) dξ, G α,v 2 (x, y, E) = D (∆ ξ -v 1 (ξ) + E) G α,v 1 (x, ξ, E)G α,v 2 (ξ, y, E) dξ, ∂D G α,v 1 (x, ξ, E) ∂G α,v 2 ∂ν ξ (ξ, y, E) -G α,v 2 (ξ, y, E) ∂G α,v 1 ∂ν ξ (x, ξ, E) dξ = 0,
x, y ∈ D.

( 

G α,v 1 (x, y, E) -G α,v 2 (x, y, E) = D (v 1 (ξ) -v 2 (ξ)) G α,v 1 (x, ξ, E)G α,v 2 (ξ, y, E) dξ,
x, y ∈ D.

(3.20)

The proof of (3.18) for the case of sin α = 0 can be completed proceeding from (3.3), (3.13), (3.20) and estimates of [START_REF] Lanzani | On the Robin boundary condition for Laplace's equation in Lipschitz domains[END_REF] and [START_REF] Begehr | Some harmonic Robin functions in the complex plane[END_REF] on G α (x, y, E) for v ≡ 0.

Corollary 3.1 for the Dirichlet-to-Neumann case (sin α = 0) was given in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF].

Lemma 3.2. Let D satisfy (1.2). Let v be a real-valued potential satisfying (1.3). Then for any fixed E ∈ R there is not more than countable number of α ∈ R such that E is an eigenvalue for the operator -∆ + v in D with boundary condition (1.6).

Proof of Lemma 3.2. Let ψ (1) , ψ (2) be eigenfunctions for the operator -∆ + v in D with boundary condition (1.6) for α = α (1) and α = α (2) , respectively. Then

sin α (1) -α (2) ∂D ψ (1) ψ (2) dx = sin α (1) sin α (2) ∂D ψ (1) ∂ψ (2) ∂ν -ψ (2) ∂ψ (1) ∂ν dx = 0. (3.21)
Since in the separable space L 2 (∂D) there is not more than countable orthogonal system of functions, we obtain the assertion of Lemma 3.2.

Remark 3.1 The assertion of Lemma 3.2 remains valid for the case of α ∈ C.

Faddeev functions

We consider the Faddeev functions G, ψ, h (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

ψ(x, k) = e ikx + R d G(x -y, k)v(y)ψ(y, k)dy, (4.1) 
G(x, k) = e ikx g(x, k), g(x, k) = -(2π) -d R d e iξx dξ ξ 2 + 2kξ , (4.2) 
where

x ∈ R d , k ∈ C d , Im k = 0, d ≥ 3, h(k, l) = (2π) -d R d e -ilx v(x)ψ(x, k)dx, (4.3) 
where We recall that (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

k, l ∈ C d , k 2 = l 2 , Im k = Im l = 0. ( 4 
• The function G satisfies the equation

(∆ + k 2 )G(x, k) = δ(x), x ∈ R d , k ∈ C d \ R d ; (4.7) 
• Formula (4.1) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), (4.8) 
where µ is sought in L ∞ (R d );

• As a corollary of (4.1), (4.2), (4.7), ψ satisfies (1.1) for E = k 2 ;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, h is a generalized " scattering" amplitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = 0, were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions G, ψ, h were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

Let

Σ E = k ∈ C d : k 2 = k 2 1 + . . . + k 2 d = E , Θ E = {k ∈ Σ E , l ∈ Σ E : Im k = Im l} . (4.9)
Under the assumptions of Theorem 2.1, we have that:

µ(x, k) → 1 as |Im k| → ∞ (4.10) 
and, for any σ > 1,

|µ(x, k)| + |∇µ(x, k)| ≤ σ for |Im k| ≥ r 1 (N, D, E, m, σ), (4.11) 
where

x ∈ R d , k ∈ Σ E ; v(p) = lim (k, l) ∈ Θ E , k -l = p |Im k| = |Im l| → ∞ h(k, l) for any p ∈ R d , (4.12 
)

|v(p) -h(k, l)| ≤ c 1 (D, E, m)N 2 ρ for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ ≥ r 2 (N, D, E, m), p 2 ≤ 4(E + ρ 2 ), (4.13) 
where

v(p) = (2π) -d R d e ipx v(x)dx, p ∈ R d . (4.14)
Results of the type (4.10) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. Results of the type (4.12), (4.13) (with less precise right-hand side in (4.13)) go back to [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. In the present work estimate (4.11) is given according to [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]. Estimate (4.13) follows, for example, from the estimate

Λ -s g(k)Λ -s L 2 (R d )→L 2 (R d ) = O(|k| -1 ) as |k| → ∞, k ∈ C d \ R d , |k| = (|Re k| 2 + |Im k| 2 ) 1/2 , (4.15) 
for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel g(x -y, k) and Λ denotes the multiplication operator by the function (1 + |x| 2 ) 1/2 . Estimate (4.15) was formulated, first, in [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF] for d ≥ 3. Concerning proof of (4.15), see [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF].

In addition, we have that:

h 2 (k, l) -h 1 (k, l) = (2π) -d R d ψ 1 (x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (4.5), (4.16 
)

h 2 (k, l) -h 1 (k, l) = (2π) -d ∂D [ψ 1 (•, -l)] α Mα,v 2 -Mα,v 1 [ψ 2 (•, k)] α dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (1.7), (4.6), (4.17) 
where h j , ψ j denote h and ψ of (4.3) and (4.1) for v = v j , and Mα,v j denotes the impedance boundary map of (1.4) for v = v j , where j = 1, 2. Formula (4.16) was given in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF]. Formula (4.17) follows from Theorem 3.1 and (4.16). Formula (4.17) for α = 0 was given in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF].

Proof of Theorem 2.1

Let L ∞ µ (R d ) = {u ∈ L ∞ (R d ) : u µ < +∞}, u µ = ess sup p∈R d (1 + |p|) µ |u(p)|, µ > 0. (5.1) Note that w ∈ W m,1 (R d ) =⇒ ŵ ∈ L ∞ µ (R d ) ∩ C(R d ), ŵ µ ≤ c 2 (m, d) w m,1 for µ = m, (5.2) 
where W m,1 , L ∞ µ are the spaces of (2.5), (5.1),

ŵ(p) = (2π) -d R d e ipx w(x)dx, p ∈ R d . (5.3)
Using the inverse Fourier transform formula

w(x) = R d e -ipx ŵ(p)dp, x ∈ R d , (5.4) 
we have that (5.6) Using (5.2), we obtain that

v 1 -v 2 L ∞ (D) ≤ sup x∈ D | R d e -ipx (v 2 (p) -v1 (p)) dp| ≤ ≤ I 1 (r) + I 2 (
|v 2 (p) -v1 (p)| ≤ 2c 2 (m, d)N(1 + |p|) -m , p ∈ R d . (5.7) 
Due to (4.13), we have that

|v 2 (p) -v1 (p)| ≤ |h 2 (k, l) -h 1 (k, l)| + 2c 1 (D, E, m)N 2 ρ , p ∈ R d , p = k -l, (k, l) ∈ Θ E , |Im k| = |Im l| = ρ ≥ r 2 (N, D, E, m), p 2 ≤ 4(E + ρ 2 ).
(5.8)

Let c 3 = (2π) -d ∂D dx, L = max x∈∂D |x|, δ α = Mα,v 2 (E) -Mα,v 1 (E) , (5.9) 
where Mα,v 2 (E) -Mα,v 1 (E) is defined according to (2.2). Due to (4.16), (4.17), we have that

|h 2 (k, l) -h 1 (k, l)| ≤ c 3 [ψ 1 (•, -l)] α L ∞ (∂D) δ α [ψ 2 (•, k)] α L ∞ (∂D) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0.
(5.10)

Using (1.5), (4.11), we find that

[ψ(•, k)] α L ∞ (∂D) ≤ c 4 (E) σ exp |Im k|(L + 1) , k ∈ Σ E , |Im k| ≥ r 1 (N, D, E, m, σ).
(5.11)

Here and bellow in this section the constant σ is the same that in (4.11). Combining (5.10) and (5.11), we obtain that

|h 2 (k, l) -h 1 (k, l)| ≤ c 3 (c 4 (E)σ) 2 exp 2ρ(L + 1) δ α , (k, l) ∈ Θ E , ρ = |Im k| = |Im l| ≥ r 1 (N, D, E, m, σ).
(5.12)

Using (5.8), (5.12), we get that

|v 2 (p) -v1 (p)| ≤ c 3 (c 4 (E)σ) 2 exp 2ρ(L + 1) δ α + 2c 1 (D, E, m)N 2 ρ , p ∈ R d , p 2 ≤ 4(E + ρ 2 ), ρ ≥ r 3 (N, D, E, m, σ), (5.13) 
where r 3 (N, D, E, m, σ) is such that

ρ ≥ r 3 (N, D, E, m, σ) =⇒      ρ ≥ r 1 (N, D, E, m, σ), ρ ≥ r 2 (N, D, E, m), ρ 2/m ≤ 4(E + ρ 2 ).
(5.14)

Let c 5 = p∈R d ,|p|≤1 dp, c 6 = p∈R d ,|p|=1
dp.

(5.15)

Using (5.6), (5.13), we get that

I 1 (r) ≤ c 5 r d c 3 (c 4 (E)σ) 2 exp 2ρ(L + 1) δ α + 2c 1 (D, E, m)N 2 ρ , r > 0, r 2 ≤ 4(ρ 2 + E), ρ ≥ r 3 (N, D, E, m, σ).
(5.16)

Using (5.6), (5.7), we find that for any r > 0

I 2 (r) ≤ 2c 2 (m, d)Nc 6 +∞ r dt t m-d+1 ≤ 2c 2 (m, D)Nc 6 m -d 1 r m-d .
(5.17)

Combining (5.5), (5.16), (5.17) for r = ρ 1/m and (5.14), we get that D,E,m,σ).

v 1 -v 2 L ∞ (D) ≤ c 7 (D, σ)ρ d/m e 2ρ(L+1) δ α + c 8 (N, D, E, m)ρ -m-d m , ρ ≥ r 3 (N,
(5.18)

We fix some τ ∈ (0, 1) and let

β = 1 -τ 2(L + 1) , ρ = β ln 3 + δ -1 α , (5.19) 
where δ α is so small that ρ ≥ r 3 (N, D, E, m, σ). Then due to (5.18), we have that

v 1 -v 2 L ∞ (D) ≤ c 7 (D, σ) β ln 3 + δ -1 α d/m 3 + δ -1 α 2β(L+1) δ α + +c 8 (N, D, E, m) β ln 3 + δ -1 α -m-d m = = c 7 (D, σ)β d/m (1 + 3δ α ) 1-τ δ τ α ln 3 + δ -1 α d/m + +c 8 (N, D, E, m)β -m-d m ln 3 + δ -1 α -m-d m , (5.20) 
where τ, β and δ α are the same as in (5.19). Using (5.20), we obtain that

v 1 -v 2 L ∞ (D) ≤ c 9 (N, D, E, m, σ) ln 3 + δ -1 α -m-d m (5.21) for δ α = Mα,v 2 -Mα,v 1 ≤ δ (0) (N, D, E, m, σ)
, where δ (0) is a sufficiently small positive constant. Estimate (5.21) in the general case (with modified c 9 ) follows from (5.21) for δ α ≤ δ (0) (N, D, E, m, σ) and the property that v j L ∞ (D) ≤ c 10 (D, m)N. Thus, Theorem 2.1 is proved for s = m-d m and, since ln (3 + δ -1 α ) > 1, for any 0 < s ≤ m-d m .

Buckhgeim-type analogs of the Faddeev functions

In dimension d = 2, we consider the functions G z 0 , ψ z 0 , ψz 0 , δh z 0 of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], going back to Buckhgeim's paper [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] and being analogs of the Faddeev functions:

ψ z 0 (z, λ) = e λ(z-z 0 ) 2 + D G z 0 (z, ζ, λ)v(ζ)ψ z 0 (ζ, λ) dReζ dImζ, ψ z 0 (z, λ) = e λ(z-z 0 ) 2 + D G z 0 (z, ζ, λ)v(ζ) ψ z 0 (ζ, λ) dReζ dImζ, (6.1) 
G z 0 (z, ζ, λ) = 1 4π 2 D e -λ(η-z 0 ) 2 + λ(η-z0 ) 2 dReη dImη (z -η)(η -ζ) e λ(z-z 0 ) 2 -λ( ζ-z0 ) 2 , z = x 1 + ix 2 , z 0 ∈ D, λ ∈ C, (6.2) 
where R 2 is identified with C and v, D satisfy (1.2), (1.3) for d = 2;

δh z 0 (λ) = D ψ z 0 ,1 (z, -λ) (v 2 (z) -v 1 (z)) ψ z 0 ,2 (z, λ) dRez dImz, λ ∈ C, (6.3) 
where v 1 , v 2 satisfy (1.3) for d = 2 and ψ z 0 ,1 , ψ z 0 ,2 denote ψ z 0 , ψ z 0 of (6.1) for v = v 1 and v = v 2 , respectively. We recall that (see [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]):

4 ∂ 2 ∂z∂ z G z 0 (z, ζ, λ) = δ(z -ζ), 4 ∂ 2 ∂ζ∂ ζ G z 0 (z, ζ, λ) = δ(z -ζ), (6.4) 
where z, z 0 , ζ ∈ D, λ ∈ C and δ is the Dirac delta function; formulas (6.1) at fixed z 0 and λ are considered as equations for ψ z 0 , ψ z 0 in L ∞ (D); as a corollary of (6.1), (6.2), (6.4), the functions ψ z 0 , ψ z 0 satisfy (1.1) for E = 0 and d = 2; δh z 0 is similar to the right side of (4.16).

Let potentials v, v 1 , v 2 ∈ C 2 ( D) and v C 2 ( D) ≤ N, v j C 2 ( D) ≤ N, j = 1, 2, (v 1 -v 2 )| ∂D = 0, ∂ ∂ν (v 1 -v 2 )| ∂D = 0, (6.5) 
then we have that:

ψ z 0 (z, λ) = e λ(z-z 0 ) 2 µ z 0 (z, λ), ψ z 0 (z, λ) = e λ(z-z 0 ) 2 µ z 0 (z, λ), (6.6) 
µ z 0 (z, λ) → 1, µ z 0 (z, λ) → 1 as |λ| → ∞ (6.7)
and, for any σ > 1,

|µ z 0 (z, λ)| + |∇µ z 0 (z, λ)| ≤ σ, (6.8a) 
| µ z 0 (z, λ)| + |∇ µ z 0 (z, λ)| ≤ σ, (6.8b) 
where

∇ = (∂/∂x 1 , ∂/∂x 2 ), z = x 1 + ix 2 , z 0 ∈ D, λ ∈ C, |λ| ≥ ρ 1 (N, D, σ); v 2 (z 0 ) -v 1 (z 0 ) = lim λ→∞ 2 π |λ|δh z 0 (λ)
for any z 0 ∈ D, (6.9)

v 2 (z 0 ) -v 1 (z 0 ) - 2 π |λ|δh z 0 (λ) ≤ c 11 (N, D) (ln(3|λ|)) 2 |λ| 3/4 for z 0 ∈ D, |λ| ≥ ρ 2 (N, D).
(6.10) Formulas (6.6) can be considered as definitions of µ z 0 , µ z 0 . Formulas (6.7), (6.9) were given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF] and go back to [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF]. Estimate (6.10) was obtained in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]. Estimates (6.8) are proved in Section 8.

Proof of Theorem 2.2

We suppose that ψ z 0 ,1 (•, -λ), ψ z 0 ,2 (•, λ), δh z 0 (λ) are defined as in Section 6 but with v j -E in place of v j , j = 1, 2. We use the identity

Mα,v (E) = Mα,v-E (0). (7.1) 
We also use the notation N E = N + E. Then, using (6.10), we have that

v 2 (z 0 ) -v 1 (z 0 ) - 2 π |λ|δh z 0 (λ) ≤ c 11 (N E , D) (ln(3|λ|)) 2 |λ| 3/4 for z 0 ∈ D, |λ| ≥ ρ 2 (N E , D). (7.2) 
According to Theorem 3.1 and (6.3), we get that

δh z 0 (λ) = 1 4π 2 ∂D [ ψ z 0 ,1 (•, -λ)] α Mα,v 2 (E) -Mα,v 1 (E) [ψ z 0 ,2 (•, λ)] α |dz|, λ ∈ C. (7.3) Let c 12 = 1 4π 2 ∂D |dz|, L = max z∈∂D |z|, δ α = Mα,v 2 (E) -Mα,v 1 (E) , (7.4) 
where Mα,v 2 (E) -Mα,v 1 (E) is defined according to (2.2). Using (7.3), we get that

|δh z 0 (λ)| ≤ c 12 [ ψ z 0 ,1 (•, -λ)] α L ∞ (∂D) δ α [ψ z 0 ,2 (•, λ)] α L ∞ (∂D) , λ ∈ C. (7.5) 
Using (1.5), (6.8), we find that:

[ ψ z 0 ,1 (•, -λ)] α L ∞ (∂D) ≤ σ exp |λ|(4L 2 + 4L) , [ψ z 0 ,2 (•, λ)] α L ∞ (∂D) ≤ σ exp |λ|(4L 2 + 4L) , λ ∈ C, |λ| ≥ ρ 1 (N E , D, σ). (7.6) 
Here and bellow in this section the constant σ is the same that in (6.8). Combining (7.5), (7.6), we obtain that

|δh z 0 (λ)| ≤ c 12 σ 2 exp |λ|(8L 2 + 8L) δ α , λ ∈ C, |λ| ≥ ρ 1 (N E , D, σ). (7.7) 
Using (7.2) and (7.7), we get that

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 12 σ 2 exp |λ|(8L 2 + 8L) δ α + c 11 (N E , D) (ln(3|λ|)) 2 |λ| 3/4 , z 0 ∈ D, λ ∈ C, |λ| ≥ ρ 3 (N E , D, σ) = max{ρ 1 , ρ 2 }. (7.8) 
We fix some τ ∈ (0, 1) and let

β = 1 -τ 8L 2 + 8L , λ = β ln 3 + δ -1 α , (7.9) 
where δ α is so small that |λ| ≥ ρ 3 (N E , D, σ). Then due to (7.8), we have that

v 1 -v 2 L ∞ (D) ≤ c 12 σ 2 3 + δ -1 α β(8L 2 +8L) δ α + + c 11 (N E , D) (ln (3β ln (3 + δ -1 α ))) 2 (β ln (3 + δ -1 α )) 3 4 = = c 12 σ 2 (1 + 3δ α ) 1-τ δ τ α + + c 11 (N E , D)β -3 4 (ln (3β ln (3 + δ -1 α ))) 2 (ln (3 + δ -1 α )) 3 4 , (7.10) 
where τ, β and δ α are the same as in (7.9). Using (7.10), we obtain that

v 1 -v 2 L ∞ (D) ≤ c 13 (N E , D, σ) ln 3 + δ -1 α -3 4 ln 3 ln 3 + δ -1 α 2 (7.11) for δ α = Mα,v 2 (E) -Mα,v 1 (E) ≤ δ (0) (N E , D, σ)
, where δ (0) is a sufficiently small positive constant. Estimate (5.21) in the general case (with modified c 13 ) follows from (7.11) for δ α ≤ δ (0) (N E , D, σ) and the property that v j L ∞ (D) ≤ c 14 (D)N. Thus, Theorem 2.2 is proved for s = 3 4 and, since ln (3 + δ -1 α ) > 1, for any 0 < s ≤ 3 4 .

8. Proof of estimates (6.8) In this section we prove estimate (6.8a). Estimate (6.8b) can be proved a completely similar way. Let

C 1 z ( D) = u : u, ∂u ∂ z ∈ C( D) , u C 1 z ( D) = max u C( D) , ∂u ∂ z C( D) . (8.1) 
Due to estimates of Section 3 of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], we have that, for any ε 1 > 0,

µ z 0 (•, λ) ∈ C 1 z ( D), µ z 0 (•, λ) C 1 z ( D) ≤ 1 + ε 1 for |λ| ≥ ρ 4 (N, D, ε 1 ). (8.2)
In view of (8.2), to prove (6.8a) it remains to prove that, for any ε 2 > 0,

∂ z µ z 0 (•, λ) ∈ C( D), ∂ z µ z 0 (•, λ) C( D) ≤ ε 2 for |λ| ≥ ρ 5 (N, D, ε 2 ), (8.3) 
where ∂ z µ z 0 (•, λ) is considered as a function of z ∈ D and ∂ z = ∂/∂z. We have that (see Sections 2 and 5 of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF]):

∂ z µ z 0 = 1 4 Π Tz 0 ,λ vµ z 0 , (8.4 
)

Πu(z) = - 1 π D u(ζ) (ζ -z) 2 dReζ dIm ζ, (8.5 
)

Tz 0 ,λ u(z) = - e -λ(z-z 0 ) 2 + λ(z-z0 ) 2 π D e λ(ζ-z 0 ) 2 -λ( ζ-z0 ) 2 ζ - z u(ζ)dReζ dIm ζ, (8.6) 
where u is a test function, z ∈ D.

In view of (8.2), (8.4) and Theorem 1.33 of [START_REF] Vekua | Generalized Analytic Functions[END_REF], to prove (8.3) it is sufficient to show that

Tz 0 ,λ u Cs( D) ≤ A(D, s) |λ| δ(s) ||u|| C 1 z ( D) , |λ| ≥ 1, z 0 ∈ D, (8.7) 
for some fixed s ∈ (0, 1 2 ) and δ(s) > 0, where C s ( D) is the Hölder space,

C s ( D) = u ∈ C( D) : u Cs( D) < +∞ , u Cs( D) = max u C( D) , u ′ Cs( D) , u ′ Cs( D) = sup z 1 ,z 2 ∈ D,0<|z 1 -z 2 |<1 |u(z 1 ) -u(z 2 )| |z 1 -z 2 | s . (8.8) 
Due to estimate (5.6) of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF], we have that

Tz 0 ,λ u C( D) ≤ A 0 (D) |λ| 1/2 ||u|| C 1 z ( D) , |λ| ≥ 1, z 0 ∈ D. (8.9) 
Therefore, to prove (8.7) it remains to prove that

Tz 0 ,λ u ′ Cs( D) ≤ A 1 (D, s) |λ| δ(s) ||u|| C 1 z ( D) , |λ| ≥ 1, z 0 ∈ D, (8.10) 
for some fixed s ∈ (0, 1 2 ) and δ(s) > 0. We will use that

u 1 u 2 ′ Cs( D) ≤ u 1 ′ Cs( D) u 2 C( D) + u 1 C( D) u 2 ′ Cs( D) , 0 < s < 1. (8.11) 
One can see that Tz 0 ,λ = F z 0 ,-λ TF z 0 ,λ ,

where T = Tz 0 ,0 and F z 0 ,λ is the multiplication operator by the function

F (z, z 0 , λ) = e λ(z-z 0 ) 2 -λ(z-z0 ) 2 . (8.13)
One can see also that

F (•, z 0 , -λ) C( D) = 1, F (•, z 0 , -λ) ′ Cs( D) ≤ A 2 (D, s)|λ| s , |λ| ≥ 1, z 0 ∈ D. (8.14) 
In view of (8.9), (8.11) - (8.14), to prove (8.10) it remains to prove that

TF z 0 ,λ u ′ Cs( D) ≤ A 3 (D, s) |λ| δ 1 (s) ||u|| C 1 z ( D) , |λ| ≥ 1, z 0 ∈ D, (8.15) 
for some fixed s ∈ (0, 1 2 ) and δ 1 (s) > 0. We have that

π TF z 0 ,λ u(z 1 ) -π TF z 0 ,λ u(z 2 ) = D F (ζ, z 0 , λ)u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 ) dReζ dIm ζ = = I z 0 ,λ,ε (z 1 , z 2 ) + J z 0 ,λ,ε (z 1 , z 2 ), (8.16) 
where

I z 0 ,λ,ε (z 1 , z 2 ) = D\Dz 0 ,z 1 ,z 2 ,ε F (ζ, z 0 , λ)u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 ) dReζ dIm ζ, (8.17) 
J z 0 ,λ,ε (z 1 , z 2 ) = Dz 0 ,z 1 ,z 2 ,ε F (ζ, z 0 , λ)u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 ) dReζ dIm ζ, (8.18) 
where

B z,ε = {ζ ∈ C : |ζ -z| < ε}, D z 0 ,z 1 ,z 2 ,ε = D \ 2 j=0 B z j ,ε .
We will use the following inequalities:

z 2 -z 1 (ζ -z 1 )(ζ -z 2 ) ≤ n 1 |z 2 -z 1 | s 2 j=1 1 |ζ -z j | 1+s , (8.19) 
z 2 -z 1 (ζ -z 1 )(ζ -z 2 )(ζ -z 0 ) ≤ n 2 |z 2 -z 1 | s 2 j=0 1 |ζ -z j | 2+s , (8.20) 
∂ ∂ζ

z 2 -z 1 (ζ -z 1 )(ζ -z 2 )(ζ -z 0 ) ≤ n 3 |z 2 -z 1 | s 2 j=0 1 |ζ -z j | 3+s , (8.21) 
where s ∈ (0, 1),

n 1 , n 2 , n 3 > 0, z 0 , z 1 , z 2 , ζ ∈ C and ζ = z i for j = 0, 1, 2.
Using (8.17), (8.19), we obtain that

I z 0 ,λ,ε (z 1 , z 2 ) ≤ n 4 (s)ε 1-s |z 2 -z 1 | s , (8.22) 
where n 4 (s) > 0, z 0 , z 1 , z 2 , ζ ∈ C and ε ∈ (0, 1). Further, we have that

J z 0 ,λ,ε (z 1 , z 2 ) = - 1 2 λ Dz 0 ,z 1 ,z 2 ,ε ∂F (ζ, z 0 , λ) ∂ ζ u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 )( ζ -z0 ) dReζ dIm ζ = = J 1 z 0 ,λ,ε (z 1 , z 2 ) + J 2 z 0 ,λ,ε (z 1 , z 2 ), (8.23) 
where We note that symmetry (3.12) for v ≡ 0, E = 0, d ≥ 3 was proved early, for example, in [START_REF] Lanzani | On the Robin boundary condition for Laplace's equation in Lipschitz domains[END_REF].

J 1 z 0 ,λ,ε (z 1 , z 2 ) = - 1 4i λ ∂Dz 0 ,z 1 ,z 2 ,ε F (ζ, z 0 , λ)u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 )( ζ -z0 ) dζ, J 2 z 0 ,λ,ε (z 1 , z 2 ) =
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 21 Let D satisfy (1.2), where d ≥ 3. Let v 1 , v 2 satisfy (2.4) and (1.7) for some fixed E and α. Let ||v j || m,1 ≤ N, j = 1, 2, for some N > 0. Let Mα,v 1 (E) and Mα,v 2 (E) denote the impedance boundary maps for v 1 and v 2 , respectively. Then
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 31 Let D satisfy (1.2). Let potential v satisfy (1.3) and (1.7) for some fixed E and α. Let Mα = Mα,v (E) denote the impedance boundary map for v. Then

. 4 )

 4 One can consider (4.1), (4.3) assuming that v is a sufficiently regular function on R d with suffucient decay at infinity. (4.5) For example, in connection with Problem 1.1, one can consider (4.1), (4.3) assuming that v ∈ L ∞ (D), v ≡ 0 on R \ D. (4.6)

  r) for any r > 0, (5.5) where I 1 (r) = |p|≤r |v 2 (p) -v1 (p)|dp, I 2 (r) = |p|≥r |v 2 (p) -v1 (p)|dp.

1 2 λ

 12 Dz 0 ,z 1 ,z 2 ,ε F (ζ, z 0 , λ) ∂ ∂ ζ u(ζ)(z 2 -z1 ) ( ζ -z1 )( ζ -z2 )( ζ -z0 ) dReζ dIm ζ,(8.24)Using (8.20),(8.21),(8.24), we obtain thatJ 1 z 0 ,λ,ε (z 1 , z 2 ) ≤ |λ| -1 n 5 (D, s)ε -1-s |z 2 -z 1 | s u C( D) , J 2 z 0 ,λ,ε (z 1 , z 2 ) ≤ |λ| -1 n 6 (D, s)ε -1-s |z 2 -z 1 | s u C( D) + + |λ| -1 n 7 (D, s)ε -s |z 2 -z 1 | s ∂u ∂ z C( D) ,(8.25)wherez 0 , z 1 , z 2 , λ ∈ C, |λ| ≥ 1, ε ∈ (0, 1). Using (8.16), (8.22), (8.23), (8.25) and putting ε = |λ| -1/2 into (8.22), (8.25), we obtain (8.15) with δ 1 (s) = (1 -s)/2.
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 998 Proof of symmetry(3.12) Let D ′ be an open bounded domain in R d such that• D ⊂ D ′ , • D ′ satisfies (1.2),• E is not a Dirichlet eigenvalue for the operator -∆ + v in D ′ .Here and bellow in this section we assume that v ≡ 0 on D ′ \ D. Let R(x, y, E) denote the Green function for the operator -∆ + v -E in D ′ with the Dirichlet boundary condition. We recall that R(x, y, E) = R(y, x, E), x, y ∈ D ′ . (9.1) Using (3.5), (9.1), we find that for x, y∈ D ∂D R(x, ξ, E) ∂R ∂ν ξ (y, ξ, E) -R(y, ξ, E) ∂R ∂ν ξ (x, ξ, E) dξ = = D R(x, ξ, E) (∆ ξ -v + E) R(y, ξ, E) -R(y, ξ, E) (∆ ξ -v + E) R(x, ξ, E) dξ = = -R(x, y, E) + R(y, x, E) = 0. (9.2) Note that W = G α + R(E) is the solution of the equation (-∆ x + v -E)W (x, y) = 0, x, y ∈ D (9.3)with the boundary condition cos α W (x, y) -sin α ∂W ∂ν x (x, y) and (9.3), we find that for x, y∈ D ∂D W (ξ, x) ∂W ∂ν ξ (ξ, y) -W (ξ, y) ∂W ∂ν ξ (ξ, x) dξ = = D W (ξ, x) (∆ ξ -v + E) W (ξ, y) -W (ξ, y) (∆ ξ -v + E) W (ξ, x) dξ = 0 (9.5) Note that W (x, y) = -D W (ξ, y) (∆ ξ -v + E) R(ξ, x, E)dξ, x, y ∈ D. (9.6)Combining (3.5), (9.3) and (9.6), we obtain thatW (x, y) = -∂D W (ξ, y) ∂R ∂ν ξ (ξ, x, E) -R(ξ, x, E) ∂W ∂ν ξ(ξ, y) dξ, x, y ∈ D. (9.7) Using (9.4) and (9.7), we get that sin α W (x, y) = = ∂D W (ξ, y) cos α W (ξ, x) -sin α ∂W ∂ν ξ (ξ, x) -cos α R(ξ, x, E) dξ --∂D R(ξ, x, E) cos α R(ξ, y, E) -sin α ∂R ∂ν ξ (ξ, x, E) -cos α W (ξ, y) dξ, x, y ∈ D.Combining similar to (9.8) formula for sin α W (y, x), (9.2) and (9.5), we obtain that sin α W (x, y) -sin α W (y, x) = 0, x, y ∈ D. (9.9)In the case of sin α = 0, combining (9.4) and (9.7), we get that W (x, y) = ∂D -R(ξ, y, E) ∂R ∂ν ξ (ξ, x, E) + W (ξ, x) ∂W ∂ν ξ (ξ, y) dξ,x, y ∈ D.

(9. 10 )

 10 Hence, one can get that for any α W (x, y) = W (y, x), x, y ∈ D.(9.11)Combining (9.1) and (9.11), we obtain (3.12).

  Let ||v j || C 2 ( D) ≤ N, j = 1, 2, for some N > 0. Let Mα,v 1 (E) and Mα,v 2 (E) denote the impedance boundary maps for v 1 and v 2 , respectively. Then

	2.10)
	Note also that (2.10) ⇒ (1.3).
	Theorem 2.2. Let D satisfy (1.2), where d = 2. Let v 1 , v 2 satisfy (2.10) and (1.7) for some
	fixed E and α.

  Let D satisfy (1.2), where d = 2. Let potentials v 1 , v 2 satisfy (2.10). Then

	with s = 3/4.
	Proof of Theorem 2.2 is given in Section 7. This proof is based on results presented in
	Sections 3, 6.
	Theorem 2.2 implies the following corollary:
	Corollary 2.2.
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