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Stability estimates for determination of potential from
the impedance boundary map

M.I. Isaev and R.G. Novikov

Abstract

We study the impedance boundary map (or Robin-to-Robin map) for the Schrédinger
equation in open bounded domain at fixed energy in multidimensions. We give global
stability estimates for determining potential from these boundary data and, as corollary,
from the Cauchy data set. Our results include also, in particular, an extension of the
Alessandrini identity to the case of the impedance boundary map.

1. Introduction

We consider the Schrédinger equation

—AY +v(x)y = Ey, xe€ D, EeR, (1.1)
where
D is an open bounded domain in R, d > 2, (12)
with 0D € C?, '
v e L>(D). (1.3)
We consider the impedance boundary map Ma = MQ,U(E) defined by
Ma[w]a = [w]aﬂrﬂ (1'4)
for all sufficiently regular solutions ¢ of equation (1.1) in D = D U dD, where
. Oy
[l = [(@)]a = cosap(z) —sina = |pp(x), = €ID, a €R (1.5)

ov

and v is the outward normal to dD. One can show(see Lemma 3.2) that there is not more
than a countable number of o € R such that F is an eigenvalue for the operator —A + v in
D with the boundary condition

o
—sina —|sp = 0. 1.6
cosa)|sp — sina 5 lap (1.6)
Therefore, for any energy level E we can assume that for some fixed a € R

E is not an eigenvalue for the operator —A + v in D (17)
with boundary condition (1.6) '

and, as a corollary, M, can be defined correctly.

Note that the impedance boundary map M, is reduced to the Dirichlet-to-Neumann(DtN)
map if & = 0 and is reduced to the Neumann-to-Dirichlet(NtD) map if & = 7/2. The map M,
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can be called also as the Robin-to-Robin map. General Robin-to-Robin map was considered,
in particular, in [9)].

We consider the following inverse boundary value problem for equation (1.1).

Problem 1.1. Given M, for some fixed F and a, find v.

This problem can be considered as the Gel’fand inverse boundary value problem for
the Schrodinger equation at fixed energy (see [8], [16]). At zero energy this problem can
be considered also as a generalization of the Calderon problem of the electrical impedance
tomography (see [5], [16]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction,
(c) stability.

Global uniqueness theorems and global reconstruction methods for Problem 1.1 with
a = 0 were given for the first time in [16] in dimension d > 3 and in [4] in dimension d = 2.

Global stability estimates for Problem 1.1 with ov = 0 were given for the first time in [1] in
dimension d > 3 and in [23] in dimension d = 2. A principal improvement of the result of [1]
was given recently in [21]| (for the zero energy case). Due to [14] these logarithmic stability
results are optimal (up to the value of the exponent). An extention of the instability estimates
of [14] to the case of the non-zero energy as well as to the case of Dirichlet-to-Neumann map
given on the energy intervals was given in [11].

Note also that for the Calderon problem (of the electrical impedance tomography) in its
initial formulation the global uniqueness was firstly proved in [27] for d > 3 and in [15] for
d=2.

It should be noted that in most of previous works on inverse boundary value problems
for equation (1.1) at fixed E' it was assumed in one way or another that £ is not a Dirichlet
eigenvalue for the operator —A+v in D, see 1], [14], [16], [21], [23], [24], [25]. Nevertheless, the
results of [4] can be considered as global uniqueness and reconstruction results for Problem
1.1 in dimension d = 2 with general «.

In the present work we give global stability estimates for Problem 1.1 in dimension d > 2
with general o. These results are presented in detail in Section 2.

In addition, in the present work we establish some basic properties of the impedance
boundary map with general a. In particular, we extend the Alessandrini identity to this
general case. These results are presented in detail in Section 3.

In a subsequent paper we plan to give also global reconstruction method for Problem 1.1
in multidimensions with general «.

2. Stability estimates

In this section we always assume that D satisfies (1.2).
We will use the fact that if vy, vo are potentials satisfying (1.3), (1.7) for some fixed E
and «, then
Mgy, (E) — My, (E) is a bounded operator in L>°(dD), (2.1)

where My, (E), My.,(E) denote the impedance boundary maps for vy, vy, respectively.
Actually, under our assumtions, M, ,, (E) — My, (E) is a compact operator in L>°(dD) (see,
Corollary 3.1).
Let
||A|| denote the norm of an operator

A L®(8D) — L=(3D). (22)
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Let the Cauchy data set C, for equation (1.1) be defined by:

Yl 81/J| . for all sufficiently regular solutions 1 of (2.3)
ooy ) equation (1.1) in D=DUOD |’ '

In addition, the Cauchy data set C, can be represented as the graph of the impedance
boundary map M, = M, ,(F) defined by (1.4) under assumptions (1.7).

2.1. Estimates for d > 3

In this subsection we assume for simplicity that

v € W™ (R?) for some m > d, suppv C D, (2.4)

where
W™ RY = {v: 0've L*R?Y), |J| <m}, m e NUO, (2.5)

where

/]
Je (NU0), |J| = ZJ“ 97 v( %. (2.6)
Let

ol = mase 1070l sy (2.7)

Note also that (2.4) = (1.3).

Theorem 2.1. Let D satisfy (1.2), where d > 3. Let v1, vy satisfy (2.4) and (1.7) for some
fized E and o. Let ||vj||m1 < N, j = 1,2, for some N > 0. Let M,.,(E) and M,,,(E)
denote the impedance boundary maps for vi and vy, respectively. Then

o1 — vs[ree(p) < Co (In(3+6,1)) ", 0<s< (m—d)/m, (2.8)
where Cy = Co(N, D, m, 5, E), 0 = ||Man, (E) — My, (E)|| is defined according to (2.2).

Remark 2.1. Estimate (2.8) with o = 0 is a variation of the result of [1] (see also [21]).
Proof of Theorem 2.1 is given in Section 5. This proof is based on results presented in
Sections 3, 4.
Theorem 2.1 implies the following corollary:
Corollary 2.1. Let D satisfy (1.2), where d > 3. Let potentials vy, vy satisfy (2.4). Then

o1 = va|Lee (D) < glei[gCa (In(3+6."))", 0<s<(m—d)/m, (2.9)

where C, and 0, at fized o are the same that in Theorem 2.1.
Actually, Corollary 2.1 can be considered as global stability estimate for determining
potential v from its Cauchy data set C, for equation (1.1) at fixed energy F, where d > 3.
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2.2. Estimates for d =2

In this subsection we assume for simplicity that
v e C*(D), suppv C D. (2.10)
Note also that (2.10) = (1.3).

Theorem 2.2. Let D satisfy (1.2), where d = 2. Let vy, vy satisfy (2.10) and (1.7) for some
fized E and . Let ||vj||c2py < N, j = 1,2, for some N > 0. Let My, (E) and M, ., (E)
denote the impedance boundary maps for vy and ve, respectively. Then

o1 = tallimepy < Co (0 (34 0:1)) ™ (i (310 3+ 5,1))°, 0<s<8/4 (210)

where Cyy = Co(N, D, 5, E), 0 = || Mg, (E) — My, (E)|| is defined according to (2.2).

Remark 2.2. Theorem 2.2 for « = 0 was given in [23| with s = 1/2 and in [25] with s = 3/4.
Proof of Theorem 2.2 is given in Section 7. This proof is based on results presented in
Sections 3, 6.
Theorem 2.2 implies the following corollary:
Corollary 2.2. Let D satisfy (1.2), where d = 2. Let potentials v, vy satisfy (2.10). Then

[[o1 = vallzoe(p) < min Cy (In (3 + ) (I (3 (3+0;1)))°, 0<s<3/4, (212)

where Cy and 0, at fized o are the same that in Theorem 2.2.
Actually, Corollary 2.2 can be considered as global stability estimate for determining
potential v from its Cauchy data set C, for equation (1.1) at fixed energy F, where d = 2.

2.3. Concluding remarks

Theorems 2.1, 2.2 and Lemma 3.2 imply the following corollary:

Corollary 2.3. Under assumptions (1.2), (1.3), real-valued potential v is uniquely determined
by its Cauchy data C, at firved real energy E .

To our knowledge the result of Corollary 2.3 for d > 3 was not yet completely proved in
the literature.

Let 04, denote the spectrum of the operator —A+wv in D with boundary condition (1.6).
Remark 2.3. In Theorems 2.1 and 2.2 we do not assume that E ¢ 0,,, U 0,,, namely for
a = 0 in contrast with [1], [21], [23], [24], [25]. In addition, in fact, in Corollaries 2.1 and 2.2
there are no special assumtions on F and « at all. Actually, the stability estimates of [1],
[21], [23], [24], [25] make no sense for £ € 0., Uy, and are too weak if dist(E, gy, U0g., )
is too small.

Remark 2.4. The stability estimates of Subsections 2.1 and 2.2 admit principal improvement
in the sense described in [21], [22], [26]. In particular, Theorem 2.1 with s = m —d (for d = 3
and E = 0) follows from results presented in Sections 3, 4 of the present work and results
presented in Section 8 of [21].

Remark 2.5. The stability estimates of Subsections 2.1 and 2.2 can be extended to the
case when we do not assume that suppv C D or, by other words, that v is zero near the
bounadry. In this connection see, for example, [1], [23].

In the present work we do not develop Remarks 2.4 and 2.5 in detail because of restrictions
in time.
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Note also that Theorems 2.1 and 2.2 remain valid with complex-valued potentials vy, vy
and complex F, . Finally, we note that in Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 with
real o constant C,, can be considered as independent of a.

3. Some basic properties of the impedance boundary map

Lemma 3.1. Let D satisfy (1.2). Let potential v satisfy (1.3) and (1.7) for some fixred E
and o. Let M, Mav(E) denote the impedance boundary map for v. Then

(sina M, + cosozf) [V]o = Yo,

(3.1)
(CosaMa — sinozf) V] = g—i) aD,

/W”]aMa[df(z’]adx - /W(Q)]aMa[ilf(l’]adx (3.2)
oD oD
for all sufficiently reqular solutions 1, YV, ¥ of equation (1.1) in D, where I denotes the
identity operator on 0D and [, is defined by (1.5).

Note also that identities (3.1) imply that

A

(sin(al — a9) My, + cos(ay — a2)l> (sin(a2 — 1) M, + cos(ay — Ozl)f) =1, (3.3)

under the assumptions of Lemma 3.1 fulfilled simultaneously for o = oy and o = as.
Proof of Lemma 3.1. Identities (3.1) follow from definition (1.4) of the map M,,.
To prove (3.2) we use, in particular, the Green formula

G S R R (3.4)
D

oD

where ¢ and ¢ are arbitrary sufficiently regular functions in D. Using (3.4) and the
identities

PWAYE = (v — E)pDy® = @A™ in D, (3.5)
we obtain that
/ (w“ i W)ag—;)) dx = 0. (3.6)
oD

Using (3.6), we get that

1) 2
/ cosap) — sin aaﬁ) sin @ + cos aaﬁ) dx =
ov ov

oD

(2) (1)
= / (COS&’Q/)(Q) — sin aalgy ) (sinaw(l) + cos aalgy ) dx.

oD

(3.7)

Identity (3.2) follows from (3.7) and definition (1.4) of the map M,. (]
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Theorem 3.1. Let D satisfy (1.2). Let two potentials vi, vy satisfy (1.3), (1.7) for some
fized E and o. Let My, = My, (E), Myy, = My, (E) denote the impedance boundary
maps for vy, vy, respectively. Then

[ o=y pado = [tila (Mo, = Vo) Wl (39
D oD

for all sufficiently regular solutions 1, and ¥y of equation (1.1) in D with v = v; and v = vy,
respectively, where [1], is defined by (1.5).

Proof of Theorem 3.1. As in (3.5) we have that

@/)1A@/)2 = (Uz - E)?/)l%,

3.9
Vo Apy = (v1 — E)h1ha. (39)
Combining (3.9) with (3.4), (3.1) and (3.2), we obtain that
0 0
[ @) =t i@ty = | (%i - %i) dr -
D oD
= / (sinonam + cosozf) [V2]a (c:osoz]\Zl'w,1 — sinozf) [V ]odr —
op (3.10)
—/ <sinoz]\A4(M1 + cosaf) [V1]a (cosod\}fa,v2 — sinozf) [o]odr =
oD
= /Wh]a <Ma,v1 - Ma,vg) W)Q]adl‘-
oD
]

Remark 3.1. Identity (3.8) for a = 0 is reduced to Alessandrini’s identity (Lemma 1 of [1]).
Let G,(z,y, E) be the Green function for the operator A—v+ FE in D with the impedance
boundary condition (1.6) under assumtions (1.2), (1.3) and (1.7). Note that

Go(2,y,E) = Galy,x, E), x,y€D. (3.11)
The symmetry (3.11) is proved in Section 9.

Theorem 3.2. Let D satisfy (1.2). Let potential v satisfy (1.3) and (1.7) for some fized E
and a such that sin # 0. Let G, (z,y, E) be the Green function for the operator A —v+ E
in D with the impedance boundary condition (1.6). Then for x,y € 0D

1
— Go(z,y,E) —ctga dgp(z — 1), (3.12)

Moz, y, B) = sin? «v

where M, (z,y, E) and dsp(x — y) denote the Schwartz kernels of the impedance boundary
map M, = M,.,(E) and the identity operator I on 0D, respectively, where M, and I are
considered as linear integral operators.



Stability estimates for determination of potential from the impedance boundary map 7

Proof of Theorem 3.2. Note that

12 sin a¢lap — ctg a [@la. (3.13)

sin” o

[Pla—m/2 =

for all suffuciently regular functions ¢ in some neighbourhood of 9D in D. Since G, is the
Green function for equation (1.1) we have that

o) = [ (05200 ) - Calon 5o do yeD, (310

ov,
oD

for all suffuciently regular solutions ¢ of equation (1.1). Using (3.14) and impedance boundary
condition (1.6) for G, we get that

9G,, %
sina () =sina [ (0605200 B) = Guliry. BV ) ) da
op (3.15)
~ [W@Galey. B)ir, ye D,
oD
Due to (3.2) we have that
M,(z,y, E) = My(y,z,E), x,y € 0D. (3.16)
Combining (1.4), (3.13), (3.15) and (3.16), we obtain (3.12). ]
Corollary 3.1. Let assumtions of Theorem 3.1 hold. Then
My, (E) — Mg, (E) is a compact operator in 1L°(0D). (3.17)

Scheme of the proof of Corollary 3.1. Let G, (2,9, E) and Gg.,(2,y, E) be the Green
functions for the operator A — v+ E in D with the impedance boundary condition (1.6) for
v = v, and v = vy, respectively. Using (3.11), we find that

G (2,4, E) = / G (2,6, ) (D¢ — 03(6) + E) G (€., E) de,

D

GQ,UQ ('Tv Y, E) = / (Aﬁ — U (f) + E) Ga,m (SL’, 57 E>Ga,v2 (gu Y, E) df,
D (3.18)

8Gav2 aGavl
[ (Gonle 6212522 600 B) = Gl D) 2206, ) ) s =

81/5
oD
x,y € D.

Combining (3.18) with (3.4), we get that

GOé,Ul (l‘, Y, E) - GOMJQ (ZL‘, Y, E) = / (vl (g) - 'UZ(S)) Ga,m (ZL‘, 57 E)Ga,m (57 Y, E) df,

D (3.19)

z,y €D.
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The proof of (3.17) for the case of sina # 0 can be completed proceeding from (3.3),
(3.12), (3.19) and estimates of [12] and [3| on G, (x,y, F) for v = 0.
Corollary 3.1 for the Dirichlet-to-Neumann case (sin = 0) was given in [16]. ]

Lemma 3.2. Let D satisfy (1.2). Let v be a real-valued potential satisfying (1.3). Then
for any fired E € R there is not more than countable number of o« € R such that E is an
eigenvalue for the operator —A + v in D with boundary condition (1.6).

Proof of Lemma 3.2. Let (M, 4 be eigenfunctions for the operator —A + v in D with
boundary condition (1.6) for & = oY) and o = a?, respectively. Then

2
sin (a(l) — a(2)) /@Z)(l)w@)dx = sin aV sin a® / (@Z)(l v — @ 81/1 ) dr =0. (3.20)
ov
oD

oD

Since in the separable space IL?(9D) there is not more than countable orthogonal system of
functions, we obtain the assertion of Lemma 3.2. [

Remark 3.1 The assertion of Lemma 3.2 remains valid for the case of o € C.

4. Faddeev functions

We consider the Faddeev functions G, ¢, h (see [6], [7], [10], [16]):

wlak) = e+ [ Glo =y k)o(o) by, Ry, (4.1)
. z{x
Gz, k) = e*g(x, k), gz, k) / e +;€£ (4.2)

where € R? k€ C4, Imk # 0, d > 3,

h(k,l) = (2m)~¢ / e "y(x)(x, k)dr, (4.3)
]Rd
where
kleC? k> =12 Imk=TIml#0. (4.4)

One can consider (4.1), (4.3) assuming that
v is a sufficiently regular function on R? with suffucient decay at infinity. (4.5)
For example, in connection with Problem 1.1, one can consider (4.1), (4.3) assuming that
vel®(D), v=0onR\D. (4.6)

We recall that (see [6], [7], [10], [16]):
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The function G satisfies the equation

(A + E)G(z, k) = 8(x), v€R? keC\ R

e Formula (4.1) at fixed k is considered as an equation for
,ll) — e“mu(x, k’),
where 1 us sought in L>°(RY);

e As a corollary of (4.1), (4.2), (4.7), v satisfies (1.1) for E = k?;

e The Faddeev functions G, 1, h are (non-analytic) continuation to the complex domain
of functions of the classical scattering theory for the Schrédinger equation (in particular,

h is a generalized ,scattering” amplitude).

In addition, G, v, h in their zero energy restriction, that is for £ = 0, were considered
for the first time in [2|. The Faddeev functions G, ¢, h were, actually, rediscovered in [2].

Let
Sp={keC": K> =k+...+kj=E},

Op={keXp l€Xg:Imk=1Iml}.
Under the assumptions of Theorem 2.1, we have that:
(e, k) -1 as |Imk| — oo
and, for any o > 1,
lp(x, k)| + |Vu(z, k)| <o for |[Imk|>r(N,D,E, m,o),
where z € R, k € Y

U<p> (M)e@gnkfl:p ( ) ) or any p ’
Cl<D7E,m)N2
p
Imk| = [Im{| = p > r2(N, D, E,m),

p2 < 4(E —+ p2>’

[0(p) — (kD] < for (k,1) € O, p=k—1,

where
u(p) = (27T)_d/eip$v(:p)d:p, p € R

R4

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Results of the type (4.10) go back to [2]. Results of the type (4.12), (4.13) (with less
precise right-hand side in (4.13)) go back to [10]. In the present work estimate (4.11) is given

according to [18], [20]. Estimate (4.13) follows, for example, from the estimate

1A g(k)A™* |2y 12 (Re) = O(|k|™") as |k| = oo,
ke CI\RY |k = (JRek|® + |Im k[?)Y/2,

(4.15)



10 M.I. Isaev, R.G. Novikov

for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel g(x — y, k)
and A denotes the multiplication operator by the function (14 |z|?)'/2. Estimate (4.15) was
formulated, first, in [13| for d > 3. Concerning proof of (4.15), see [29].

In addition, we have that:

ho(k, 1) — hi(k, 1) = (27T)d/1/11(x, =) (va(x) — vy (2))ho(z, k)dx

(4.16)
for (k,l) € O, |Imk| = |Iml| # 0,

and vy, vy satisfying (4.5),

hQ(kal) - hl(kal) - (QW)_d/[wl('v _l)]a (Moz,m - Ma,vl) W)Q('? k})]adl‘

oD (4.17)
for (k,1) € O, |Imk| = |Iml| # 0,

and vy, vy satisfying (1.7), (4.6),

where h;, 1; denote h and v of (4.3) and (4.1) for v = v;, and Mamj denotes the impedance
boundary map of (1.4) for v = v;, where j = 1,2.

Formula (4.16) was given in [17]. Formula (4.17) follows from Theorem 3.1 and (4.16).
Formula (4.17) for « = 0 was given in [19].

5. Proof of Theorem 2.1

Let
Ly (RY) = {u € L*(R") : [Jul, < +oo},
Jull, = ess sup(1+ [pl)*|u(p)]. 4> 0. 5-1)
pER
Note that
we W™(RY) = o € L*(RY) NC(RY), (52)
[@]],0 < co(m, d)[wllmy for  p=m, '
where W1 Lo are the spaces of (2.5), (5.1),
w(p) = (27T)_d/eip$w(:p)dx, p € RY, (5.3)
Rd
Using the inverse Fourier transform formula
w(x) = /eipmu?(p)dp, r € RY, (5.4)
R4
we have that
[o1 = vallepy < sup| [ €7 (02(p) — 01(p)) dp| <
xeD R (55)

< Li(r)+ I(r) for any r >0,
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where
I(r) = / (8a(p) — 01(p)]dp.

Ip|<r

Io(r) = / 6a(p) — 1 (p)dp.

Ip|>r

Using (5.2), we obtain that
[02(p) — 01(p)] < 2e2(m, d)N(1+|p])™, p R
Due to (4.13), we have that

2¢,(D, E,m)N?

(ta(p) — D0 (0)] < [halk, 1) — By (e, 1) + 2L Em)
peRY p=k—1, (k1) € Op,
Imk| = [Im!| = p > rs(N, D, E,m),
P’ <AE+ p?).

)

Let

x€0D

c3 = (27?)_d/dx, L = max ||,
oD
0 = ||Moz,v2 (E) - Ma7v1 (E)||>

where || My, (E) — My, (E)|| is defined according to (2.2).
Due to (4.16), (4.17), we have that

ha(k, 1) = hi(k, D] < es|[tn (-, =DlallLe@p) 0a [[[Y2(-, B)]allL=o),
(k,1) € Op, [Imk| = |ImI| # 0.

Using (1.5), (4.11), we find that

1[0 K)lallL=op) < ca(E) o exp (\Im k|(L + 1)),
keXg, Imk|>nr(N,D,E,m,o).

Here and bellow in this section the constant o is the same that in (4.11).
Combining (5.10) and (5.11), we obtain that

\ho(k, 1) — ha(k, )| < ¢3(ca(E)o)? exp <2p(L + 1))5a,
(k,1) € O, p=|Imk| = |Iml| > r(N,D,E,m,o).
Using (5.8), (5.12), we get that

[02(p) — 01(P)] < e (ca(E)o)” exp <2P(L + 1))5a y 2alb f’m)N ,

p R p* <A(E+p?), p>r3(N,D,E,m,0),

(5.6)

(5.8)

(5.10)

(5.11)

(5.12)

(5.13)
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where r3(N, D, E,m, o) is such that
PZTl(N,D,Eam#T)a
pZTg(N,D,E,TTl,O’):} pZT2<N7D7E7m)7 (514)
PP <A(E 4 p?).

cs = / dp, cg= / dp. (5.15)

peRY, |p|<1 peERY,|p|=1

Using (5.6), (5.13), we get that

Let

)

I(r) < csr? (03 (ca( B)o)? exp (2,0(L n 1))% N 201(D,E,m)N2)

(5.16)
r>0, 1" <4(p*+E), p>r3(N,D,E,m,0).
Using (5.6), (5.7), we find that for any r > 0
T dt 2e(m,D)Neg 1
G2\, Ce
Ir(r) < 2c3(m, d)Ncg / T S T (5.17)
Combining (5.5), (5.16), (5.17) for r = p'/™ and (5.14), we get that
Hvl - UQHLOO(D) < C7<D7 U)pd/m€2p(L+1)5a + CB(Nu D7 E7 m)pi%la (5 18)
p>13(N,D,E,m,o0). '
We fix some 7 € (0,1) and let
1—7
=——, p=Fm(3+4," 5.19
b=sirn Bln(3+0,"), (5.19)
where 4, is so small that p > r3(N, D, E, m, o). Then due to (5.18), we have that
Hvl . UQHIL‘X’(D) S C7<D,U) (6 In (3 _'_5;1))d/m (3 _'_5;1)25(L+1) 5a_'_
_m=d
+cs(N,D,E,m) (BIn (3+6,")) ™ = (5.20)
= 2(D, )%™ (1 +36,)" 67 (In (3 4+ 5,1)) ™ + '
m— _m=d
+es(N, D, E,;m)B~ " (In (3+6.1)) 7™,
where 7, 8 and J, are the same as in (5.19).
Using (5.20), we obtain that
[or = va|lLe(py < eo(N, D, E,m, o) (In (3+06,%))" ™ (5.21)

for 0, = ||]\A4(M2 — MQ,UIH < §O(N,D, E,m,o), where §) is a sufficiently small positive
constant. Estimate (5.21) in the general case (with modified ¢g) follows from (5.21) for
60 <0O(N, D, E,m,0) and the property that ||v;|lLe(p) < c1o(D, m)N.

Thus, Theorem 2.1 is proved for s = =% and, since In (3 + 6, ') > 1, for any 0 < s < ™=,

m
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6. Buckhgeim-type functions

In dimension d = 2, we consider the functions G.,, .., ¥.,, 0hs, of [23] and going back to
Buckhgeim’s paper [4]:

Woy (2, N) = G207 4 [ G (2,¢, N 0(Os, (¢, ) dReC dIm,

S T

_ ] o (6.1)
Do (2, ) = 7207 1 [ G2 ¢, N0(O)dhay (€, A) dReC dIm,
A (7—20)2 4\ (F— 20)2

Go(2,6N) = L/e e T e iy =20 A=)
A (z=n) (=) (6.2)

z=ux1 +ive, 20 € D, A € C,

where R? is identified with C and v, D satisfy (1.2), (1.3) for d = 2;
Shay(N) = / Uaoa (2, =A) (02(2) — 01(2)) Yo 2(2, A) dRez dImz, X € C, (6.3)
D

where vy, vy satisfy (1.3) for d = 2 and @ZZOJ, .2 denote Uy Vs Of (6.1) for v = vy and
v = vy, respectively.
We recall that (see [23], [24]):

62
4mGZO<Z7 C7 )\) = 5(2 - C)u (6 4)
o2 '
155Gl G2) =02 = Q)

where z,z5,( € D, A € C and 0 is the Dirac delta function; formulas (6.1) at fixed zy and

X are considered as equations for 1., U, in L(D); as a corollary of (6.1), (6.2), (6.4), the

functions t,,, 1, satisfy (1.1) for £ = 0 and d = 2; 0h., is similar to the right side of (4.16).
Let potentials v, vy, v, € C%(D) and

lvllc2py < N, vjlle2py <N, §=1,2,

0 (6.5)
(Ul - U2)‘8D =0, 5(01 - UQ)‘aD =0,

then we have that:

g (2,0) = 00 (2, 0), g (2,0) = i (2,0), (6.6)

fo (2, A) = 1) fiy(2,A) = 1 as [N = o0 (6.7)
and, for any o > 1,

Pz (2, )| 4 [V iz (2, A)] < 0, (6.8a)

|/jZO<z7 )\)| + |vﬁ20<z7 )\)‘ S 07 (68b)
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where V = (0/0x1,0/0xs), 2 = x1 + ix9, 20 € D, A € C, |\ > p1(N, D, 0);
2

v2(20) = vi(20) = lim —|A[ohz,(A) (6.9)

for any z5 € D,

cun(N, D) (In(3[A[))*
|A[3/4 (6.10)

for zo € D, |\ > p2(N, D).
Formulas (6.6) can be considered as definitions of i, ji,,. Formulas (6.7), (6.9) were given

n [23|, [24] and go back to [4]. Estimate (6.10) was obtained in [23], [25]. Estimates (6.8)
are proved in Section 8.

va(z0) = vi(20) = R, ()] <

7. Proof of Theorem 2.2

We suppose that @ZZOJ(-, —A), Vs2(5, A), dhy (A) are defined as in Section 6 but with v; — E
in place of vj, j = 1,2. We use the identity

My o(E) = My ,—5(0). (7.1)
We also use the notation Ng = N + E. Then, using (6.10), we have that

N, D) (In(3|A]))’
A (72)
for zo € D, |A\| > p2(Ng, D).

a0 = w0 = 2IAIGD, ()] < 1

According to Theorem 3.1 and (6.3), we get that

1 - -
Ohsy(A) = [V20,1 (5, =M)]a ( Maw, (E) = Maw, (E) ) [¢0202(-, )], |d=],
47T28£ ! < ) 2 (7.3)
AeC.
Let )
19 = — [ |dz|, L = max|z|,
12 471'284 2€8D (7.4)

504 - ||Ma,v2(E) - Ma,m(E)Hv

where || My, (E) — My, (E)| is defined according to (2.2).
Using (7.3), we get that

(P20 (M)] < 12|21 =Mallime@p) da [l 20,25 N, lueon), A € C. (7.5)
Using (1.5), (6.8), we find that:

”[QZZOJ(H —MlallL=@p) < o ( M (4L% 4 4L) )
2 Mallivon) < o (M (412 4 41) ) (7.6)
AeC, |A>pi(Ng, D,o).
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Here and bellow in this section the constant o is the same that in (6.8).
Combining (7.5), (7.6), we obtain that

|0h2(N)| < €120 exp <|)\\(8L2 + 8L))5m

(7.7)
)\E(Ca ‘)\| Zpl(NE7D7O-)'
Using (7.2) and (7.7), we get that
. : et (Ng, D) (In(3]A])°
lva(z0) — v1(20)] < 1207 exp <|)\|(8L + 8L))5a + /A , (78)
€D, NeC, |\ >p3s(Ng,D,o)=max{ps, p2}.
We fix some 7 € (0,1) and let
B LT A=W (346 (7.9)
-~ 8L2+8L] B a7 '
where 6, is so small that |A\| > p3(Ng, D, o). Then due to (7.8), we have that
1 — valLe(py < c120” (3 + 5;1)6(8L2+8L) 0ot
In (351n (34 ;1))
P CYC TN R i
(BIn(3+651))" (7.10)
= 0120'2 (]. + 3504)177— 5;+
s (In(38In (34 021)))
+ en(Ng, D)A s (In (351In ( §)))
(In (3 +4,1))
where 7, f and J,, are the same as in (7.9).
Using (7.10), we obtain that
3
or = vallie (o) < e13(Ns Dy o) (In (34 61)) F (In (31n (34 6-1))) (711)

for 8 = || M, (E) — My, (E)|| < 6©(Ng, D, o), where 6 is a sufficiently small positive
constant. Estimate (5.21) in the general case (with modified ¢;3) follows from (7.11) for
6o <8O (Np, D, o) and the property that ||v;||L=(py < c14(D)N.

Thus, Theorem 2.2 is proved for s = 2 and, since In (3 + ;1) > 1, for any 0 < s < 3.

8. Proof of estimates (6.8)

In this section we prove estimate (6.8a). Estimate (6.8b) can be proved a completely similar
way. Let
_ P _
CHD) = {u D u, e C’(D)} ,
0z
(8.1)

ou
lulleyio) = mox (o 152 e, ) -
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Due to estimates of Section 3 of [23|, we have that, for any e; > 0,

MZO<'7)‘) S C;(D), H:LLZo('v)‘)”C;(D) <1l+4eg for ‘)‘| > p4<N7D751)'

In view of (8.2), to prove (6.8a) it remains to prove that, for any e > 0,
aZ:uZo('a >‘) € C(D)v ||82Mz0('7 >‘)||C(D) <ey for |>‘| > P5(N, D7€2)7

where 0.1, (-, \) is considered as a function of z € D and 9, = 0/0z.
We have that (see Sections 2 and 5 of [23]):

|
azluzo = ZHTZQ,AUMZ(M

Hm@:—l/ US) Re¢ dime,

) e
D
_ e~ Mz=20)2+A(F-20)*  p A(C—20)*~A((—70)?
Tooau(z) = — - / 2 u(¢)dReC dIm (,
D

where u is a test function, z € D.

(8.2)

(8.3)

In view of (8.2), (8.4) and Theorem 1.33 of [28], to prove (8.3) it is sufficient to show that

A(D,s)
Cu(D) S A[5)

IT=x0f lulleypy,  [AI=1, 2 €D,

for some fixed s € (0,1) and d(s) > 0, where C(D) is the Holder space,

Cs(D) = {u e C(D) : |lull¢,p) < +oo},

lulle.oy = max { [ulleqoy, el )}
U\z1) — Ul 29
TP 1 B
21,22€D,0< |21 —22|<1 ‘21 - 22|

Due to estimate (5.6) of 23], we have that

: A(D) :
||TZO,)\U||C(D) < ‘)\|1/2 ||u||Czl(D)7 |)\| > ]-7 Z0 € D.

Therefore, to prove (8.7) it remains to prove that

- Al(D,S) _
IToo vl iy < WHUH@(D), Al >1, z €D,

for some fixed s € (0,1) and 4(s) > 0.
We will use that

lurusle, 5y < llwille, i luellopy + lwllemllualo,py, 0<s<L.

One can see that B B
Tzo,)\ == on,f)\Ton,)n

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)
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where T TZO o and F; ) is the multiplication operator by the function

F(z, 29, \) = MEm20"AE=20)7, (8.13)
One can see also that
F(-, z9, — py = 1,
17620 ~Nlern 7 -
£ 20, =Mleyp) < A2(D, $)IAP, [A[ 21, 20 € D.
In view of (8.9), (8.11) - (8.14), to prove (8.10) it remains to prove that
- A3(D, s _
ITF sl < s lelloyen W21, s € D, (5.15)
for some fixed s € (0,3) and & (s) > 0.
We have that
WTFZO,)\u(zl) — WTFzO’Au<22) :/ F(C %, ? u(©)(z )dReCdImC =
(C—2)(C~ 22) (8.16)
D
- Zo,)x,&‘(zla ZQ) + ‘]Zo,)\76(217 22)7
e PG 20 )il = 21)
205
I, \:(21,29) = / - dRe( dIm 8.17
07)\7 ( 1 2) (g 21)(§ 22) g C ( )
D\Dzo,z1,22 €
F(¢, 20, Nu(¢) (22 — 71)
Joone(z1,22) = / —— dRe( dIm (, (8.18)
e T -
Dzo,zl,zg,s
2
where B, . ={( € C: | — 2| <€}, Dyy2rzoe = D\ (U BZJ.@).
=0
We will use the following inequalities:
29 — 21
<mlzm -2y — 8.19
G| R 2 T (519
29— 2 2 1
2 — 21
< nglze — 21|° —_—, 8.20
TR | R i D et (520
8 < Z9 — 21 ) ’ 2 1
2 <nglzg— S —— 8.21
o \ T | Sl L (521
where s € (0,1), ny,n2,n3 > 0, 20, 21,29, € Cand ( # z; for j =0,1,2
Using (8.17), (8.19), we obtain that
(8.22)

Lone(z1,22) < ny(s)e' 5|z — 1%,

where ny(s) > 0, 29, 21, 22, € C and € € (0, 1). Further, we have that

IF(C 20,A)  u(()(z — =) oC dlm ¢ —
/ ¢ (C—2)(¢—2)(C - 50>dR i (8.23)

DZO,zl,ZQ,E
= Zlo >\,€(217 ZQ) + ‘]z207)\,5(217 22),

1
Jzo,)\,e(zla 22) = _ﬁ
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where

Jlo,)\,e(zlv 22) — —i— / F_1<C’ <0, )\)U(C)<_ - 271) dC,

? 4i\

81)zo,z1,22,5

o (8.24)
1 0 u(¢)(zo — z1) )
J2 (21, 2) = — / F,z,)\—_<_ A % dReC dIm ¢,
oreli1e) =53 (2o Vg (T - mc—m) ) e
l)zo,zl,zg,s
Using (8.20), (8.21), (8.24), we obtain that
Jzo)\€< ) < ‘)\| 17’1,5<D 8) 78|Z2 - Zl‘SHuHC(D)u
Tane(z1,22) < I\ T'n6(D, 8)e™ 0z — 21 [*lulloepy + (8.25)
Ju '
+ A" tng (D, 8)e 5|z — 21|* g ,
“ D)

where 2g, 21,20, A € C, |A\| > 1, € (0,1).
Using (8.16), (8.22), (8.23), (8.25) and putting ¢ = |A\|7%/2 into (8.22), (8.25) we obtain
(8.15) with d;(s) = (1 — s)/2.
9. Proof of symmetry (3.11)
Let D’ be an open bounded domain in R¢ such that
e DC D,
e [’ satisfies (1.2),

e F is not a Dirichlet eigenvalue for the operator —A + v in D'.

Here and bellow in this section we assume that v = 0 on D'\ D. Let R(x,y, E) denote the
Green function for the operator —A + v — E in D’ with the Dirichlet boundary condition.
We recall that

R(x,y,F) = R(y,x, E), z,ye D (9.1)
Using (3.4), (9.1), we find that for x,y € D

/( Rlo.& BV, 6.) - R <y§E>af<x§E>)d§=

D
—R(z,y,E)+ R(y,z,E) = 0.
Note that W = G, + R(FE) is the solution of the equation

(A, +v—E)W(x,y) =0, z,y €D (9.3)
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with the boundary condition

redD

<Cosoz W(z,y) —sin«a gTM:(x, y))

, yE€D.
r€dD

= (cosaR(x, y, E) —sina SR (2,9, E))
V{L’

Using (3.4)
4( (€ G tn) — WEn G @@)%:

=/(W@wHAvﬂHJQW@w%WW&wck—v+EﬂV@xD%=0

D

Note that

and (9.3), we find that for z,y € D

W(e,y) = /ﬁ%y<&—v+@ R(E.2, B)E, w.y€ D.
Combining (3.4), (9.3) and (9.6), we obtain that

mez—/(<a> (€.2.B) - Ri€.0. E) 00 @w)@

oD
z,y €D.
Using (9.4) and (9.7), we get that
sinaW(x,y) =
. oW
= /W(f,y) (coson(f,:p) —sina a—(f,x) — cosozR(f,:p,E)) ¢ —
Ve
D

—/R(f,:p,E) (cosaR(f,y,E) —sina g—yR(f,x,E) —coson(f,y)) dg,
13

oD
z,y € D.

Combining similar to (9.8) formula for sina W (y, x), (9.2) and (9.5), we obtain that
sinaW(z,y) —sinaW(y,z) =0, xz,y€ D.
In the case of sina = 0, combining (9.4) and (9.7), we get that

W@w:/C£@%>8@xm+W@@ @yﬂ%

oD
x,y € D.

Hence, one can get that for any «
Wi(x,y) =W(y,x), z,y€D.
Combining (9.1) and (9.11), we obtain (3.11).

(9.5)

(9.8)

(9.9)

(9.10)

(9.11)
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