Stéphane Bazeille

Emmanuel Battesti

David Filliat

Qualitative localization using vision and odometry for path following in topo-metric maps

Keywords: Path following, vision, robot odometry, topometric map, visual servoing

, we present an optimized version of our loop-closure detection algorithm that makes it possible to create consistent topo-metric maps in real-time while the robot is teleoperated. Using such a map, the proposed navigation algorithm performs qualitative localization using the same loop-closure detection framework and the odometry data. This qualitative position is used to support robot guidance to follow a predicted path in the topo-metric map compensating the odometry drift. Compared to purely visual servoing approaches for similar tasks, our path-following algorithm is real-time, light (not more than two images per seconds are processed), and robust as odometry is still available to navigate even if vision information is absent for a short time. The approach has been validated experimentally with a Pioneer P3DX robot in indoor environments with embedded and remote computations.

I. INTRODUCTION

To navigate autonomously in a large environment, a robot often requires the ability to build a map and to localize itself using a process named Simultaneous Localization and Mapping (SLAM). The field of SLAM can be broadly divided into two approaches: topological and metrical. The most common approach is the metrical SLAM in which we traditionally use range sensors such as laser or sonars. This mapping method is explicitly based on measured distances and positions. The localization is geometric and clearly corresponds to the real world. It can be done continuously and planned navigation is accurate. The main problem is that global geometric consistency is hard to ensure and the map is therefore hard to build. Moreover, the sensors are usually expensive and the computation heavy and greedy. Now, more and more often those sensors are replaced by cameras because they provide many advantages such as lower price, smaller size, lighter weight, lower energy consumption and give a richer environmental information. Using these sensors, it is possible to recover metric information, but a more direct way to map the environment is to use topological approaches where the environment is modeled as a graph of discrete locations. These maps are easy to build, suitable for large environments and for human interactions. Their main drawback is the lack of geometric and free space information that only allows localization and navigation close to previously mapped routes. In our previous work [START_REF] Bazeille | Incremental topo-metric slam using vision and robot odometry[END_REF], we built topological maps using visual loop-closure detection and we used odometry data to enrich this topological map with metric information. The choice of this second sensor makes the mapping more accurate, reduces the computational cost compared to purely visual solutions and also makes the system more robust to vision failure.

Contribution: The main contribution of this paper is the development of a new robust and light path following algorithm combining the use of these two cheap sensors (odometer and camera) that allows autonomous navigation in such previously learned topo-metric maps. The approach is qualitative and uses the feedback information given by the vision sensor to approximately correct the odometry drift in order to follow a path computed from the map. This path following system can be used for delivery robots, security robots, guide and following robots for example.

Content: In Section 2, we present a review of related work on topological navigation. In Section 3, we recall our previous work on topo-metric mapping and present new optimizations that have been brought to this system. In Section 4, we explain our new framework on path following navigation using these topo-metrical maps. Finally, in Section 5, we show experimental results and we conclude in Section 6 with a discussion about this contribution and our future work.

II. RELATED WORK

Localization is a key issue for mobile robots in environments where a globally accurate positioning system, such as GPS, is not available. Today, the most used sensor to map an environment and to navigate autonomously in a map is definitively the laser sensor, combined with a SLAM framework it builds up a map within an unknown environment while at the same time keeping track of the current location (see [START_REF] Thrun | Probabilistic robotics[END_REF] for an overview of the metrical SLAM approaches). The position is accurate, and the map displayed as a geometrical occupancy grid allows the robot to explore its surrounding. In our work, we have addressed the problem of autonomous navigation method, but focusing on the visual sensor. As we make use of a topological map [START_REF] Bazeille | Combining odometry and visual loopclosure detection for consistent topo-metrical mapping[END_REF], [START_REF] Blanco | Subjective local maps for hybrid metric-topological slam[END_REF], [START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF], we have no information about obstacles, and about free space around the robot, that is why our navigation method has been limited to follow path that have been already taken by the robot. The traditional method for this kind of application is visual servoing also known as vision-based robot control which uses feedback information extracted from images to control the motion of the robot [START_REF] Hutchinson | A tutorial on visual servo control[END_REF]. Those methods generally require camera calibration (homography, fundamental matrix, Jacobian, removal of lens distortion [START_REF] Atiya | Real time vision based robot localization[END_REF], [START_REF] Burschka | Vision based control of mobile robots[END_REF], [START_REF] Liang | Visual navigation using planar homographies[END_REF], [START_REF] Sagues | Visual correction for mobile robot homing[END_REF], [START_REF] Booij | Navigation using an appearance based topological map[END_REF]). Also, some approaches make assumptions on the environment (artificial landmarks, vertical straight lines, parallel walls) or sometimes need more than one camera or camera of different kind (omnidirectional for example) [START_REF] Atiya | Real time vision based robot localization[END_REF], [START_REF] Guerrero | Uncalibrated vision based on lines for robot navigation[END_REF], [START_REF] Diosi | Outdoor visual path following experiments[END_REF], [START_REF] Correa | Active visual perception for mobile robot localization[END_REF]. In our research context, we have been interested by the use of a perspective camera without calibration (indeed, our method also works with omnidirectional camera [START_REF] Bazeille | Incremental topo-metric slam using vision and robot odometry[END_REF]), and above all without any assumption on the environment. Such calibration free methods had been developed by [START_REF] Chen | Qualitative vision-based mobile robot navigation[END_REF], [START_REF]Qualitative vision-based path following[END_REF]. They are based on image features tracking, and use qualitative comparisons of images to control the motion. Such methods are very interesting but they require real-time image processing at high frame rate and are highly dependent of the quality of image data. Tracking errors or temporary absence of information lead quickly to system failure. Moreover, they need lighting constancy so additional processing are generally added to ensure the desired behavior. To make our system more robust and accurate, and above all lighter from a computational point of view, we enable the use of one more cheap sensor: the odometer. Visual sensor provides a rich information and an accurate positioning system and the combined use of odometry makes the algorithm more robust and relieve the visual system from high frame rate computation. Odometry allows localization for a short time in absence of visual information, vision failure (dark or dazzle areas, blurry image, occlusions), or important changes in the scene that has been learned (light, people). When embedded on small platforms, this makes it possible to remotely process images by guiding the robot in case of network lag. As we are not too much dependent of visual information, it is also possible to use visual localization information only when it is very reliable, avoiding to give position information that would be unsure. We therefore developed a robust visual localization system that completely banned false alarms, to the price of giving less localization information.

III. IMPROVED TOPO-METRIC MAPPING

For the next, we will call loop-closure the event where the robot detect a matching between the current and the reference frame. It differs from the traditional loop-closure definition in which we associate the loop-closure to the event where the robot revisit an area it has not been to before a while.

A. Summary of our previous work

In [START_REF] Bazeille | Incremental topo-metric slam using vision and robot odometry[END_REF], we have developed a fully incremental topo-metric mapping framework. This algorithm builds in real-time topometric maps of an unknown environment, with a monocular or omnidirectional camera and the odometry gathered by motors encoders (see Fig. 1). The system is based on an appearance loop-closure detection method that has been designed as a two-level decision system to ensure robust and accurate detection. A first step detects potential loop-closure locations when the robot comes back to a previously visited area using appearance only. A second one verifies and selects the best potential location using image geometry. A Bayesian filter based on incremental bags of visual words [START_REF] Filliat | A visual bag of words method for interactive qualitative localization and mapping[END_REF] is used to extract potential loop-closure locations that is to say find the previous positions that are potentially close to the current one. In the second step these locations are verified with a 2D motion computation in the image space (translation and rotation in image plane) based on the SIFT [START_REF] Lowe | Distinctive image feature from scale-invariant keypoint[END_REF] keypoints and we select the loop-closure which shows the smallest translation. In order to discard outliers, the 2D motion is computed using RANSAC, accepting the result only if the number of matching points is above a threshold.

With the inclusion of an odometry-based evolution model in the Bayesian filter which improves accuracy, robustness and responsiveness, and the addition of a consistent metric position estimation applying an efficient optimization algorithm at each validated loop-closure [START_REF] Grisetti | A tree parameterization for efficiently computing maximum likelihood maps using gradient descent[END_REF], our system produces a map that corresponds to the real world and only presented limited local drift. It makes it usable for global localization and planned navigation. For the current work, the robot is teleoperated during an initial mapping phase and our algorithm is used to build a map usable later for navigation. The environment is divided into locations (defined by one or more images) that are linked by relative odometry vector. The sampling of the environment is done each time the robot goes ahead for 50 cm or turn of 10 degrees. This mapping phase does not need any preprocessing, calibration, neither postprocessing or parameters adjustment and it builds incrementally its map, adding new location if no loop-closure has been found or updating a location and correcting the graph if a loop-closure has been found (see Fig. 1).

B. Optimization of the loop-closure detection algorithm

Since we will use this framework for real-time pathfollowing navigation, we brought some optimizations to the approach, notably to improve the performances of the visual localization module:

• We have improved the performances of the algorithm by replacing SIFT [START_REF] Lowe | Distinctive image feature from scale-invariant keypoint[END_REF] keypoints by STAR [START_REF] Agrawal | Censure: Center surround extremas for realtime feature detection and matching[END_REF] keypoints. It has greatly divided the keypoints extraction time (more than 20 times), but it has decreased the number of keypoints and their quality. We have compensated this quality loss by using a new validation strategy less restrictive on the number of extracted keypoints.

• We improved the accuracy of the prediction step of the Bayesian filter which is used to extract potential loop-closure locations. Our first version was only using the probability at the previous time-step to predict the new one. In the new version, the Bayesian filter takes into account several previous time steps and the evolution model is applied to the odometry displacements corresponding to these time-steps. The predictions are lastly merged using the max operator to give the final prediction. This step reduces the influence of the map discretization on the quality of the prediction and makes more accurate the extracted potential locations.

• We simplified the validation stage by modifying the geometric model of image transform and by thresholding using all the parameters extracted from 2D motion computation in the image space (translation, rotation and scale). The computation of an homography using four couples of matching points through RANSAC [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF] has been replaced by a simpler computation of a 2D motion using two couples of points through RANSAC.

Homography was already a simplified version of the real transform but as we work on images with very close viewpoint when closing loops, it could be again simplified to speed up the computation. • A dedicated embedded version of the algorithm for a use directly on the robot has been developed. The code has been fully rewritten in C++ suppressing many dependencies, the logging part and obsolete functionalities added during the development. The incremental dictionary has been replaced by a generic static one generated from various indoor data set [START_REF] Nister | Scalable recognition with a vocabulary tree[END_REF] to increase processing speed.

• A new navigation mode (described in the next section) has been created to perform path following navigation using the loop-closure detection framework. Compared to the mapping mode, the incremental part of the system that adds new words in the dictionary, new locations in the graph and that relaxes the topo-metrical map is disabled. It therefore enables qualitative visual localization in the topo-metric map.

It is important to note that, during mapping, loop-closure are only accepted and integrated in the map if the robot comes back very close to a previously visited location. A loop-closure is therefore accepted only if the two images show enough matching points, and if the computed rotation, translation and scale between them are below some threshold [START_REF] Bazeille | Incremental topo-metric slam using vision and robot odometry[END_REF]. We will see below that this definition has been relaxed for the navigation mode by disabling the translation threshold. Table I presents some computation time and loop-closure comparison results using the old and the optimized version of the algorithm. The old LCDS includes the first version of our algorithm to which we add the odometry and the relaxation. It uses SIFT feature, the old odometry model, and the homography-based validation system. The new LCDS includes the fully optimized code version, the modified odometry model, the simplified validation system and the use of STAR feature. The machine used for experimentation was an Intel Xeon 3Ghz, the images size 320x240, and the average speed of the robot 0.4m/s. See [START_REF] Bazeille | Combining odometry and visual loopclosure detection for consistent topo-metrical mapping[END_REF] for a description of the different sequences and for more information about the old LCDS.

C. Software overview

The system has been developed using Urbi [1] an opensource software platform to control robots. It includes a C++ component library called Uobject to describe motors, sensors and algorithms. We also use urbiscript to glue the components together using embedded parallel and eventdriven semantics. Figure 2 presents the whole description of the architecture of our mapping, localization and path following system. It is composed of five different components including a viewer to supervise robot behavior. Two components have been tested remotely in particular our visual SLAM algorithm.

IV. QUALITATIVE NAVIGATION SYSTEM

The newly developed navigation mode is based on a qualitative position estimate that combines odometry with the visual information provided by loop-closure detection.

A. The navigation mode

The navigation mode of the algorithm presented in this paper requires a topo-metrical map, and the knowledge of the robot starting position in the map. A path to reach a goal from the starting position is computed as a list of nodes using Dijkstra algorithm [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF], taking into account the orientation of the robot in each node. In order to follow the computed path, the robot position is continuously computed using odometry and visual loopclosure detections. In this mode, loop-closure detection is less restrictive than in the mapping mode, as loop-closure are accepted whatever the translation between images is. This translation is used to estimate an approximate position which is used to guide the robot. This use of a less restrictive loopclosure validation makes it possible to benefit from much more position correction than in the mapping mode, even if these corrections are less accurate. This limited precision is however not a problem as only localization is performed and the map quality is therefore not impacted. This navigation mode requires that the trajectory is obstacle free because obstacle avoidance is not currently included in our model.

B. Qualitative localization using vision and odometry

The visual loop-closure detection framework verifies at each recorded image if the robot is in an already visited location or not. When a loop-closure is detected, the simple matching between images does not permit to estimate precisely the robot position relatively to the image in the map as the scale factor is unknown when computing the camera displacement. Moreover, for small displacement and particular environment configuration, there is an ambiguity because a lateral translation in images can be caused either by a robot translation or by a rotation. For these reasons, we prefer to estimate a qualitative position, by assuming that the image movement is caused only by a rotation of the robot. Therefore, when a loop-closure is detected the parameters extracted during the validation of potentials loop-closure locations are used to estimate a qualitative direction. Among the three parameters (translation, rotation and scale), we only use the x-axis translation in pixels between the two matching images to compute the angle between the current robot direction and the direction recorded in the map. An rough camera calibration (only based on image size and camera vision field) make it possible to convert this translation in pixels into an angle (Figure 3). The position of the robot is therefore computed as the position of the loop-closure node but taking into account the deviation in direction.

If no loop-closure is detected between places corresponding to an image acquisitions, the position is computed as the previous loop-closure location position to which the relative odometry recorded since this point in time is added. This makes it possible to produce a continuous position estimate which is corrected when a loop-closure is detected.

C. Servoing system for path following

To control robot motion we have used the strategy proposed by [START_REF] Egerstedt | Control of mobile platforms using a virtual vehicle approach[END_REF]. In order to reach a goal in the topo-metric map, we first compute a sequence of nodes using Dijkstra algorithm. The path linking this sequence of nodes is then discretized each centimeter to form the global path that Left: Example of vision-based path following replaying the trajectory used for mapping. The green and pink trajectories are the laser SLAM trajectory recorded during the mapping phase and the autonomous replay phase respectively (approx path length 30m). The blue trajectory is the odometry recorded by the robot during the replay phase. Right: Topometric map of the environment created during the same experiment. Green and pink circles are the nodes of the topological map, displayed here without map relaxation as we have not close loops during the learning phase. The pink circles are the loop-closure places detected during the replay phase. The length of line in the middle of the pink circles is proportional to the x-axis translation computed from the matching images. should be followed to reach the goal. This global path is only computed one time. When an image is acquired, the position is updated using visual information, and a local path to join or to follow the desired trajectory is computed between the position and the global path. The local path is a line between the position and a point of the global path situated at 40 cm in front of the robot to which we add the global path after this point. Given the local path, each time the robot moves, the position is estimated as described above and the first point in the local path situated at more than 20 cm of the robot is selected as a target. A heading direction error between this point and the robot position is computed and used to estimate the rotation speed by using a PID controller. As the robot translation speed is set to a constant, the servoing system adjusts the velocity of each wheel to correct the heading error and to follow at best the local path (see Fig. 5). While this guidance strategy is quite standard, it should be noted that the interplay between this strategy and the qualitative localization method has the effect of guiding the robot to actively close loops during movement. Indeed, without the qualitative localization, the robot would be guided by the odometry only and the drift induced would lead the robot far from the map nodes, thus preventing from visual loop closure detection. With this strategy, each time the robot deviate from the predicted path, the qualitative position correction lead to a local path that guides the robot back on the global path, thus enforcing future loop-closure and position correction.

V. RESULTS AND DISCUSSION

To validate our method, experimentation have been done in an indoor environment using a Pioneer P3DX mobile robot mounted with a Canon VC-C50i camera with a wide angle lens. During the showed experiment all the code was embedded on the robot except the viewing system. The image processing rate was 1 image each 50 cm or 10 degrees. To give an accurate idea of what the system is able to do, we have launched in parallel with our mapping and path following system the laser SLAM positioning system Karto [2]. It gives a reference trajectory in a laser map during the learning and the path following phases. Figure 4 (left) shows an experiment where the trajectory used for mapping (in green) has been replayed using our system (trajectory in pink). The odometry recorded during the path following run (in blue) shows the drift that has been compensated by the visual localization system and that would have led inescapably to wall collision without these compensations. Figure 4 (right) illustrates the effect of our qualitative localization approach during the same experiment. The pink circles correspond to the locations where loop-closures have been detected during path following. The pink line in the circle is the translation computed between the loop-closing images that is used for the qualitative position estimation. We can see that our guidance framework lead to a high loopclosure detection rate (around 60% here) and that the path following behavior is very smooth with sometimes 5 images without direction correction. Figure 6 shows another experiment illustrating the purpose of Dijkstra algorithm. The replayed trajectory (in pink) to go from the first node to the last node of the map is avoiding the large loop executed during map construction as a shortcut is available. This experiment also illustrate that it is possible to map and localize with different image sampling frequency. Here, the map has been produced with images sampled every 5 cm, thus leading to a very precise map. Guidance has then been executed with images recorded every 40 cm that is to say lighter computations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of navigation in topo-metric maps by using visual loop-closure detection. The presented algorithm uses the vision system and the odometric data for qualitative localization in the topo-metric map in order to guide the robot to follow a path already taken during a learning phase. The qualitative visual localization is computed and sent to a servoing system that compensates the odometry drift to ensure we are always on the learned trajectory. This system can be seen as an active loopclosure detection framework as we are forcing by controlled guidance to close loops. The system only needs two sensors and really few computer resources to achieve the navigation task. It is real-time and does not need any precise camera calibration or parameters adjustment. With minor adaptations, it can use any kind of camera (omnidirectional, wide angle or directional) and is suitable for toy robots as it just needs cheap sensors and small computation performances. As odometry is used to complement the visual information, the system is robust to lighting change, furniture moved, people crossing, blurry image or even from temporary sensor occlusion or lag of the vision system response. From this point of view, it can also be used as a remote process to lighten again the on-board computer charge. Future work will deal with localization after kidnapping by applying the loop-closure detection framework while the robot is spinning around. This will be used to retrieve the direction to follow a path after a kidnapping. We will also add to our system sonar data to obtain a map giving an information about the occupancy of the free space around us. This will allow navigation with obstacle detection and avoidance and also autonomous exploration.

Fig. 1 .

 1 Fig. 1. Comparison of topo-metrical mapping and laser mapping. 1. Raw odometry 2. Corrected odometry applying graph relaxation taking into account the visual loop-closure (two loop-closure locations detected) 3. Ground truth trajectory (SLAM Laser). The three trajectories are shown in the frame of the reference laser map.

Fig. 2 .

 2 Fig. 2. Diagram of the developed system. Each box represents an uobject.

Fig. 3 .

 3 Fig. 3. Illustration of the qualitative visual localization. A loop-closure is detected between image 9 (right) and image 45 (left) with 33 pixels of x-axis translation. The computed corresponding angle of robot rotation is 4.73 degrees.

Fig. 4 .

 4 Fig. 4.

Fig. 5 .

 5 Fig. 5. Left: The robot follows the local path but deviates from the true trajectory because of the odometry drift. Middle : The visual loop-closure detection framework gives a qualitative localization of the robot in the graph taking into account the deviation in direction. As a consequence, in the real world, the local path is modified and the robot corrects its trajectory in order to stay on the desired path. Right : The robot follows the local path and regain the true trajectory.

Fig. 6 .

 6 Fig.6. Another example of the path following system illustrating the use of Dijkstra algorithm to replay a short-cut trajectory and the use of different sampling frequencies for mapping and navigation.

TABLE I COMPARED

 I RESULTS OF OUR VISUAL LOOP-CLOSURE DETECTION SYSTEM (LCDS) BEFORE AND AFTER OPTIMIZATION.

		Museum	Gostai	Lab (Fig. 1)
	Images	112	169	350
	Distance (m)	38	82	98
	LCD Truth	14	25	9
	Old LCDS [5]	13	18	7
	Missed LC	7 %	12 %	20 %
	False LC	0 %	5 %	0 %
	CPU Time	42s	70s	210s
	CPU Time/image	0.37s	0.41s	0.5s
	New LCDS	13	26	8
	Missed LC	7 %	0 %	22 %
	False LC	0 %	3.84 %	11 %
	CPU Time	2.16s	2.57s	5.56s
	CPU Time/image	0.019s	0.015s	0.016s