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Abstract: 

The emergence of new technologies enables generating large quantity of digital 
information including images; this leads to an increasing number of generated 
digital images. Therefore it appears a necessity for automatic systems for image 
retrieval. These systems consist of techniques used for query specification and re-
trieval of images from an image collection. The most frequent and the most com-
mon means for image retrieval is the indexing using textual keywords. But for 
some special application domains and face to the huge quantity of images, key-
words are no more sufficient or unpractical. Moreover, images are rich in content; 
so in order to overcome these mentioned difficulties, some approaches are pro-
posed based on visual features derived directly from the content of the image: 
these are the content-based image retrieval (CBIR) approaches. They allow users 
to search the desired image by specifying image queries: a query can be an exam-
ple, a sketch or visual features (e.g., colour, texture and shape). Once the features 
have been defined and extracted, the retrieval becomes a task of measuring simi-
larity between image features. An important property of these features is to be in-
variant under various deformations that the observed image could undergo. 

In this chapter, we will present a number of existing methods for CBIR applica-
tions. We will also describe some measures that are usually used for similarity 
measurement. At the end, and as an application example, we present a specific ap-
proach, that we are developing, to illustrate the topic by providing experimental 
results. 

1 Introduction 

Pattern recognition is the ultimate goal of most computer vision research. Shape 
feature extraction and representation are the bases of object recognition. It is also a 
research domain which plays an important role in many applications ranging from 
image analysis and pattern recognition, to computer graphics and computer anima-
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tion. The feature extraction stage produces a representation of the content that is 
useful for shape matching. Usually the shape representation is kept as compact as 
possible for the purposes of efficient storage and retrieval and it integrates percep-
tual features that allow the human brain to discriminate between shapes. Efficient 
shape features must present some essential properties such as:  

• identifiability: shapes which are found perceptually similar by human have 
the same features but different from the others, 

• translation, rotation and scale invariance: the location, rotation and scal-
ing changing of the shape must not affect the extracted features, 

• affine invariance: the affine transform performs a linear mapping from 2D 
coordinates to other 2D coordinates that preserves the "straightness" and 
"parallelism" of lines. Affine transform can be constructed using sequences 
of translations, scales, flips, rotations and shears. The extracted features must 
be as invariant as possible with affine transforms. 

• noise resistance: features must be as robust as possible against noise, i.e. 
they must be the same, in a given range, whichever be the strength of the 
noise that affects the pattern, 

• occultation resistance: when some parts of a shape are occulted by other ob-
jects, the feature of the remaining part must not change, in a given range, 
compared to the original shape, 

• statistical independence: two features must be statistically independent. 
This represents compactness of the representation, 

• reliability: as long as one deals with the same pattern, the extracted features 
must remain the same. 

In general, shape descriptor is some set of numbers that are produced to describe a 
given shape feature. A descriptor attempts to quantify shape in ways that agree 
with human intuition (or task-specific requirements). Good retrieval accuracy re-
quires a shape descriptor to be able to effectively find perceptually similar shapes 
from a database. Usually, the descriptors are gathered under the form of a vector. 
Shape descriptors should meet the following requirements:  

• completeness: the descriptors should be as complete as possible to represent 
the content of the information items, 

• compactness: the descriptors should be represented and stored compactly. 
The size of descriptor vector must not be too large, 

• simplicity: the computation of distance between descriptors should be sim-
ple; otherwise the execution time would be too long, 

• accessibility: it describes how easy (or difficult) it is to compute a shape de-
scriptor in terms of memory requirements and computation time, 

• large scope: it indicates the extent of the class of shapes that can be de-
scribed by the method, 

• uniqueness: it indicates whether a one-to-one mapping exists between 
shapes and shape descriptors, 

• stability: this describes how stable a shape descriptor is to “small” changes 
in shape. 
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Shape feature extraction and representation plays an important role in the follow-
ing categories of applications:  

• shape retrieval: searching for all shapes in a typically large database of 
shapes that are similar to a query shape. Usually all shapes within a given 
distance from the query are determined or at least the first few shapes that 
have the smallest distance. 

• shape recognition and classification: determining whether a given shape 
matches a model sufficiently, or which one of representative class is the most 
similar, 

• shape alignment and registration: transforming or translating one shape so 
that it best matches another shape, in whole or in part, 

• shape approximation and simplification: constructing a shape from fewer 
elements (points, segments, triangles, etc.), that is still similar to the original. 

To this end, many shape description and similarity measurement techniques have 
been developed in the past. A number of new techniques have been proposed in 
recent years, leading to three main classification methods c: 

• contour-based methods and region-based methods: this is the most com-
mon and general classification and it is proposed by MPEG-7 which is a 
multimedia content description standard. It is based on the use of shape 
boundary points as opposed to shape interior points. Under each class, differ-
ent methods are further divided into structural approaches and global ap-
proaches. This sub-class is based on whether the shape is represented as a 
whole or represented by segments/sections (primitives). 

• space domain and feature domain: methods in space domain match shapes 
on point (or point feature) basis, while feature domain techniques match 
shapes on feature (vector) basis. 

• information preserving (IP) and non-information preserving (NIP): IP 
methods allow an accurate reconstruction of a shape from its descriptor, 
while NIP methods are only capable of partial ambiguous reconstruction. For 
object recognition purpose, IP is not a requirement.  

Various algorithms and methods are documented in a vast literature. In this chap-
ter, for sake of application conveniences, we reclassify them according to the 
processing methods i.e. the way the data of the shape are mathematically mod-
elled and processed. The whole hierarchy of the classification is shown in figure 
10.1. 

Without being complete, we will describe and group a number of these methods 
together. So this chapter is organized as follows: section 2 presents 1D functions 
used in shape description. Section 3 presents some approaches for polygonal ap-
proximation of contours. Section 4 is dedicated to spatial interrelation features and 
section 5 presents shape moments. Sections 6 and 7 are, respectively, dedicated to 
scale space features and transform domain feature. Section 8 presents a summary 
table showing the properties of the methods. In order to illustrate this study, a 
practical example, based on a new shape descriptor, is presented in section 9. 
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Figure 10.1: An overview of shape description techniques 

2 One-dimensional function for shape representation  

The one-dimensional function which is derived from shape boundary coordinates 
is also often called shape signature [22, 53]. The shape signature usually captures 
the perceptual feature of the shape [48]. Complex coordinates, centroid distance 
function, tangent angle (turning angles), curvature function, area function, trian-
gle-area representation and chord length function are the commonly used shape 
signatures.  

Shape signature can describe a shape all alone; it is also often used as a pre-
processing to other feature extraction algorithms, for example, Fourier descriptors, 
wavelet description. In this section, the shape signatures are introduced. 

2.1 Complex coordinates 
A complex coordinates function is simply the complex number generated from the 
coordinates of boundary points, Pn(x(n),y(n)), n∈[1,N]: 

 
])([])([)( yx gnyignxnz −+−=

 (10.1) 

where (gx, gy) is the centroid of the shape. 



5 

2.2 Centroid distance function 
The centroid distance function r(n) is expressed by the distance of the boundary 
points from the centroid (gx, gy) of a shape, so that 

 
22 ))(())(()( yx gnygnxnr −+−=

 (10.2) 

Due to the subtraction of centroid, which represents the position of the shape, 
from boundary coordinates, both complex coordinates and centroid distance repre-
sentation are invariant to translation. 

2.3 Tangent angle 
The tangent angle function at a point ))();(( nynxPn

 is defined by a tangential direc-
tion of a contour [54]: 
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 (10.3)
 

where ω represents a small window to calculate θ(n) more accurately, since every 
contour is a digital curve . 

Tangent angle function has two problems. One is noise sensitivity. To decrease the 
effect of noise, the contour is filtered by a low-pass filter with appropriate band-
width before calculating the tangent angle function. The other is discontinuity, due 
to the fact that the tangent angle function assumes values in a range of length 2π, 
usually in the interval of [−π,π] or [0,2π]. Therefore θn in general contains discon-
tinuities of size 2π. To overcome the discontinuity problem, with an arbitrary 
starting point, the cumulative angular function ϕn is defined as the angle differ-
ences between the tangent at any point Pn along the curve and the tangent at the 
starting point P0 [30, 50]: 

 ϕ(n)=[θ(n)−θ(0)] (10.4) 

In order to be in accordance with human intuition that a circle is “shapeless”, as-
sume t=2πn/N, then ϕ(n)=ϕ(tN/2π). A periodic function is termed as the cumula-
tive angular deviant function ψ(t) and is defined as 

 [ ]π
π

2,0,)
2

()( ∈−= tttNjty
 (10.5)

 

where N is the total number of contour points. 

In [25], the authors proposed a method based on tangent angle. It is called tangent 
space representation. A digital curve C simplified by polygon evolution is repre-
sented in the tangent space by the graph of a step function, where the x-axis repre-
sents the arc length coordinates of points in C and the y-axis represents the direc-
tion of the line segments in the decomposition of C. For example, figure 10.2 
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shows a digital curve and its step function representation in the tangent space. 

 
Figure 10.2: Digital curve and its step function representation in the tangent space 

2.4 Contour curvature 
Curvature is a very important boundary feature for human being to judge similar-
ity between shapes. It also has salient perceptual characteristics and has proven to 
be very useful for shape recognition [47]. In order to use K(n) for shape represen-
tation, we quote the curvature function, K(n), from [19, 32] as:  

 
2/322 ))()((

)()()()()(
nynx

nxnynynxnK
&&

&&&&&&

−
−

=  (10.6) 

where x& (or y& ) and x&&  (or y&& ) are, respectively, the first and second order deriva-
tives of x (or y).

.
Therefore, it is possible to compute the curvature of a planar 

curve from its parametric representation. If n is the normalized arc-length parame-
ter s, then equation (10.6) can be written as: 
 )()()()()( sxsysysxsK &&&&&& −=  (10.7) 

As given in equation (10.7), the curvature function is computed only from para-
metric derivatives, and, therefore, it is invariant under rotations and translations. 
However, the curvature measure is scale dependent, i.e., inversely proportional to 
the scale. A possible way to achieve scale independence is to normalize this meas-
ure by the mean absolute curvature, i.e., 

 ∑ =

= N

sN sK
sKsK

1
1 )(

)()('
 (10.8) 

where N is the number of points on the normalized contour. 

When the size of the curve is an important discriminative feature, the curvature 
should be used without the normalization; otherwise, for the purpose of scale-
invariant shape analysis, the normalization should be performed by the following 
algorithm. 

Let ∑
=

=
N

1n

ndP be the perimeter of the curve and ∑
=

=
N

1n

ndL , where dn is the 

length of the chord between points pn and pn+1, n=1, 2, …, N-1. An approximate 
arc-length parameterization based on the centripetal method is given by the fol-
lowing [19]: 
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with s1=0. Starting from an arbitrary point and following the contour clockwise, 
we compute the curvature at each interpolated point using equation (10.7). Figure 
10.3 is an example of curvature function. Clearly, as a descriptor, the curvature 
function can distinguish different shapes.  

 
Figure 10.3: Curvature function 

Convex and concave vertices will imply negative and positive values, respectively 
(the opposite is verified for counter clockwise sense).  

2.5 Area function 
When the boundary points change along the shape boundary, the area of the trian-
gle formed by two successive boundary points and the centre of gravity also 
changes. This forms an area function which can be exploited as shape representa-
tion. Figure 10.4 shows an example where S(n) is the area between the successive 
boundary points Pn, Pn+1 and centre of gravity G. 

 

(a) Original contour; (b) the area function of (a). 

 
Figure 10.4: Area function 

The area function is linear under affine transform. However, this linearity only 
works for shape sampled at its same vertices.  
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2.6 Triangle-area representation 
The triangle-area representation (TAR) signature is computed from the area of the 
triangles formed by the points on the shape boundary [2, 3]. The curvature of the 
contour point (xn,yn) is measured using the TAR function defined as follows: 

For each three consecutive points ),(
sss tntntn yxP −−−

, ),( nnn yxP , and 

),(
sss tntntn yxP +++

, where [ ]Nn ,1∈  and [ ]12/,1 −∈ Nts , N is even the signed area 

of the triangle formed by these points is given by: 
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=  (10.10) 

when the contour is traversed in counter clockwise direction, positive, negative 
and zero values of TAR mean convex, concave and straight-line points, respec-
tively. Figure 10.5 shows these three types of the triangle areas and the complete 
TAR signature for the hammer shape.  

 

 
Figure 10.5: Three different types of the triangle-area values and the TAR signature for the 

hammer shape 

By increasing the length of the triangle sides, i.e., considering farther points, the 
equation 10.10 will represent longer variations along the contour. The TARs with 
different triangle sides can be regarded as different scale space functions. The total 
TARs, [ ]12/,1 −∈ Nts , compose a multi-scale space TAR. In [3], authors show 
that the multi-scale space TAR is relatively invariant to the affine transform and 
robust to non-rigid transform. 

2.7 Chord length function 
The chord length function is derived from shape boundary without using any ref-
erence point. For each boundary point p, its chord length function is the shortest 
distance between p and another boundary point p’ such that line pp’ is perpendicu-
lar to the tangent vector at p [53]. 

The chord length function is invariant to translation and it overcomes the biased 
reference point (which means the centroid is often biased by boundary noise or de-
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fections) problems. However, it is very sensitive to noise, there may be drastic 
burst in the signature of even smoothed shape boundary. 

2.8 Discussions 
A shape signature represents a shape by a 1-D function derived from shape con-
tour. To obtain the translation invariant property, they are usually defined by rela-
tive values. To obtain the scale invariant property, normalization is necessary. In 
order to compensate for orientation changes, shift matching is needed to find the 
best matching between two shapes. Having regard to occultation, Tangent angle, 
Contour curvature and Triangle-area representation have invariance property. In 
addition, shape signatures are computationally simple.  

Shape signatures are sensitive to noise, and slight changes in the boundary can 
cause large errors in matching. Therefore, it is undesirable to directly describe 
shape using a shape signature. Further processing is necessary to increase its ro-
bustness and reduce the matching load. For example, a shape signature can be 
simplified by quantizing the signature into a signature histogram, which is rota-
tionally invariant. 

3 Polygonal approximation 

Polygonal approximation can be set to ignore the minor variations along the edge, 
and instead capture the overall shape. This is useful because it reduces the effects 
of discrete pixelization of the contour. In general, there are two methods to realize 
it. One is merging, the other is splitting [18].  

3.1 Merging methods 
Merging methods add successive pixels to a line segment if each new pixel that is 
added does not cause the segment to deviate too much from a straight line.  

3.1.1 Distance threshold method 

Choose one point as a starting point, on the contour. For each new point that we 
add, let a line go from the starting point to this new point. Then, we compute the 
squared error for every point along the segment/line. If the error exceeds some 
threshold, we keep the line from the start point to the previous point and start a 
new line. In practice, the most of practical error measures in use are based on dis-
tance between vertices of the input curve and the approximated linear segment 
[62]. The distance ),( jidk  from curve vertex ),( kkk yxP  to the corresponding ap-
proximated linear segment defined by ),( iii yxP  and ),( jjj yxP  is as follows (and il-

lustrated in figure 10.6):  
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Figure 10.6: Illustration of the distance from a point on the boundary to a linear segment 

3.1.2 Tunnelling method 

If we have thick boundaries rather than single-pixel thick ones, we can still use a 
similar approach called tunnelling. Imagine that we are trying to lay straight rods 
along a curved tunnel, and that we want to use as few as possible. We can start at 
one point and lay a straight rod as long as possible. Eventually, the curvature of 
the “tunnel” won’t let us go any further, so we lay one rod after another until we 
reach the end. 

Both the distance threshold and tunnelling methods efficiently can do polygonal 
approximation. However, the great disadvantage is that the position of starting 
point will affect greatly the approximate polygon. 

3.1.3 Polygon evolution 

The basic idea of polygons evolution presented in [26] is very simple: in every 
evolution step, a pair of consecutive line segments (the line segment is the line be-
tween two consecutive vertices) s1 and s2 is substituted with a single line segment 
joining the endpoints of s1 and s2. The key property of this evolution is the order 
of the substitution. The substitution is done according to a relevance measure K 
given by 

 )()(
)()(),(),(

21

2121
21 slsl

slslssssK
+

=
β

 (10.12) 

where ),( 21 ssβ  is the turn angle at the common vertex of segments 21, ss  and 
l(α) is the length of α, α=s1 or s2, normalized with respect to the total length of a 
polygonal curve. The evolution algorithm assumes that vertices which are sur-
rounded by segments with high values of ),( 21 ssK  are more important than those 
with a low values (see figure 10.7 for illustration). 

 
Figure 10.7: A few stages of polygon evolution according to a relevant measure 
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The curve evolution method achieves the task of shape simplification, i.e., the 
process of evolution compares the significance of vertices of the contour based on 
a relevance measure. Since any digital curve can be seen as a polygon without loss 
of information (with possibly a large number of vertices), it is sufficient to study 
evolutions of polygonal shapes for shape feature extraction.  

3.2 Splitting methods 
Splitting methods work by first drawing a line from one point on the boundary to 
another. Then, we compute the perpendicular distance from each point along the 
boundary segment to the line. If this exceeds some threshold, we break the line at 
the point of greatest distance. We then repeat the process recursively for each of 
the two new lines until we don’t need to break any more. See figure 10.8 for an 
example.  

 

 
Figure 10.8: Splitting methods for polygonal approximation 

This is sometimes known as the “fit and split” algorithm. For a closed contour, we 
can find the two points that lie farthest apart and fit two lines between them, one 
for one side and one for the other. Then, we can apply the recursive splitting pro-
cedure to each side.  

3.3 Discussions  
Polygonal approximation technique can be used as a simple method for contour 
representation and description. The polygon approximation has some interesting 
properties:  

• it leads to simplification of shape complexity with no blurring effects, 
• it leads to noise elimination, 
• although irrelevant features vanish after polygonal approximation, there is no 

dislocation of relevant features, 
• the remaining vertices on a contour do not change their positions after po-

lygonal approximation. 

Polygonal approximation technique can also be used as pre-processing method for 
further features extracting methods from a shape. 
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4 Spatial interrelation feature 

Spatial interrelation feature describes the region or the contour of shapes by ob-
serving and featuring the relations between their pixels or curves. In general, the 
representation is done by observing their geometric features: length, curvature, 
relative orientation and location, area, distance and so on.  

4.1 Adaptive grid resolution 
The adaptive grid resolution (AGR) scheme was proposed by [11]. In the AGR, a 
square grid that is just big enough to cover the entire shape is overlaid on it. A 
resolution of the grid cells varies from one portion to another according to the con-
tent of the portion of the shape. On the borders or the detail portion on the shape, 
the highest resolution, i.e. the smallest grid cells, are applied; on the other hand, in 
the coarse regions of the shape, lower resolution, i.e. the biggest grid cells, are ap-
plied.  

To guarantee rotation invariance, it needs to reorient the shape into a unique 
common orientation. First, one has to find the major axis of the shape. The major 
axis defined as is the straight line segment joining the two points on the boundary 
farthest away from each other. Then rotate the shape so that its major axis is paral-
lel to the x-axis.  

One method to compute the AGR representation of a shape relies on a quad-tree 
decomposition on the bitmap representation of the shape [11]. The decomposition 
is based on successive subdivision of the bitmap into four equal-sized quadrants. 
If a bitmap-quadrant does not consist entirely of part of shape, it is recursively 
subdivided into smaller quadrants until we reach bitmap-quadrants, i.e., termina-
tion condition of the recursion is that the resolution reaches that one predefined: 
figure 10.9(a) shows an example of AGR. 

 

(a) Adaptive Grid Resolution (AGR) image; (b) quad-tree decomposition of AGR. 
 

Figure 10.9: Adaptive resolution representations 

Each node in the quad-tree covers a square region of the bitmap. The level of the 
node in the quad-tree determines the size of the square. The internal nodes (shown 
by grey circles) represent “partially covered” regions; the leaf nodes shown by 



13 

white boxes represent regions with all 0s while the leaf nodes shown by black 
boxes represent regions with all 1s. The “all 1s” regions are used to represent the 
shape as shown on figure 10.9(b). Each rectangle can be described by 3 numbers: 
its centre coordinates ),( yx CCC =  and its size (i.e. side length) S. So each shape can 

be mapped to a point in 3n-dimensional space, where n is the number of the rec-
tangles occupied by the shape region. Due to prior normalization, AGR represen-
tation is invariant under rotation, scaling and translation. It is also computationally 
simple. 

4.2 Bounding box 
Bounding box computes homeomorphisms between 2D lattices and its shapes. 
Unlike many other methods, this mapping is not restricted to simply connected 
shapes but applies to arbitrary topologies [7]. 

The minimum bounding rectangle or bounding box of S is denoted by B(S); its 
width and height, are called w and h, respectively. An illustration of this procedure 
and its result is shown in figure 10.10. 

 

(a) Compute the bounding box B(S) of a pixel set S; (b) subdivide S into n vertical slices;
(c) compute the bounding box B(Sj) of each resulting pixel set Sj , where j=1, 2,…, n; 
(d) subdivide each B(Sj) into m horizontal slices; (e) compute the bounding box B(Sij) of 
each resulting pixel set Sij , where i = 1, 2,…, m.  

Figure 10.10: The five steps of bounding box splitting 

Figure 10.11 shows the algorithm flowchart based on bounding box that divides a 
shape S into m (row)×n (column) parts. The output B is a set of bounding boxes. 

If T
yx ),( ννν =  denotes the location of the bottom left corner of the initial bound-

ing box of S, and Tij
y
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provide a scale invariant representation of S. Sampling k points of an m×n lattice 
therefore allows to represent S as a vector 

 ],,...,,[ )()()()()1()1()1()1( kjki
y

kjki
x

ji
y

ji
xr μμμμ=  (10.14) 

where i(α)<i(β) if α<β and likewise for the index j. 
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Figure 10.11: Flowchart of shape divided by bounding box 

To represent each bounding box, one method consists of sampling partial points of 
the set of bounding boxes (see figure 10.12).  

 

Figure 10.12: A sample points on lattice and examples of how it is mapped onto different shapes 

Bounding box representation is a simple computational geometry approach to 
compute homeomorphisms between shapes and lattices. It is storage and time effi-
cient. It is invariant to rotation, scaling and translation and also robust against 
noisy shape boundaries.  
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4.3 Convex hull  
The approach is based on the fact that the shape is represented by a serie of con-
vex hulls. The convex hull H of a region consists of its smallest convex region in-
cluding it. In other words, for a region S, the convex hull conv(S) is defined as the 
smallest convex set in R2 containing S. In order to decrease the effect of noise, 
common practice is to first smooth a boundary prior to partitioning it. 

The representation of the shape may then be obtained by a recursive process 
which results in a concavity tree (see figure 10.13). Each concavity can be de-
scribed by its area, chord (the line connects the cut of the concavity) length, 
maximum curvature, distance from maximum curvature point to the chord. The 
matching between shapes becomes a string or a graph matching.  

 

(a) Convex hull and its concavities; (b) concavity tree representation of convex hull. 
 

Figure 10.13: Illustration of recursive process of convex hull 

Convex hull representation has a high storage efficiency. It is invariant to rotation, 
scaling and translation and also robust against noisy shape boundaries (after filter-
ing). However, extracting the robust convex hulls from the shape is where the 
shoe pinches. [14, 16] and [41] gave the boundary tracing method and morpho-
logical methods to achieve convex hulls respectively. 

4.4 Chain code 
Chain code is a common approach for representing different rasterized shapes as 
line-drawings, planar curves, or contours. Chain code describes an object by a se-
quence of unit-size line segments with a given orientation [51]. Chain code can be 
viewed as a connected sequence of straight-line segments with specified lengths 
and directions [28]. 

4.4.1 Basic chain code 

Freeman [57] first introduced a chain code that describes the movement along a 
digital curve or a sequence of border pixels by using so-called 8-connectivity or 4-
connectivity. The direction of each movement is encoded by the numbering 
scheme i=0, 1, …,7 or i=0, 1, 2, 3 denoting a counter-clockwise angle of 45ο×i or 
90ο×i regarding the positive x-axis, as shown in figure 10.14. 
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(a) Chain code in eight directions (8-connectivity); (b) chain code in four directions (4-connectivity).
 

Figure 10.14: Basic chain code direction 

By encoding relative, rather than absolute position of the contour, the basic chain 
code is translation invariant. We can match boundaries by comparing their chain 
codes, but with the two main problems: 1) it is very sensitive to noise; 2) it is not 
rotationally invariant. To solve these problems, differential chain codes (DCC) 
and resampling chain codes (RCC) were proposed. 

DCC encodes differences in the successive directions. This can be computed by 
subtracting each element of the chain code from the previous one and taking the 
result modulo n, where n is the connectivity. This differencing process allows us 
to rotate the object in 90-degree increments and still compare the objects, but it 
doesn’t get around the inherent sensitivity of chain codes to rotation on the dis-
crete pixel grid.  

RCC consists of re-sampling the boundary onto a coarser grid and then computing 
the chain codes of this coarser representation. This smoothes out small variations 
and noise but can help compensate for differences in chain-code length due to the 
pixel grid.  

4.4.2 Vertex chain code (VCC) 

To improve chain code efficiency, in [28] the authors proposed a chain code for 
shape representation according to VCC. An element of the VCC indicates the 
number of cell vertices, which are in touch with the bounding contour of the shape 
in that element’s position. Only three elements “1”, “2” and “3” can be used to 
represent the bounding contour of a shape composed of pixels in the rectangular 
grid. Figure 10.15 shows the elements of the VCC to represent a shape.  

 
Figure 10.15: Vertex chain code 

4.4.3 Chain code histogram (CCH) 

Iivarinen and Visa have derived a CCH for object recognition [58]. The CCH is 
computed as hi=#{i∈M, M is the range of chain code}, #{α} denotes getting the 
number of the value α. The CCH reflects the probabilities of different directions 
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present in a contour. If the chain code is used for matching it must be independent 
of the choice of the starting pixel in the sequence. The chain code usually has high 
dimensions and is sensitive to noise and any distortion. So, except for the CCH, 
the other chain code approaches are often used as contour representations, but not 
as contour attributes. 

4.5 Smooth curve decomposition 
In [9], the authors proposed smooth curve decomposition as shape descriptor. The 
segment between the curvature zero-crossing points from a Gaussian smoothed 
boundary are used to obtain primitives, called tokens. The feature for each token 
corresponds to its maximum curvature and its orientation. In figure 10.16, the first 
number in the parentheses is its maximum curvature and the second is its orienta-
tion.  

 
Figure 10.16: Smooth curve decomposition 

The similarity between two tokens is measured by the weighted Euclidean dis-
tance. The shape similarity is measured according to a non-metric distance. Shape 
retrieval based on token representation has shown to be robust in the presence of 
partially occulted objects, translation, scaling and rotation. 

4.6 Symbolic representation based on the axis of least inertia  
In [17], a method of representing a shape in terms of multi-interval valued type 
data is proposed. The proposed shape representation scheme extracts symbolic 
features with reference to the axis of least inertia, which is unique to the shape. 
The axis of least inertia (ALI) of a shape is defined as the line for which the inte-
gral of the square of the distances to points on the shape boundary is a minimum. 

Once the ALI is calculated, each point on the shape curve is projected on to ALI. 
The two farthest projected points say E1 and E2 on ALI are chosen as the extreme 
points as shown in figure 10.17. The Euclidean distance between these two ex-
treme points defines the length of ALI. The length of ALI is divided uniformly by 
a fixed number n; the equidistant points are called feature points. At every feature 
point chosen, an imaginary line perpendicular to the ALI is drawn. It is interesting 
to note that these perpendicular lines may intersect the shape curve at several 
points. The length of each imaginary line in shape region is computed and the col-
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lection of these lengths in an ascending order defines the value of the feature at the 
respective feature point. 

 
Figure 10.17: Symbolic features based axis of least inertia 

Let S be a shape to be represented and n the number of feature points chosen on its 
ALI. Then the feature vector F representing the shape S, is in general of the form 
F=[ ]f1,f2,...,ft,...,fn , where ft= { }dt1,dt2,L,dtk  for some tk≥1. 

The feature vector F representing the shape S is then invariant to image transfor-
mations viz., uniform scaling, rotation, translation and flipping (reflection). 

4.7 Beam angle statistics 
Beam angle statistics (BAS) shape descriptor is based on the beams originated 
from a boundary point, which are defined as lines connecting that point with the 
rest of the points on the boundary [5]. 

Let B be the shape boundary. B= { }P1,P2, L, PN  is represented by a connected 
sequence of points, Pi=(xi, yi), i=1,2, L, N, where N is the number of boundary 
points. For each point Pi, the beam angle between the forward beam vector 

Vi+k=PiP
→

i+k and backward beam vector Vi−k=PiP
→

i−k in the kth order neighbourhood 
system, is then computed as (see figure 10.18, k=5 for example) 
 Ck(i)=θVi+k

−θVi−k
 (10.15) 

where θVi+k
=arctan

yi+k−yi
xi+k−xi

, θVi-k
=arctan

yi-k−yi
xi-k−xi

  

 
Figure 10.18: Beam angle at the neighbourhood system 5 for a boundary point 
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(a) Original contour; (b) noisy contour; (c), (d) and (e) are the BAS plot 1st, 2nd and 3rd moment, respectively. 

 
Figure 10.19: The BAS descriptor for original and noisy contour 

For each boundary point Pi of the contour, the beam angle Ck(i) can be taken as a 
random variable with the probability density function P(Ck(i)). Therefore, beam 
angle statistics (BAS), may provide a compact representation for a shape descrip-
tor. For this purpose, mth moment of the random variable Ck(i) is defined as fol-
lows:  

 E[(C(i))m]= ∑
k=1

(N/2)−1
 (Ck(i))m⋅Pk(Ck(i)),    m=1, 2, L (10.16) 

In the above formula E indicates the expected value. Figure 10.19 shows an ex-
ample of this descriptor. 

Beam angle statistics shape descriptor captures the perceptual information using 
the statistical information based on the beams of individual points. It gives glob-
ally discriminative features to each boundary point by using all other boundary 
points. BAS descriptor is also quite stable under distortions and is invariant to 
translation, rotation and scaling. 

4.8 Shape matrix 
Shape matrix descriptor requires an M×N matrix to present a region shape. There 
are two basic modes of shape matrix: Square model [59] and Polar model [44]. 
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4.8.1 Square model shape matrix 

Square model of shape matrix, also called grid descriptor [29, 59], is constructed 
according to the following algorithm: for the shape S, construct a square centred 
on the centre of gravity G of S. The size of each side is equal to 2L, where L is the 
maximum Euclidean distance from G to a point M on the boundary of the shape. 
Point M lies in the centre of one side and GM is perpendicular to this side. 

Divide the square into N×N subsquares and denote Skj, k,j=1,L,N, the subsquares 
of the grid. Define the shape matrix SM=[Bkj],  

 
⎩
⎨
⎧ ≥⇔

=
otherwise  0

2/)()(1 kjkj
kj

SSS
B

μμ I

 (10.17)
 

where μ(F) is the area of the planar region F. Figure 10.20 shows an example of 
square model of shape matrix.  

 

(a) Original shape region; (b) square model shape matrix; (c) reconstruction of the shape region.   
Figure 10.20: Square model shape matrix 

For a shape with more than one maximum radius, it can be described by several 
shape matrices and the similarity distance is the minimum distance between these 
matrices. In [59], authors gave a method to choose the appropriate shape matrix 
dimension. 

4.8.2 Polar model shape matrix 

Polar model of shape matrix is constructed by the following steps. Let G be the 
centre of gravity of the shape, and GA be the maximum radius of the shape. Using 
G as centre, draw n circles with radii equally spaced. Starting from GA, and coun-
ter clockwise, draw radii that divide each circle into m equal arcs. The values of 
the matrix are the same as those in square model shape matrix. Figure 10.21 shows 
an example, where n = 5 and m =12. Its polar model of shape matrix is 
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⎥
⎥
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111111111111
111111111111

PSM  (10.18)
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Figure 10.21: Polar model shape 

Polar model of shape matrix is simpler than square model because it only uses one 
matrix no matter how many maximum radii are on the shape. However, since the 
sampling density is not constant with the polar sampling raster, a weighed shape 
matrix is necessary. For the detail, refer to [44].  

The shape matrix exists for every compact shape. There is no limit to the scope of 
the shapes that the shape matrix can represent. It can describe even shapes with 
holes. Shape matrix is also invariant under translation, rotation and scaling of the 
object. The shape of the object can be reconstructed from the shape matrix; the ac-
curacy is given by the size of the grid cells. 

4.9 Shape context 
In [8], the shape context has been shown to be a powerful tool for object recogni-
tion tasks. It is used to find corresponding features between model and image.  

Shape contexts analysis begins by taking N samples from the edge elements on the 
shape. These points can be on internal or external contours. Consider the vectors 
originating from a point to all other sample points on the shape. These vectors ex-
press the appearance of the entire shape relative to the reference point. This de-
scriptor is the histogram of the relative polar coordinates of all other points: 
 hi(k) = #{ }Q≠Pi : (Q−Pi)∈bin(k)  (10.19) 

An example is shown in figure 10.22 where (c) is the diagram of log-polar histo-
gram that has 5 bins for the polar direction and 12 bins for the angular direction. 
The histogram of a point Pi is formed by the following steps: putting the center of 
the histogram bins diagram on the point Pi, each bin of this histogram contains a 
count of all other sample points on the shape falling into that bin. Note that on this 
figure, the shape contexts (histograms) for the points marked by 'ο' (in (a)), '◊' (in 
(b)) and '<' (in (a)) are shown in (d), (e) and (f), respectively. It is clear that the 
shape contexts for the points marked by 'ο' and '◊', which are computed for rela-
tively similar points on the two shapes, have visual similarity. By contrast, the 
shape context for '<' is quite different from the others. Obviously, this descriptor is 
a rich description, since as N gets large, the representation of the shape becomes 
exact. 
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Figure 10.22: Shape context computation and graph matching 

Shape context matching is often used to find the corresponding points on two 
shapes. It has been applied to a variety of object recognition problems [8, 33, 45, 
55]. The shape context descriptor has the following invariance properties:  

• translation: the shape context descriptor is inherently translation invariant 
as it is based on relative point locations.  

• scaling: for clutter-free images the descriptor can be made scale invariant 
by normalizing the radial distances by the mean (or median) distance be-
tween all point pairs.  

• rotation: it can be made rotation invariant by rotating the coordinate sys-
tem at each point so that the positive x-axis is aligned with the tangent vec-
tor.  

• shape variation: the shape context is robust against slight shape variations.  
• few outliers: points with a final matching cost larger than a threshold value 

are classified as outliers. Additional ‘dummy’ points are introduced to de-
crease the effects of outliers.  

4.10 Chord distribution 
The basic idea of chord distribution is to calculate the lengths of all chords in the 
shape (all pair-wise distances between boundary points) and to build a histogram 
of their lengths and orientations [40]. The “lengths” histogram is invariant to rota-
tion and scales linearly with the size of the object. The “angles” histogram is in-
variant to object size and shifts relative to object rotation. Figure 10.23 gives an 
example of chord distribution. 
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(a) Original contour; (b) chord lengths histogram; (c) chord angles histogram (each stem covers 3)   
Figure 10.23: Chord distribution 

4.11 Shock graphs 
Shock graphs is a descriptor based on the medial axis. The medial axis is the most 
popular method that has been proposed as a useful shape abstraction tool for the 
representation and modelling of animate shapes. Skeleton and medial axes have 
been extensively used for characterizing objects satisfactorily using structures that 
are composed of line or arc patterns. Medial axis is an image processing operation 
which reduces input shapes to axial stick-like representations. It is as the loci of 
centres of bi-tangent circles that fit entirely within the foreground region being 
considered. Figure 10.24 illustrates the medial axis for a rectangular shape. 

 
Figure 10.24: Medial axis of a rectangle defined in terms of bi-tangent circles 

We notice that the radius of each circle is variable. This variable is a function of 
the loci of points on the medial axis. We call this function as the radius function.  

A shock graph is a shape abstraction that decomposes a shape into a set of hierar-
chically organized primitive parts. Siddiqi and Kimia define the concept of a 
shock graph [39] as an abstraction of the medial axis of a shape onto a directed 
acyclic graph (DAG). Shock segments are curve segments of the medial axis with 
monotonic flow, and give a more refined partition of the medial axis segments 
(see figure 10.25).  

 

 
Figure 10.25: Shock segments 

The skeleton points are first labelled according to the local variation of the radius 
function at each point. Shock graph can distinguish the shapes but the medial axis 
cannot. Figure 10.26 shows two examples of shapes and their shock graphs.  
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Figure 10.26: Examples of shapes and their shock graphs 

To calculate the distance between two shock graphs, in [38], the authors employ a 
polynomial-time edit-distance algorithm. It shows that this algorithm has good 
performance against boundary perturbations, articulation and deformation of parts, 
segmentation errors, scale variations, viewpoint variations and partial occultation. 

4.12 Discussions 
Spatial feature descriptor is a direct method to describe a shape. These descriptors 
can apply tree-based theory (Adaptive grid resolution and Convex hull), statistic 
(Chain code histogram, Beam angle statistics, Shape context and Chord distribu-
tion) or syntactic analysis (Smooth curve decomposition) to extract or represent 
the feature of a shape. This description scheme not only compresses the data of a 
shape, but also provides a compact and meaningful form to facilitate further rec-
ognition operations.  

5 Moments 

This concept is issued from the concept of moments in mechanics where mass re-
partition of objects are observed. It is an integrated theory system. For both con-
tour and region of a shape, one can use moment’s theory to analyze the object. 

5.1 Boundary moments 
Boundary moments, analysis of a contour, can be used to reduce the dimension of 
boundary representation [41]. Assume shape boundary has been represented as a 
1-D shape representation z(i) as introduced in Section 2, the rth moment mr and 
central moment μr can be estimated as 

 mr= 
1
N ∑

i=1

N
 [ ]z(i) r    and    μr= 

1
N ∑

i=1

N
 [ ]z(i)−m1

r (10.20) 

where N is the number of boundary points. 

The normalized moments 2/
2 )/( r

rr mm μ= and 2/
2 )/( r

rr μμμ =  are invariant to 
shape translation, rotation and scaling. Less noise-sensitive shape descriptors can 
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be obtained from 

 F1=
(μ2)1/2

m1
,    F2=

μ3

(μ2)3/2    and    F3=
μ4

(μ2)2 (10.21) 

The other boundary moments method treats the 1-D shape feature function z(i) as 
a random variable v and creates a K bins histogram p(vi) from z(i). Then, the rth 
central moment is obtained by 

 μr= ∑
i=1

K
 ( )vi−m rp(vi)    and    m= ∑

i=1

K
 vip(vi) (10.22) 

The advantage of boundary moment descriptors is that they are easy to implement. 
However, it is difficult to associate higher order moments with physical interpreta-
tion. 

5.2 Region moments 
Among the region-based descriptors, moments are very popular. These include 
moment invariants, Zernike moments, Radial Chebyshev moments, etc. 

The general form of a moment function mpq of order (p+q) of a shape region can 
be given as: 

 mpq= ∑
x

  ∑
y

 Ψpq(x,y)f(x,y)      p,q=0,1,2L (10.23) 

where Ψpq is known as the moment weighting kernel or the basis set; f(x,y) is the 
shape region defined as follows 

 
⎩
⎨
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=
otherwise   0

Dy)(x, if   1
),( yxf

 (10.24)
 

where D represents the image domain. 

5.2.1 Invariant moments (IM) 

Invariant moments (IM) are also called geometric moment invariants. Geometric 
moments, are the simplest of the moment functions with basis Ψpq=xpyq, while 
complete, is not orthogonal [57]. Geometric moment function mpq of order (p+q) 
is given as: 

 mpq= ∑
x

  ∑
y

 xpyqf(x,y)      p,q=0,1,2L (10.25) 

The geometric central moments, which are invariant to translation, are defined as  

 μpq= ∑
x

  ∑
y

  ( )x−x- p ( )y−y - qf(x,y) with p,q=0,1,2L
 (10.26)

 



26  

where x -=m10/m00 and y -=m01/m00 

A set of 7 invariant moments (IM) is given by [57]:  
 φ1=η20+η02 (10.27) 

 φ2=(η20−η02)2+4η11
2  (10.28) 

 φ3=(η30−3η12)2+(3η21−η03)2 (10.29) 

 φ4=(η30+η12)2+(η21+η03)2 (10.30) 

 φ5=(η30−3η12)(η30+η12) [ ](η30+η12)2−3(η21+η03)2 +(3η21−η03)(η21+η03) 

⋅ [ ]3(η30+η12)2−(η21+η03)2   (10.31) 

 φ6=(η20−η02) [ ](η30+η12)2−(η21+η03)2 +4η11
2 (η30+η12)(η21+η03) (10.32) 

 φ7=(3η21−η03)(η30+η12) [ ](η30+η12)2−3(η21+η03)2 +(3η12−η03)(η21+η03)  

⋅ [ ]3(η30+η12)2−(η21+η03)2   (10.33) 

where ηpq=μpq/μ00
γ  and γ=1+(p+q)/2 for p+q=2,3,L 

IM are computationally simple. Moreover, they are invariant to rotation, scaling 
and translation. However, they have several drawbacks [10]: 

• information redundancy: since the basis is not orthogonal, these moments 
suffer from a high degree of information redundancy.  

• noise sensitivity: higher-order moments are very sensitive to noise.  
• large variation in the dynamic range of values: since the basis involves 

powers of p and q, the moments computed have large variation in the dy-
namic range of values for different orders. This may cause numerical in-
stability when the image size is large. 

 

5.2.2 Algebraic moment invariants  

The algebraic moment invariants are computed from the first m central moments 
and are given as the eigenvalues of predefined matrices, M[j,k], whose elements are 
scaled factors of the central moments [43]. The algebraic moment invariants can 
be constructed up to arbitrary order and are invariant to affine transformations. 
However, algebraic moment invariants performed either very well or very poorly 
on the objects with different configuration of outlines. 

5.2.3 Zernike moments (ZM)  

Zernike Moments (ZM) are orthogonal moments [10]. The complex Zernike mo-
ments are derived from orthogonal Zernike polynomials:  
 Vnm(x,y)=Vnm(rcosθ,rsinθ)=Rnm(r)exp(jmθ) (10.34) 
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where Rnm(r)is the orthogonal radial polynomial: 

 Rnm(r)= ∑
s=0

(n−| |m )/2
 (−1)s 

(n−s)!

s!× ⎝
⎛

⎠
⎞ 

n−2s+| |m
2 ! ⎝

⎛
⎠
⎞n−2s−| |m

2 !
rn−2s (10.35) 

n=0,1,2,L; 0≤ | |m ≤n; and n− | |m  is even. 

Zernike polynomials are a complete set of complex valued functions that are or-
thogonal over the unit disk, i.e., x2+y2≤1. The Zernike moment of order n with 
repetition m of shape region f(x,y) is given by: 

 Znm= 
n+1

π  ∑
r

  ∑
θ

 f(rcosθ,rsinθ)⋅Rnm(r)⋅exp(jmθ)    r≤1 (10.36) 

Zernike moments (ZM) have the following advantages [35]:  
• rotation invariance: the magnitudes of Zernike moments are invariant to 

rotation.  
• robustness: they are robust to noise and minor variations in shape.  
• expressiveness: since the basis is orthogonal, they have minimum informa-

tion redundancy.  

However, the computation of ZM (in general, continuous orthogonal moments) 
pose several problems:  

• coordinate space normalization: the image coordinate space must be trans-
formed to the domain where the orthogonal polynomial is defined (unit 
circle for the Zernike polynomial).  

• numerical approximation of continuous integrals: the continuous integrals 
must be approximated by discrete summations. This approximation not 
only leads to numerical errors in the computed moments, but also severely 
affects the analytical properties such as rotational invariance and orthogo-
nality.  

• computational complexity: computational complexity of the radial Zernike 
polynomial increases as the order becomes large.  

5.2.4 Radial Chebyshev moments (RCM) 

The radial Chebyshev moment of order p and repetition q is defined as [34]: 

 Spq= 
1

2πρ(p,m) ∑
r=0

m−1
  ∑
θ=0

2π
 tp(r)⋅exp(−jqθ)⋅f(r,θ) (10.37) 

where tp(r) is the scaled orthogonal Chebyshev polynomials for an N×N image 
such that  
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 tp(x)= 
(2p−1)t1(x)tp−1(x)−(p−1) 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1− 
(p−1)2

N2 tp−2(x)

p ,    p>1 (10.38) 

with t0(x)=1, t1(x)=(2x−N+1)/N and where ρ(p,N) is the squared-norm: 

 ρ(p,N)= 
N 

⎝
⎛

⎠
⎞1− 

1
N2  

⎝⎜
⎛

⎠⎟
⎞1− 
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N2 L 
⎝⎜
⎛

⎠⎟
⎞1− 

p2

N2

2p+1 ,      p=0,1,L,N−1 (10.39) 

and m=(N/2)+1. 

The mapping between (r,θ) and image coordinates (x,y) is given by:  

 x= 
rN

2(m−1)cos(θ)+ 
N
2   and  y= 

rN
2(m−1)sin(θ)+ 

N
2 (10.40) 

Compared to Chebyshev moments, radial Chebyshev moments possess rotational 
invariance property. 

5.3 Discussions 
Besides the previous moments, there are other moments for shape representation, 
for example, homocentric polar-radius moment [20], orthogonal Fourier-Mellin 
moments (OFMMs) [21], pseudo-Zernike Moments [31], etc. The study shows 
that the moment-based shape descriptors are usually concise, robust and easy to 
compute. They are also invariant to scaling, rotation and translation of the object. 
However, because of their global nature, the disadvantage of moment-based meth-
ods is that it is difficult to correlate high order moments with a shape’s salient fea-
tures. 

6 Scale space approaches 

Scale space approaches are issued from multiscale representation that allows han-
dling shape structure at different scales. In scale space theory a curve is embedded 
into a continuous family { }Γσ:σ≥0  of gradually simplified versions. The main 
idea of scale spaces is that the original curve Γ=Γ0 should get more and more sim-
plified, and so small structures should vanish as parameter σ increases. Thus due 
to different scales (values of σ), it is possible to separate small details from rele-
vant shape properties. The ordered sequence { }Γσ:σ≥0  is referred to as evolution 
of Γ. 

A lot of shape features can be analyzed in scale-space theory to get more informa-
tion about shapes. Here we introduced 2 scale-space approaches: curvature scale-
space (CSS) and intersection points map (IPM). 
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6.1 Curvature scale-space 
The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was 
selected as a contour shape descriptor for MPEG-7. This approach is based on 
multi-scale representation and curvature to represent planar curves. For conven-
ience, a contour is defined with a discrete parameterization as following:  
 Γ(μ)=(x(μ),y(μ)) (10.41) 

An evolved version of that curve is defined by  
 Γσ(μ)=(X(μ,σ),Y(μ,σ)) (10.42) 

where X(μ,σ)=x(μ)*g(μ,σ) and Y(μ,σ)=y(μ)*g(μ,σ), * is the convolution operator, 
and g(μ,σ) denotes a Gaussian filter with standard deviation σ defined by  

 g(μ,σ)= 
1

σ 2π
exp( 

−μ2

2σ2) (10.43) 

Functions X(μ,σ) and Y(μ,σ) are given explicitly by 

 X(μ,σ)= ⌡⌠
−∞

∞
 x(v) 

1
σ ,2π

exp( 
−(μ−v)2

2σ2 )dv (10.44) 

 Y(μ,σ)= ⌡⌠
−∞

∞
 y(v) 

1
σ ,2π

exp( 
−(μ−v)2

2σ2 )dv (10.45) 

The curvature of the contour is given by 

 k(μ,σ)= 
Xμ(μ,σ)Yμμ(μ,σ)−Xμμ(μ,σ)Yμ(μ,σ)

(Xμ(μ,σ)2−Yμ(μ,σ)2)3/2  (10.46) 

where 

 Xμ(μ,σ)= 
∂

∂μ(x(μ)*g(μ,σ))=x(μ)*gμ(μ,σ) (10.47) 

 Xμμ(μ,σ)= 
∂2

∂μ2(x(μ)*g(μ,σ))=x(μ)*gμμ(μ,σ) (10.48) 

 Yμ(μ,σ)= 
∂

∂μ(y(μ)*g(μ,σ))=y(μ)*gμ(μ,σ) (10.49) 

 Yμμ(μ,σ)= 
∂2

∂μ2(y(μ)*g(μ,σ))=y(μ)*gμμ(μ,σ) (10.50) 

Note that σ is also referred to as a scale parameter. The process of generating 
evolved versions of Γσ as σ increases from 0 to ∞ is referred to as the evolution of 
Γσ. This technique is suitable for removing noise and smoothing a planar curve as 
well as gradual simplification of a shape.  

The function defined by k(μ,σ)=0 is the CSS image of Γ. Figure 10.27 is a CSS 
image examples. 
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(a) Evolution of Africa: from left to right σ=0(original), σ=4, σ=8 and σ=16, 
respectively; (b) CSS image of Africa.   

Figure 10.27: Curvature scale-space image 

The representation of CSS is the maxima of CSS contour of an image. Many 
methods for representing the maxima of CSS exist in the literatures [19, 36, 52] 
and the CSS technique has been shown to be robust contour-based shape represen-
tation technique. The basic properties of the CSS representation are as follows:  

• it captures the main features of a shape, enabling similarity-based retrieval;  
• it is robust to noise, changes in scale and orientation of objects;  
• it is compact, reliable and fast;  
• It retains the local information of a shape. Every concavity or convexity on 

the shape has its own corresponding contour on the CSS image.  

Although CSS has a lot of advantages, it does not always give results in accor-
dance with human vision system. The main drawbacks of this description are due 
to the problem of shallow concavities/convexities on a shape. It can be shown that 
the shallow and deep concavities/convexities may create the same large contours 
on the CSS image. In [1, 49], the authors gave some methods to alleviate these ef-
fects. 

6.2 Intersection points map 
Similarly to the CSS, many methods also use a Gaussian kernel to progressively 
smooth the curve relatively to the varying bandwidth. In [24], the authors pro-
posed a new algorithm, intersection points map (IPM), based on this principle. In-
stead of characterizing the curve with its curvature involving 2nd order derivatives, 
it uses the intersection points between the smoothed curve and the original. As the 
standard deviation of the Gaussian kernel increases, the number of the intersection 
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points decreases. By analyzing these remaining points, features for a pattern can 
be defined. Figure 10.28 represents an example of IPM. 

 

(a) An original contour; (b) an IPM image in the (u,σ) plane. The IPM points indicated by (1)-(6) 
refer to the corresponding intersection points in (a).   

Figure 10.28: Example of the IPM 

The IPM pattern can be identified regardless of its orientation, translation and 
scale change. It is also resistant to noise for a range of noise energy. The main 
weakness of this approach is that it fails to handle occulted contours and those 
having undergone a non-rigid deformation. Since this method deals only with 
curve smoothing, it needs only the convolution operation in the smoothing proc-
ess. So this method is faster than the CSS one with equivalent performances. 

6.3 Discussions 
As multi-resolution analysis in signal processing, scale-space theory can obtain 
abundant information about a contour with different scales. In scale-space, global 
pattern information can be interpreted from higher scales, while detailed pattern 
information can be interpreted from lower scales. Scale-space algorithm benefits 
from the boundary information redundancy in the new image, making it less sensi-
tive to errors in the alignment or contour extraction algorithms. The great advan-
tages are the high robustness to noise and the great coherence with human percep-
tion.  

7 Shape transform domains 

With operators transforming data pixels into frequency domain, a description of 
shape can be obtained with respect to its frequency content. The transform domain 
class includes methods which are formed by the transform of the detected object 
or the transform of the whole image. Transforms can therefore be used to charac-
terize the appearance of images. The shape feature is represented by all or partial 
coefficients of a transform. 

7.1 Fourier descriptors 
Although, Fourier descriptor (FD) is a 40-year-old technique, it is still considered 
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as a valid description tool. The shape description and classification using FD ei-
ther in contours or regions are simple to compute, robust to noise and compact. It 
has many applications in different areas.  

7.1.1 One-dimensional Fourier descriptors 

In general, Fourier descriptor (FD) is obtained by applying Fourier transform on a 
shape signature that is a one-dimensional function derived from shape boundary 
coordinates (cf. Section 2). The normalized Fourier transformed coefficients are 
called the Fourier descriptor of the shape. FD derived from different signatures 
has significant different performance on shape retrieval. As shown in [52, 53], FD 
derived from centroid distance function r(t) outperforms FD derived from other 
shape signatures in terms of overall performance. The discrete Fourier transform 
of r(t) is then given by  

 an= 
1
N ∑

t=0

N−1
 r(t)exp ⎝

⎛
⎠
⎞ 

−j2πnt
N ,    n=0,1,L,N−1 (10.51) 

Since the centroid distance function r(t) is only invariant to rotation and transla-
tion, the acquired Fourier coefficients have to be further normalized so that they 
are scaling and starting point independent shape descriptors. From Fourier trans-
form theory, the general form of the Fourier coefficients of a contour centroid dis-
tance function r(t) transformed through scaling and change of start point from the 
original function r(t)(o) is given by 
 an=exp(jnτ)⋅s⋅a(o),n (10.52) 

where an and a(o)
n  are the Fourier coefficients of the transformed shape and the 

original shape, respectively, τ is the angle incurred by the change of starting point 
and s is the scale factor. Now considering the following expression: 

 bn= 
an
a1

= 
exp(jnτ)⋅s⋅a(o)

n

exp(jτ)⋅s⋅a(o)
1

= 
a(o)

n

a(o)
1

exp[j(n−1)τ]=b(o)
n exp[j(n−1)τ] (10.53) 

where bn and b(o)
n  are the normalized Fourier coefficients of the transformed shape 

and the original shape, respectively. If we ignore the phase information and only 

use magnitude of the coefficients, then | |bn  and | |b(o)
n  are the same. In other words, 

| |bn  is invariant to translation, rotation, scaling and change of start point.  

The set of magnitudes of the normalized Fourier coefficients of the shape 
{ } | |bn , 0<n<N  are used as shape descriptors, denoted as  
 { }FDn, 0<n<N . (10.54) 

One-dimensional FD has several interesting characteristics such as simple deriva-
tion, simple normalization and simple to do matching. As indicated in [52], for ef-
ficient retrieval, 10 FDs are sufficient for shape description. 
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7.1.2 Region-based Fourier descriptor  

The region-based FD is referred to as generic FD (GFD), which can be used for 
general applications. Basically, GFD is derived by applying a modified polar Fou-
rier transform (MPFT) on shape image [48, 54]. In order to apply MPFT, the polar 
shape image is treated as a normal rectangular image. The steps are as follows 

1. the approximated normalized image is rotated counter clockwise by an an-
gular step sufficiently small.  

2. the pixel values along positive x-direction starting from the image center 
are copied and pasted into a new matrix as row elements.  

3. the steps 1 and 2 are repeated until the image is rotated by 360°.  

The result of these steps is that an image in polar space plots into Cartesian space.  

Figure 10.29 shows the polar shape image turning into normal rectangular image. 

 

(a) Original shape image in polar space; (b) polar image of (a) plotted into Cartesian space.   
Figure 10.29: The polar shape image turns into normal rectangular image. 

The Fourier transform is obtained by applying a discrete 2D Fourier transform on 
this shape image, so that  

 pf(ρ,φ)= ∑
r

  ∑
i

 f(r,θi)exp[j2π( 
r
Rρ+ 

2πi
T φ)] (10.55) 

where 0≤r= [(x−gx)2+(y−gy)2]<R, and θi=i(2π/T); 0≤ρ<R, 0≤φ<T with (gx,gy) 
being the centre of mass of the shape; R and T are the radial and angular resolu-
tions. The acquired Fourier coefficients are translation invariant. Rotation and 
scaling invariance are achieved by the following: 

 GFD= 
⎩
⎨
⎧

⎭
⎬
⎫

 
 | |pf(0,0)

area , 
 | |pf(0,1)
 | |pf(0,0) , L, 

 | |pf(0,n)
 | |pf(0,0) ,L, 

 | |pf(m,0)
 | |pf(0,0) , L, 

 | |pf(m,n)
 | |pf(0,0)  (10.56) 

where area is the area of the bounding circle in which the polar image resides. m 
is the maximum number of the radial frequencies selected and n is the maximum 
number of selected angular frequencies. m and n can be adjusted to achieve hierar-
chical coarse to fine representation requirement. 

For efficient shape description, following the implementation of [54], 36 GFD fea-
tures reflecting m=4 and n=9 are selected to index the shape. The experimental re-
sults have shown GFD as invariant to translation, rotation, and scaling. For obtain-
ing the affine and general minor distortions invariance, in [54], the authors 
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proposed Enhanced Generic Fourier Descriptor (EGFD) to improve the GFD 
properties. 

7.2 Wavelet transform 
A hierarchical planar curve descriptor is developed by using the wavelet transform 
[13]. This descriptor decomposes a curve into components of different scales so 
that the coarsest scale components carry the global approximation information 
while the finer scale components contain the local detailed information. The wave-
let descriptor has many desirable properties such as multi-resolution representa-
tion, invariance, uniqueness, stability, and spatial localization. In [23], the authors 
use dyadic wavelet transform deriving an affine invariant function. In [12], a de-
scriptor is obtained by applying the Fourier transform along the axis of polar angle 
and the wavelet transform along the axis of radius. This feature is also invariant to 
translation, rotation, and scaling. At same time, the matching process of wavelet 
descriptor can be accomplished cheaply. 

7.3 Angular radial transformation 
The angular radial transformation (ART) is based in a polar coordinate system 
where the sinusoidal basis functions are defined on a unit disc. Given an image 
function in polar coordinates, f(ρ,θ), an ART coefficient Fnm (radial order n, angu-
lar order m) can be defined as [37]: 

 Fnm= ⌡⌠
0

2π
  ⌡⌠

0

1
 Vnm(ρ,θ)f(ρ,θ)ρdρdθ (10.57) 

where Vnm(ρ,θ) is the ART basis function and is separable in the angular and ra-
dial directions so that:  
 Vnm(ρ,θ)=Am(θ)Rn(ρ) (10.58) 

The angular basis function, Am, is an exponential function used to obtain orienta-
tion invariance. This function is defined as: 

 Am(θ)= 
1

2πejmθ (10.59) 

where Rn, the radial basis function, is defined as:  

 
⎩
⎨
⎧

≠
=

=
0n if  )ncos(2
0n if                1

)(
ρπ

ρnR  (10.60) 

In MPEG-7, twelve angular and three radial functions are used (n<3,m<12). Real 
parts of the 2-D basis functions are shown in figure 10.30. 
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Figure 10.30: Real parts of the ART basis functions 

For scale normalization, the ART coefficients are divided by the magnitude of 
ART coefficient of order n=0,m=0. MPEG-7 standardization process showed the 
efficiency of 2-D angular radial transformation. This descriptor is robust against 
translation, scaling, multi-representation (remeshing, weak distortions) and noises. 

7.4 Shape signature harmonic embedding 
A harmonic function is obtained by a convolution between the Poisson kernel 
PR(r,θ) and a given boundary function u(Rejφ). Poisson kernel is defined by 

 PR(r,θ)= 
R2−r2

R2−2Rrcos(θ)+r2 (10.61) 

The boundary function could be any real- or complex-valued function, but here we 
choose shape signature functions for the purpose of shape representation. For any 
shape signature s[n],n=0,1,L,N−1, the boundary values for a unit disk can be set 
as  
 u(Rejφ)=u(Rejω0n)=s[n] (10.62) 

where ω0=2π/N, φ=ω0n.  
So the harmonic function u can be written as 

 u(rejθ)= 
1

2π ⌡⌠
0

2π
 u(Rejφ)PR(r,φ−θ)dφ (10.63) 

The Poisson kernel PR(r,θ) has a low-pass filter characteristic, where the radius r 
is inversely related to the bandwidth of the filter. The radius r is considered as the 
scale parameter of a multi-scale representation [27]. Another important property is 
PR(0,θ)=1, indicating u(0) is the mean value of boundary function u(Rejφ).  

In [27], the authors proposed a formulation of a discrete closed-form solution for 
the Poisson’s integral formula of equation (10.63), so that one can avoid the need 
for approximation or numerical calculation of the Poisson summation form.  

As in Subsection 7.1.2, the harmonic function inside the disk can be mapped to a 
rectilinear space for a better illustration. Figure 10.31 shows an example for a star 
shape. Here, we used curvature as the signature to provide boundary values.  
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(a) Example shape; (b) harmonic function within the unit disk; (c) rectilinear mapping of the function. 
 

Figure 10.31: Harmonic embedding of curvature signature 

The zero-crossing image of the harmonic functions is extracted as a shape feature. 
This shape descriptor is invariant to translation, rotation and scaling. It is also ro-
bust to noise. Figure 10.32 is an example. The original curve is corrupted with dif-
ferent noise levels, and the harmonic embeddings show robustness to the noise. 

 

(a) Original and noisy shapes; (b) harmonic embedding images for centroid distance signature. 
 

Figure 10.32: Centroid distance signature harmonic embedding that is robust to noisy boundaries  

In addition, it is more efficient than CSS descriptor. However, it is not suitable for 
similarity retrieval, because it is inconsistent with non-rigid transform. 

7.5 R-Transform 
The R-Transform to represent a shape is based on the Radon transform. The ap-
proach is presented as follows. We assume that the function f is the domain of a 
shape. Its Radon transform is defined by: 

 TR(ρ,θ)= ⌡⌠
−∞

∞
  ⌡⌠

−∞

∞
 f(x,y)δ(xcosθ+ysinθ−ρ)dxdy (10.64) 

where δ(.) is the Dirac delta-function such that:  

 
⎩
⎨
⎧ =

=
otherwise  0

0 xif 1
)(xδ  (10.65) 

θ∈[0,π] and ρ∈(−∞,∞). In other words, Radon transform TR(ρ,θ) is the integral of 
f over the line L(ρ,θ) defined by ρ=xcosθ+ysinθ. 

Figure 10.33 is an example of a shape and its Radon transform. 
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Figure 10.33: A shape and its Radon transform 

The following transform is defined as R-transform: 

 ∫
−∞

∞−

= ρθρθ dTRf ),()( 2R  (10.66) 

where TR(ρ,θ) is the Radon transform of the domain function f. In [42], the au-
thors show the following properties of Rf(θ):  

• periodicity: Rf(θ±π)=Rf(θ)  
• rotation: a rotation of the image by an angle θ0 implies a translation of the 

ℜ-transform of θ0: Rf(θ+θ0).  
• translation: the ℜ-transform is invariant under a translation of the shape f 

by a vector ),( 00 yxu =
r

.  

• scaling: a change of the scaling of the shape f induces a scaling only in the 
amplitude of the R-transform.  

Given a large collection of shapes, one R-transform per shape is not efficient to 
distinguish from the others because the R-transform provides a highly compact 
shape representation. In this perspective, to improve the description, each shape is 
projected in the Radon space for different segmentation levels of the Chamfer dis-
tance transform. Chamfer distance transform is introduced in [60, 61].  

Given the distance transform of a shape, the distance image is segmented into N 
equidistant levels to keep the segmentation isotropic. For each distance level, pix-
els having a distance value superior to that level are selected and at each level of 
segmentation, an R-transform is computed. In this manner, both the internal 
structure and the boundaries of the shape are captured. Since a rotation of the 
shape implies a corresponding shift of the R-transform. Therefore, a one-
dimensional Fourier transform is applied on this function to obtain the rotation in-
variance. After the one-dimensional discrete Fourier transform F, R-transform 
descriptor vector is defined as follows: 

 RTD=⎝
⎜
⎛

⎠
⎟
⎞FR1( π

M)
FR1(0) ,L,

FR1(iπ
M)

FR1(0) ,L,
FR1(π)
FR1(0),L,

FRN(π
M)

FRN(0) ,L,
FRN(iπ

M)
FRN(0) ,L,

FRN(π)
FRN(0) (10.67) 

where i∈[1,M], M is the angular resolution, FRα is the magnitude of Fourier 
transform to R-transform and α∈[1, N], is the segmentation level of Chamfer dis-
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tance transform.  

7.6 Shapelet descriptor 
Shapelet descriptor was proposed to present a model for animate shapes and for 
extracting meaningful parts of objects. The model assumes that animate shapes 
(2D simple closed curves) are formed by a linear superposition of a number of 
shape bases. A basis function ψ(s;μ,σ) is defined in [15] so that μ∈[0,1] indicates 
the location of the basis function relative to the domain of the observed curve, and 
σ is the scale of the function ψ. Figure 10.34 shows the shape of the basis function 
ψ at different σ values. It displays variety with different parameter and transforms. 

 

 (a) σ (b) rotation (c) scaling (d) shearing  
Figure 10.34: Each shape base is a lobe-shaped curve 

The basis functions are subject to affine transformations by a 2×2 matrix of basis 
coefficients: 

 Ak= ⎣
⎡

⎦
⎤ak bk

ck dk
 (10.68) 

The variables for describing a base are denoted by bk=(Ak,μk,σk) and are termed 
basis elements. The shapelet is defined by  
 γ(s;bk)=Akψ(s;μk,σk) (10.69) 

Figure 10.34(b,c,d) demonstrates shapelets obtained from the basis functions ψ by 
the affine transformations of rotation, scaling, and shearing respectively, as indi-
cated by the basis coefficient Ak. By collecting all the shapelets at various μ, σ, A 
and discretizing them at multiple levels, a dictionary is obtained  
 { }0,;:);( 0 >∀=Δ aabbs γγ . (10.70) 

A special shapelet γ0 is defined as an ellipse. Shapelets are the building blocks for 
shape contours, and they form closed curves by linear addition:  

 Γ(s)= ⎣
⎡

⎦
⎤ 

x0
y0

+ ∑
k=1

K
  ⎣
⎡

⎦
⎤ 

akbk
ckdk

ψ(s;μk,σk)+n(s) (10.71) 

where (x0,y0) is the centroid of the contour and n is residue. 

A discrete representation B=(K,b1,b2,L,bK), shown by the dots in second row of 
figure 10.35, represents a shape. B is called the “shape script” by analogy to music 
scripts, where each shapelet is represented by a dot in the (μ,σ) domain. The hori-
zontal axis is μ∈[0,1] and the vertical axis is the σ. Large dots correspond to big 
coefficient matrix  
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k=a2

k+b2
k+c2

k+d2
k (10.72) 

 

 
Figure 10.35: Pursuit of shape bases for an eagle contour 

Clearly, computing the shape script B is a non-trivial task, since Δ is over-
complete and there will be multiple sets of bases that reconstruct the curve with 
equal precision. [15] gave some pursuit algorithms to use shapelets representing a 
shape. 

7.7 Discussions 
As a kind of global shape description technique, shape analysis in transform do-
mains takes the whole shape as the shape representation. The description scheme 
is designed for this representation. Unlike the spatial interrelation feature analysis, 
shape transform projects a shape contour or region into an other domain to obtain 
some of its intrinsic features. For shape description, there is always a trade-off be-
tween accuracy and efficiency. On one hand, shape should be described as accu-
rate as possible; on the other hand, shape description should be as compact as pos-
sible to simplify indexing and retrieval. For a shape transform analysis algorithm, 
it is very flexible to accomplish a shape description with different accuracy and ef-
ficiency by choosing the number of transform coefficients.  

8 Summary table 
For convenience, to compare these shape feature extraction approaches in this 
chapter, we summarize their properties in Table 10.1.  

Frankly speaking, it is not equitable to affirm a property of an approach by rudely 
speaking “good” or “bad” because certain approaches have great differences in 
performances under different conditions. 

For example, the method area function is invariant with affine transform under the 
condition of the contours sampled at its same vertices; whereas it is not robust to 
affine transform if the condition can’t be contented. In addition, some approaches 
have good properties for certain type shapes; however it is not for the others. For 
example, the method shapelets representation is especially suitable for blobby ob-
jects, and it has shortcomings in representing elongated objects. 
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Table 10.1: Properties of shape feature extraction approaches 
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So the simple evaluations in this table are only as a reference. These evaluations 
are drawn by assuming that all the necessary conditions have been contented for 
each approach. 

9 Illustrative example: a contour-based shape descriptor 

In this section is presented a new contour-based shape descriptor we are develop-
ing: it belongs to the class of scale-space methods. Fundamental concepts about 
affine transforms are introduced, the method and its properties are presented and 
the method is then evaluated by applying it to shape retrieval from the MPEG-7 
CE-Shape-1 database that consists of 1 400 contours. 

9.1 Fundamental Concepts 
Thereafter fundamental concepts are introduced and defined: the affine transform 
and 2 parameters which are linear (affine invariant) under affine transforms. 

9.1.1 Closed curve 

Let us consider the discrete parametric equation of a closed curve Γ: 
 Γ(μ) = (x(μ), y(μ)) (10.73) 

where ∈μ {0, ..., N−1}; an application curve may be parameterized with any 
number of vertices N. 

9.1.2 Affine transforms 

The affine transformed version of a shape can be represented by the following 
equations: 
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where )(μax  and )(μay  represent the coordinates of the transformed shape. Trans-
lation is represented by matrix B, while scaling, rotation and shear are reflected in 
matrix A. Corresponding values of coefficients of A can be found in the following 
matrices: 
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 (10.75) 

If Sx is equal to Sy, AScaling represents uniform scaling and shape is not deformed 
under rotation, uniform scaling and translation. However, non-uniform scaling and 
shear contribute to shape deformation under general affine transforms.  

9.1.3 Affine invariant parameters 
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The arc length parameter observed on a closed contour transforms linearly under 
any linear transformation up to the similarity transform. Translation and rotation 
do not affect the arc length; scaling scales the parameter by the same amount. An 
arbitrary choice of a starting point only introduces a shift in the parameter. How-
ever, the arc length is nonlinearly transformed under an affine transform and 
would not be a suitable parameter in this situation [46]. 

There are two parameters which are linear under affine transforms. They are the 
affine arc length, and the enclosed area.  

The first parameter can be derived from the properties of determinants. It is de-
fined as follows: 

 ∫ −=
β

α
τ dssysxsysx 3/1)](')('')('')('[  (10.76) 

where x(s) and y(s) are the coordinates of points on the contour and α and β are the 
curvilinear abscissa of 2 points on it. 

The second affine invariant parameter is enclosed area, which is based on the 
property of affine transforms: under affine mapping, all areas are changed in the 
same ratio. Based on this property, Arbter et al.[4] defined a parameterψ , which 
is linear under a general affine transform, so that: 

 
dssxsysysx∫ −=

β

α
ψ )(')()(')(

2
1  (10.77) 

where x(s) and y(s) are the coordinates of points on the contour with the origin of 
the system located at the centroid of the contour and α and β the curvilinear ab-
scissa of 2 points on it. The parameter ψ  is essentially the cumulative sum of tri-
angular areas produced by connecting the centroid to pairs of successive vertices 
on the contour. 

9.2 Equal area normalization 
All points on a contour could be expressed in terms of the parameter of index 
points along the contour curve from a specified starting point. With affine trans-
forms, the position of each point changes and it is possible that the number of 
points between two specified points changes too. So if we parameterize the con-
tour using the equidistant vertices, the index point along the contour curve will 
change under affine transforms. For example, figure 10.36(a) is the top view of a 
plane, and (e) is its rear top view, so (e) is one of possible affine transforms of im-
age (a). Via region segmentation or edge following, we obtain the contours of the 
two planes (b) and (f). (c) and (g) are parts of the contours (b) and (f) normalized 
by equidistant vertices respectively. In figure 10.36(c), the number of points on 
the segment between the points A and B is 21; however, the number is 14 in the 
same segment in figure 10.36(g). So the contour normalised by equidistant verti-
ces is variant under possible affine transforms.  
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 (a) (b) (c) (d) 

     
(e) (f) (g) (h) 

 
Figure 10.36: The comparison of equidistant vertices normalization and equal area normaliza-
tion. (a) is the image of the top view of a plane. (b) is the contour of image (a). (c) is a part of 
contour (b) normalized by equidistant vertices. (d) is a part of contour (b) normalized by equal 

area. (e) is the image of rear top view of the plane. (f) is the contour of image (e). (g) is a part of 
contour (f) normalized by equidistant vertices. (h) is a part of contour (f) normalized by equal 

area.  

In order to make it be invariant under affine transforms, a novel curve normaliza-
tion approach is proposed, which provides an affine invariant description of object 
curves at low computational cost, while at the same time preserving all informa-
tion on curve shapes. We call this approach “equal area normalization” (EAN). 

All points on a shape contour could be expressed in terms of two functions 
))(ˆ),(ˆ()(ˆ mymxm =Γ , ]1,0[ −∈ Mm , where variable m  is measured along the contour 

curve from a specified starting point and M is the total number of points on the 
contour. The steps of EAN are presented as follows:  

1) Normalize )(ˆ mΓ to N points with equidistant vertices. The new functions are 
denoted ))(),(()( μμμ yx=Γ and all the points on the contour are μP , 
where ]1,0[ −∈μ N . 

2) Calculate the second-order moments of the contour at its centroid G. 
3) Transfer the contour to make its centroid G be the origin of the system. 

4) Point ))(),(( NyNxPN  is assumed to be the same as the first point ))0(),0((0 yxP . 
Compute the area of the contour using the formula: 
 ∑

−

=

+−+=
1

0

)()1()1()(
2
1 N

yxyxS
μ

μμμμ  (10.78) 

where )()1()1()(
2
1 μμμμ yxyx +−+  is the area of the triangle whose vertices 

are ))(),(( μμμ yxP , ))1(),1((1 +++ μμμ yxP , and centroid G (see figure 10.37). 
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Figure 10.37: The method of equal area normalization. “●” is the vertex P  of equidistant verti-

ces normalization, and “■” is the point P of equal area normalization. G is the centroid of the 
contour. 

5) Let the number of points on the contour after EAN be N. Of course, any 
other number of points could be chosen. Therefore, after EAN, each enclosed 
area partS  defined by any two successive points on the contour and the cen-

troid G is equal to NSS part /= . 

6) Suppose all the points on the contour after EAN are tP . Let ))(),(()( tytxt =Γ  

represent the contour, where ]1,0[ −∈ Nt . Select point ))0(),0((0 yxP on the 
equidistant vertices normalization as the starting point 0P ))0(),0(( yx of the 

EAN. On segment 10PP , we seek a point ))1(),1((1 yxP , so that the area 
)0(S of the triangle whose vertices are 0P ))0(),0(( yx , ))1(),1((1 yxP  and 

)0,0(G  is equal to partS . If there is no point to satisfy this condition, we seek 

the point 1P  on the segment 21PP . So area )0(S , which is the sum of the areas 

of triangle GPP 10 and triangle GPP 11 , is equal to partS . If again there is yet no 
point to satisfy the condition, we continue to seek for the point in the next 
segment until the condition is satisfied. This point 1P  is the second point on 
the normalized contour. 

7) From point ))1(),1((1 yxP , we use the same method to calculate all the other 
points ))(),(( tytxPt , ]1,2[ −∈ Nt along the contour. Because the area of each 
closed zone, e.g. the polygon GPPPP tt 11 ][ ++ Lμμ  where ]2,0[ −∈ Nt is equal 

to partS , the total area of 1−N , polygon is equal to partSN ⋅− )1( . According 

to the step 5, the area of the last zone GPPPPP NN 0111 ][ −+− Lμμ  is exactly equal 
to: 

=⋅−− partSNS )1( partpartpart SSNSN =⋅−−⋅ )1(  

From figure 10.37 we know that the area of triangle GPP tt 1+  is approximately 
equal to the area partS of polygon GPPPP tt 11 ][ ++ Lμμ  if the two points μP  and 

1+μP are close enough or the number N of the points on the contour is large 

enough. Therefore, we can use the points tP , ]1,0[ −∈ Nt to replace the points μP , 
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]1,0[ −∈ Nμ ; the EAN process is then complete. 

After this normalization, the number of vertices on the segment between the two 
appointed points is invariant under affine transforms. Figure 10.36(d) and (h) are 
the same parts of figure 10.36(c) and (g) respectively. We notice that the distance 
between the consecutive points is not uniform. In figure 10.36(d), the number of 
points between points A and B is 23, the number is also 23 in figure 10.36(g). 
Therefore, after applying EAN, the index of the points on a contour can remain 
stable with their positions under affine transforms. This property will be very ad-
vantageous when extracting the robust attributes of a contour and decreasing com-
plexity in the measurement of similarity. We can also use EAN with the other al-
gorithms, to improve their robustness with affine transforms. For example, before 
applying the curvature scale space (CSS) algorithm [32], the contour can be nor-
malized by EAN: none of the maximum points in the CSS image will change un-
der affine transforms. This is beneficial when calculating the similarity between 
two CSS attributes. 

9.3 Normalized part area vector 
In this section, we look for the existing relations between the part area partS , affine 
transforms and low-pass filtering. 
 
THEOREM1:  

Let Γa(μ)=(xa(μ), ya(μ)) be the transformed version of a curve Γ(μ)= (x(μ), y(μ)) 
under an affine transform A, where μ is an arbitrary parameter, Γaf(μ)=(xaf(μ), 
yaf(μ)) notes that Γa(μ) is filtered by a linear low-pass filter F. Let Γf(μ)=(xf(μ), 
yf(μ)) note that Γ(μ) is filtered by the same low-pass filter F, and Γfa(μ)=(xfa(μ), 
yfa(μ)) refers to the transformed version of Γf(μ) under the same affine transform A. 
The curve Γaf(μ) is then the same as curve Γfa(μ). In other words: 
F(A(Γ(μ)))=A(F(Γ(μ))). The following figure illustrates this theorem. 

Affine 
transform A

Γ 

Γ 

Γ 

Γa

Γf

Affine 
transform A

Low pas 
filter F 

Low pas 
filter F 

 
Figure 10.38: Illustration of theorem1 

 
PROOF:  

From (10.74) we have 
 ebyaxxa ++= )()()( μμμ  (10.79) 
 fdycxya ++= )()()( μμμ  (10.80) 
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For the entire contour, we transfer its centre of gravity to the origin of the system, 
so that the translation e  and f  can be removed. Therefore, the affine transform 
can be represented by two simple formulae:  
 )()()( μμμ byaxxa +=  (10.81) 
 )()()( μμμ dycxya +=  (10.82) 

The computation starts by convolving each coordinate of the curve Γa(μ) with a 
linear low-pass filter F whose impulse response is g(μ). In the continuous form 
this leads to: 

)()()( μμμ gxx aaf ∗=  )()]()([ μμμ gbyax ∗+=  
 )()()()( μμμμ gbygax ∗+∗=  )()( μμ ff byax +=  (10.83) 

where ∗  denotes the convolution. Likewise, 
 )()()( μμμ ffaf dycxy +=  (10.84) 

By comparison of equations (10.79-84), it is clear that point (xaf(μ), yaf(μ)) is the 
same as point (xf(μ), yf(μ)) transformed by the affine transform A. So curve Γaf(μ) 
is the same as curve Γfa(μ). Theorem1 indicates that exchanging the computation 
order between affine transform and filtering does not change the result. 

THEOREM2: 

For any affine transform of a closed contour, using EAN sets parameter t to pro-
duce the curve Γa(t)=(xa(t), ya(t)). If area sp(t) is the area of an enclosed sector 
whose vertices are a pair of successive points and the centroid of the contour and 
if Γaf(t)=(xaf(t), yaf(t)) indicates that Γa(t) is filtered by a low-pass filter F, then the 
changes in enclosed areas sp(t) on the Γaf(t) are linear with affine mapping as illus-
trated on figure 10.39. 
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Figure 10.39: Illustration of theorem2 

PROOF: 

In section III, we know the enclosed area sp(t) of the triangle on the filtered affine 
contour whose vertices are (xaf(t), yaf(t)), (xaf(t+1), yaf(t+1)) and the centroid G is 
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 )()1()1()(
2
1)( tytxtytxts afafafafp +−+=  (10.85) 

Due to THEOREM1,  
 )()()()( tbytaxtxtx fffaaf +==  (10.86) 
 )()()()( tdytcxtyty fffaaf +==  (10.87) 

and 
 )1()1()1()1( +++=+=+ tbytaxtxtx fffaaf  (10.88) 
 )1()1()1()1( +++=+=+ tdytcxtyty fffaaf  (10.89) 

Therefore from equation (10.85), we can write 
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 (10.90) 

Observing equation (10.90), sp(t) is just linearly proportional by a scale factor 
bcad − . Accordingly we have proved that enclosed areas sp(t) are linear with af-

fine mapping.  

DEDUCTION: 

The proportion v’(t) of closed areas sp(t) with the total area S of the filtered con-
tour is preserved under general affine transforms. 

PROOF:  

According to relation (10.90), the total area S of the filtered contour is: 
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so that 
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Equation (10.92) indicates that )(' tv  is not related to the affine parame-
ters cba ,, and d. Therefore )(' tv is preserved under general affine transforms. In 
addition, we can deduce a major property of )(' tv : the integration of 
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]/1)('[)( Ntvtv −= is equal to zero as shown by equation (10.93). 
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We refer to vector v(t) as the normalized part area vector (NPAV). Figure 10.40 
shows an example of NPAV. The contour is normalized to 512 points by EAN. 
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 (a) (b) 
Figure 10.40: An example of NPAV. (a) The contour of a butterfly. (b) The NPAV of the con-

tour (a). 

As THEOREM2 and its deduction show, in all cases, even those with severe de-
formations, the function sp(t) is also preserved. Only the amplitude changes under 
general affine transforms; the NPAV )(tv  has an affine-invariant feature. In the 
following section, we will present the results of our experiments which evaluate 
the property of the proposed algorithm. 

9.4 Experimental results 
In this section, we will evaluate the behaviour of NPAV )(tv  in relation to the af-
fine transforms, EAN, filtering and noise by presenting various experimental re-
sults. We consider the results of our experiments on the MPEG-7 CE-shape-1 da-
tabase containing 1400 images of shapes. The contours in this database yield a 
great range of shape variation. The framework of these experiments is shown in 
figure 10.41. 

 
Figure 10.41: The framework of experiments 

The input signal of the experiment is an original contour from the MPEG-7 data-
base, and the output is the maximum linear correlation coefficient between the 
NPAV v(t) of the upper pathway and that of the lower pathway. The upper path-
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way includes the affine transforms, noise power control, equal area normalization 
and the low-pass filter. The output signal of the upper pathway is the NPAV v1(t) 
of the affine contour. The lower pathway includes the equal area normalization 
and low-pass filter. The output signal of the lower pathway is the NPAV v2(t) of 
the original contour. The correlator is then applied to calculate the maximum lin-
ear correlation coefficient between NPAV v1(t) and NPAV v2(t) by shifting the 
vector v2(t) circularly. 

The four control points are presented as follows: 
 Control1 is applied to control the parameters of affine transforms. We can 
control the affine contour by respectively scaling, rotating and shearing or 
mixing the transforms. 
 Control2 controls the power of the noise. 
 Control3 controls the parameters of equal area normalization in the upper 
and lower pathways. The parameters are the number of normalized points 
and the position of the starting point. 
 Control4 is applied to simultaneously control the bandwidth of the low-pass 
filters in the upper and lower pathways. Here, the filter is a Gaussian kernel 
with a scale parameterσ  given by the standard deviation of the filter. 

9.4.1 The NPAV and scaling transforms 

The scaling transform is one of the affine transform modes. It is obtained by ap-
plying the matrix Ascaling to the contour coordinates. For a uniform scaling trans-
formation, we choose the parametric matrix  

 
⎥
⎦

⎤
⎢
⎣

⎡
=

1

1
1 0

0
γ

γ
ScalingA  (10.94) 

 

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b)

γ=0.1

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c)

γ=0.5

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(d)

γ=5

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(e)

γ=10

 
Figure 10.42: Illustration of the robustness of NPAV under uniform scaling transforms. (a) is 4 
different scale contours. (b), (c), (d) and (e) are the NPAVs of each contour in (a) respectively. 

Suppose 1γ is successively equal to 0.1, 0.5, 5, 10, for the different observed con-
tours of figure 10.42 (a): we obtain figures 10.42 (b)-(e) respectively. For the non-
uniform scaling transformation, we choose the parametric matrix  
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Suppose 2γ is successively equal to 0.1, 0.5, 5, 10, for the figure 10.43 (a): we ob-
tain figures 10.43 (b)-(e) respectively. 
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Figure 10.43: Illustration of the robustness of NPAV under non-uniform scaling transforms. (a) 
is 4 different scale contours. (b), (c), (d) and (e) are the NPAVs of each contour in (a) respec-

tively. 

Figures 10.42 and 10.43 show that although the shape of the butterfly changes 
with scaling, the NPAV remains identical.  
Furthermore, we calculate statistical results. For all the shapes in the database, the 
average correlation between the NPAV of the original shape and that of its scaling 
transforms under matrixes Ascaling1 and Ascaling2 is presented in Table 10.2. 

TABLE 10.2: CORRELATION WITH THE SCALING TRANSFORMS 
 Correlation coefficient 
γ1/γ2 Uniform Non-uniform 
0.1 0.999 0.972 
0.5 0.999 0.985 
5 0.999 0.980 
10 0.999 0.976 

Table 10.2 shows that the uniform scaling transform has practically no effect on 
the NPAV of the contour and that non-uniform scaling affects the NPAV only a 
little. So the NPAV is very robust under scaling transforms. 

9.4.2 The NPAV and rotation transforms 

As stated before, a rotation transform is obtained by applying the matrix ARotation to 
the contour coordinates. Let the rotation angles θ be 60°, 120°, 180°, 240° and 
300°. The position of the starting point of a contour is unchanged. Figure 10.44 
shows the rotated copies of the pattern on Figure 10.40(a) and their NPAVs. As 
can be seen in figure 10.44, all the NPAVs are identical. Furthermore, we present 
the statistical results. For all the shapes in the database, the average correlation be-
tween the NPAV of the original shape and that of its rotated transforms under the 
rotation angles θ is presented in Table 10.3. 
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Figure 10.44: Illustration of the robustness of NPAV under rotation: (a)-(e) are the same contour 

with 5 different orientations. (f)-(j) are the NPAVs of each contour in (a)-(e) respectively.  

TABLE 10.3: CORRELATION WITH THE ROTATION TRANSFORMS 
θ Correlation coefficient 

60° 1.000 
120° 1.000 
180° 1.000 
240° 1.000 
300° 1.000 

In this way, as the position of the starting point does not change so that the 
NPAVs maintain their invariance. 

9.4.3 The NPAV and shearing transforms 

As introduced in subsection 9.1.2, a shearing is obtained by applying the matrix 
AShear to the contour coordinates. Let the shearing parameter k be successively 
equal to 0.1, 0.5, 5 and 10. Suppose the position of the starting point of the con-
tour remains unchanged. Figure 10.45 shows the shearing copies of pattern figure 
10.40(a) and their NPAVs. 
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Figure 10.45: Illustration of the robustness of NPAV under shearing transforms. (a)-(d) are the 
same contour with 4 different shearing transforms. (e)-(h) are the NPAVs of each contour in (a)-

(d) respectively. 
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We further calculate the statistical results. For all the shapes in the database, the 
average correlation between the NPAV of the original shape and that of its shear-
ing transform under shearing parameter k is presented in the Table 10.4.  

TABLE 10.4: CORRELATION WITH THE SHEARING TRANSFORMS 
k Correlation coefficient 

0.1 0.989 
0.5 0.987 
5 0.980 
10 0.972 

The three above experiments indicate that the descriptor NPAV is relatively af-
fine-invariant. As shown below, we will evaluate the effect of equal area normali-
zation (EAN) under the same affine transform. Suppose the contour rotates 60° 
counter clockwise and the shearing parameter k is 1.5. The affine matrix is 
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Adjust ‘Control2’ to let the power of noise be 0. Adjust ‘Control4’ to let 10=σ . 
The contents of the experimental set include the two following aspects: the rela-
tion between the NPAV and the number of points normalized by EAN and the re-
lation between the NPAV and the position of the starting points on a contour. The 
results are presented in subsections 9.4.4 and 9.4.5. 

9.4.4 The NPAV and the number of points normalized by EAN 

The number of points on the contour is normalized to 64, 128 and 256. Figure 
10.47 shows the original and the affined contours of the pattern in figure 10.41(a) 
with various numbers of points and their NPAVs.  
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Figure 10.46: Illustration of the robustness of NPAV under the contour normalized to different 
number of points. (a)-(c) are the original and affine contours normalized to 64, 128 and 256 re-

spectively. (d)-(f) are the NPAVs of the two contours in (a)-(c) respectively. 
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We notice that although the NPAVs of the contour with different numbers of 
points are very different from each other, the NPAV of the affine contour and that 
of original contour are almost identical under the same number of points normal-
ized by EAN. Table 10.5 presents the statistical results. It shows that under the 
different number of points normalized by EAN, the NPAV changes slightly under 
affine transforms. 

TABLE 10.5: CORRELATION UNDER DIFFERENT NORMALIZED NUMBER OF POINTS 
Number of points Correlation coefficient 

64 0.985 
128 0.992 
256 0.993 

9.4.5 The NPAV and the position of the starting point 

Suppose the position of the starting point (SP) is located on the different positions 
‘1’, ‘2’, ‘3’ or ‘4’, as illustrated on figure 10.47(a)-(d). These positions are located 
at 12.5%, 25%, 37.5% and 50% of the original starting with 100% corresponding 
to the total number of points. Suppose the contour is normalized to 256 points. 
figure 10.47 shows the effect of different starting points to the NPAV of the origi-
nal and affine contours. 
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Figure 10.47: Illustration of the robustness of a NPAV with various positions of the starting 
point. (a)-(d) are the original and the affine contours with the starting point located at position 1-
4 respectively. ‘☆ ’is the position of the starting point on the original contour; ‘ • ’’is the position 

of the starting point on the affine contour . (e)-(h) are the NPAVs of the two contours with dif-
ferent positions for the starting point in (a)-(d) respectively. 

As obvious from figure 10.47, the NPAV of various starting point positions are 
topologically identical except for a ‘circular’ delay. In this way, a shift in the start-
ing point is equivalent to a circular delay in the NPAV. 

We further calculate the statistical results. To calculate the correlation between the 
NPAV of the original contour and that of its affine transforms with a shift of start-
ing point, we move the NPAV of the original shape point by point and search for 
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the highest value of the correlation. For all the shapes in the database, the average 
correlations of the various starting point positions under the same number of 
points normalized by EAN are presented in the Table 10.6.  

As can be seen in the table, the position of the starting point on the contour does 
not affect the robustness of the NPAV.  

TABLE 10.6: CORRELATION UNDER DIFFERENT POSITION OF STARTING POINT 
Starting point shift  Correlation coefficient 
12.5% 0.989 
25% 0.987 
37.5% 0.974 
50% 0.972 

9.4.6 The NPAV and noise 

For different reasons, it happens that the curve undergoes perturbations so that it 
becomes noisy. To reduce the effect of noise, the curve is first smoothened by ap-
plying a low-pass Gaussian filter of standard deviation set to 2=σ . The NPAVs 
and their shape contaminated by the random uniform noise with different SNR are 
presented in figure 10.48. It reveals that the NPAV is quite robust to boundary 
noise and irregularities, even in the presence of severe noise. It is clear that, as the 
noise amplitude increases, the contours become more and more fuzzy. In order to 
calculate the average correlation coefficient, we do the experiments by contami-
nating the test contours with random uniform noise ranging from high to low SNR 
affecting the database. 

Table 10.7 shows the average correlation coefficient of all the NPAVs of shapes 
in the database under different SNR.  
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Figure 10.48: Demonstration of NPAV under the condition of different SNR. (a)-(d) are the con-
tour contaminated by different noise power. (e)-(h) are the NPAVs of contours in (a)-(d) respec-

tively. 

This shows the NPAV’s suitability for use in noisy conditions. By analyzing the 
experimental results, we notice that NPAV is quite robust to scale, orientation, 
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shearing of objects, noise and the position of starting point. Therefore, NPAV can 
be used to characterize a pattern for recognition purposes.  

TABLE 10.7: CORRELATION UNDER DIFFERENT SNR 
SNR Correlation coefficient 
40dB 0.964 
35dB 0.963 
30dB 0.949 
25dB 0.898 

9.4.7 Evaluation on pattern retrieval  

In order to assess the retrieval performance, we create affine transformed versions 
of our existing shape contours. Suppose the contour rotates θ counter-clockwise, 
and the shearing parameter is k. The matrix A is then constructed as follows. 
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Let us consider 5/2 πθ n=  with n=0, 1, 2 and 4, and k=1 and 2. Therefore, 10 af-
fine transforms are applied to each contour so that the new database consists of 

14000101400 =×  transformed contours. The similarity measure between two 
NPAV attributes,v1(i) and v2(i), i=0, 1, …, N-1 ]1,0[),(),( 21 −∈ Niiviv  can be 
represented by the following functions: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

−

=

−

=

1

0
21

1

01 )()(min
N

i

N

n
jvivd  ⎥

⎦

⎤
⎢
⎣

⎡
−−−= ∑

−

=

−

=

1

0
21

1

02 )()1(min
N

i

N

n
jviNvd  (10.98) 

where
⎩
⎨
⎧

−>+−+
<++

=
1,

,
NniNni
Nnini

j  

Then similarity is given by: 

 ),min( 21 ddd =  (10.99) 

Figure 10.49 gives examples of the retrieval results. Each example is presented in 
two rows, starting with the input query on the left-hand side and followed by the 
outputs from the system in response to that query. It denotes the first 20 retrieved 
contours and their similarity distance d. 

We notice that all 10 affine transforms of the query contour appear in the first 10 
images. And the similarity distance of the first non-relevant contour is much 
greater than that of related contours. So, we can retrieve the similar contours eas-
ily. For the 1400 query original contours, the statistical average distance of the 
first 10 related contours is only 31.5% of the average distance of the first non-
relevant contour. 

All these previous results indicate that NPAV stays robust under affine transforms. 
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Figure 10.49: Illustrative retrieval results obtained by the multi-scale NPAV. 

10 Conclusion 

In this chapter we have studied and compared the methods of shape-based feature 
extraction and representation. About 40 techniques for extraction of shape features 
have been shortly described, referenced in a bibliography and syntheticaly com-
pared. Unlike the traditional classification, the approaches of shape-based feature 
extraction and representation were classified by their processing approaches. 
These processing approaches included shape signatures, polygonal approximation 
methods, spatial interrelation feature, moments approaches, scale-space methods 
and shape transform domains: in such way, one can easily select the appropriate 
processing approach. A synthetic table has been established for a fast and global 
comparison of the performances of these approaches. 

To go more deeply in shape based feature extraction we have also described and 
evaluated a new method designed for extracting invariants of a shape under affine 
transform. Our representation is based on the association of two parameters: the 
affine arc length and the enclosed area, viz. we normalize a contour to affine-
invariant length by the affine enclosed area. For the needs of this new approach, 
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we proved two theorems and a deduction. They revealed that, for a filtered con-
tour, the part enclosed area is linear under affine transforms. We further defined 
the affine-invariance vector: the normalized part area vector (NPAV). After a 
number of experiments applied to the MPEG-7 CE-shape-1 database, we demon-
strated that NPAV is quite robust with respect to affine transforms and noise, even 
in the presence of severe noise. 
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