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I. INTRODUCTION

We propose to build a system able to learn motor primitives
from simultaneous demonstrations of several such primitives.
Our approach is based on compact local descriptors of the
motor trajectory similar to those used to learn acoustic words
amongst sentences or objects inside visual scenes.

Learning by demonstration aims at making robots able to
learn from human demonstrations of motor skills. Learning
complex skills in a life-long perspective requires to recognize
and re-use common parts between those skills to avoid learning
them over and over, but also to allow the complexity of learned
skills to increase.

A challenge of learning by demonstration is to make it
accessible to non-expert public which would not adapt to
complex requirement such as the decomposition of each
demonstration in low level building blocks.

A. Combinations of motor primitives

Motor primitives have been introduced as a form of
such preliminary knowledge, and may be used as elementary
building blocks for more complex motor control and skills.
They can both be found in biological and robotic systems,
and can be either innate or aquired [1].

The main function of an aquired motor primitives is to make
motor knowledge and skills re-usable, in a modular way, and
to provide high level motor command instead of a trajectory
level of control.

The notion of combination of motor primitives can take
different forms depending both on the kind of combination
one wants to achieve and on the definition and representation
one has in mind for the concept of motor or sensori-motor
primitives. For example, it is possible to combine alternative
primitives in a context dependent manner, to compose them as
functions taking inputs and producing outputs, to stack them
in successive time sequences, or to treat them as constraints
that can be satisfied in a parallel, competing or subordinate
manner.

B. Related work achieving combination of motor primitives

Primitives combined in an alternative way, often called ex-
perts, are present in Gaussian mixture encoding of movement
[2], and more recently on a higher level of complexity, in work
from Grollman et al. [3]. Calinon and Billard have shown [4]
that it is possible to produce action from simultaneously active

motor primitives, represented in Gaussian mixture framework,
both for the competing and subordinate combination.

Time sequences of motor primitives are studied in the
following, very different approaches: as time signals by Li
et al. [5], using dictionary learning techniques, byusing the
dependancy relationships between successive motor primitives
[6] , and as an extension of the reinforcement learning frame-
work by Sutton et al. in the option framework [7] . Again,
those works does not handle the kind of simultaneous primitive
we are interested in.

None of them actually handle the introduced issue of
learning primitives simultaneously active in demonstrations.

II. EXPERIMENTAL SETUP

As stated in previous section, very few work tries to learn
the motor primitives when they are simultaneously demon-
strated. A first step to adress this issue is to learn movements
that are only active on certain degrees of freedom of the
system, for example independent movements on different
limbs. We thus propose an approache to tackle this issue.

A. Problem settlement

We are interested in learning motor primitives that are hap-
pening simultaneously in demonstrations and that we can, in
first approximation consider as independent. Such a situation is
present in dancing movements: choregraphies are composed of
elementary postures and transitions that happen independently
on different limbs, in the same way that different instruments
simultaneously take part in an orchestra.

We consider a two arm robot and two sets of movements,
associated respectively to left and right arm. We provide
the system with demonstrations each composed of one left
arm movement and one right arm movement, simultaneously
executed. Movement pairs are chosen randomly.

Our objective is to make the system able to learn mo-
tor primitives, and use them to represent demonstrations as
pairs of learned primitives, instead of learning each particular
demonstration in a flat manner. For a sufficient number or
primitives, the former achieves better compression than the
latter.

B. Movement representation and features

Movements are represented as time sequences of positions.
However, by introducing some time related features such as



velocities along with the position vector, we obtain a sequence
of vectors from a new feature space, whose samples may
be approximated as independent. In such an approximation
movement may be represented by the probability distribution
on those samples.

However trying to represent this distribution over the whole
feature space lead to high dimensional descriptors, heavy to
store and compare. We thus make a further approximation by
considering separate distributions on each degree of freedom,
and we represent those distribution by simple histograms.

This approximation is not meant to provide a complete
representation of a motor skill but to allow efficient and cheap
discriminative representation of motor skills. Indeed it is easier
to efficiently represent a motor skill when relevant degrees of
freedom to this motor skill are known. However one needs an
efficient method to simultaneously discover both the primitives
and their relevant degrees of freedom.

In the following we build feature vectors by concatenating
position histograms on the different joints or degrees of
freedom of our system.

C. Unsupervised learning of motor primitives with non-
negative matrix factorization

Histograms introduced in previous section, and their combi-
nations in the case of simultaneous primitives fit well the ad-
ditive properties required by non-negative matrix factorization
(NMF) [8], which is an efficient technique to discover non-
negative composants of a signal in an unsupervised scenario.

NMF takes as input a data matrix X of dimension n × p
where n is the number of demonstrations, and p the dimension
of our fearures space. Those data are assumed to be non-
negative, which is true for the histogram features. Here p
is the sum of resolution of histograms, wich typicaly is
DOF× resolution.

Given a parameter k, NMF then provides two non-negative
matrices W and H , of dimension respectively n× k and k×
p, such that X ' W · H . Lines of H provide a basis of
prototypical elements of the data, that is to say some kind of
motor primitives. The coefficients of W are then interpreted as
the degree of activity of those primitives in the demonstrations.

D. Preliminary results

We use a database of movements captured on two six
degrees of freedom robotic arms. 5 different movements have
been associated to each arm, with 20 demonstration of pairs
of thos movements. Data is acquired through joint position
sensors integrated to motors, at a frequency of 50Hz.

The obtained database of one hundred pairs of examples is
then presented to the system, which has to discover elementary
histograms corresponding to motor primitves, without being
given the labels.

In a first experiment we use the known number of primitives
as the parameter of the NMF algorithm, in order to compare
discovered primitives and real primitives.
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Fig. 1. Activity coefficients of the learned motor primitives. Each line
corresponds to a primitive, each column to a demonstration. Both graphics
represent the same data, but ordered differently by demonstration. The first
one is ordered according to left movement label, and thus columns 0 to 19
corresponds to first movement on left arm, 20 − 39 to second movement
etc. On second graphics one can read more easily activations of right arm
movements. Blocks of dark coefficients corresponding to a given movement
in the demonstration indicates that one learned primitive is well associated to
this movement.

REFERENCES

[1] J. Konczak, “On the notion of motor primitives in humans and robots,” in
Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems, vol. 123. Lund University Cognitive
Studies, 2005, pp. 47–53.

[2] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot.” IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE
Systems, Man, and Cybernetics Society, vol. 37, no. 2, pp. 286–98, Apr.
2007.

[3] D. H. Grollman and O. C. Jenkins, “Incremental Learning of Subtasks
from Unsegmented Demonstration,” in IROS, Taipei, Taiwan, 2010.

[4] S. Calinon and A. G. Billard, “Statistical Learning by Imitation of Com-
peting Constraints in Joint Space and Task Space,” Advanced Robotics,
vol. 23, pp. 2059–2076, 2009.

[5] Y. Li, C. Fermuller, Y. Aloimonos, and H. Ji, “Learning shift-invariant
sparse representation of actions,” in 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. San-Francisco:
IEEE, Jun. 2010, pp. 2630–2637.

[6] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments.” IEEE transactions on systems, man, and cybernetics. Part B,
Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics
Society, vol. 37, no. 2, pp. 322–32, Apr. 2007.

[7] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[8] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization.” Nature, vol. 401, no. 6755, pp. 788–91, Oct. 1999.


