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Abstract

Information is said to be bipolar when it has a positive and a negative
part. The problem of representing and processing such bipolar information
has recently received a lot of attention in uncertainty theories. In this
paper, we are concerned with the representation of asymmetric bipolarity,
i.e., with situations where positive and negative information are unrelated
and processed in parallel. In this latter case, positive information consists
in observations of experiment results showing what values are possible,
while negative information consists in constraints (e.g., provided by an
expert) restricting the range of possible variable values. Up to now, there
are no proposition as to how such bipolar information can be treated in
the framework of imprecise probability theory, i.e., when information is
represented by convex sets of probabilities. In this paper, we propose the
basis of such a framework, and provide some illustrative examples.

1 Introduction
Information about a given variable usually comes in different forms and from
various sources. Recently, there has been a growing interest in the handling of
bipolar information. Information is bipolar when one can differentiate between
a positive and a negative part in the information. Such information usually
concerns either evidences about the true value assumed by an ill-known variable,
or preferences expressed by one or more agent. In this paper, we are concerned
with the first type of information. One can consider at least three different types
of bipolarity (See Dubois and Prade [24] for more details). The first one, called
symmetric univariate, models bipolarity by the use of an univariate scale and
can be represented by the means of classical probability measures. The second
one, called a symmetric bivariate scale, handle two separate unipolar scales
(positive and negative) that refer to the same information and are usually linked
by some duality relation. Lower and upper previsions [39, 33] are examples of
this kind of bipolarity, as well as other uncertainty models encompassed by this
representation (Belief and plausibility functions [35], possibility and necessity
measures [20]).

1



The last type of bipolarity, coined as asymmetric or heterogeneous, is the one
addressed in this paper. Such bipolarity arise when negative and positive infor-
mation parts are two unrelated kinds of information that have to be processed
in parallel: one asserting what is impossible (negative information), the other
what can exist (positive information). Negative information can correspond to
constraints over possible values expressed by physical laws, expert opinions, etc.
Examples, observation and measurements are instances of positive information.
Note that the two kinds of information are effectively unrelated, as an expert
opinion (or a model prediction) declaring some values as impossible does not
imply that all the others can or will be observed, hence the need for asymmetry.
This need is further confirmed by some psychological studies [9] supporting the
fact that the brain processes differently positive and negative information.

The notion of bipolarity have been declined in a number of application areas
and theoretical frameworks: multicriteria decision making [29], conflict resolu-
tion in argumentative frameworks [2], uncertainty and preferences representa-
tion [24], spatial reasoning [8], database querying [23], . . . . The processing of
bipolar information within uncertainty theories has already been discussed in
the frameworks of possibility theory [24] and of the transferable belief model [36].
However, to the best of our knowledge, the processing of bipolar information
when information is modelled by convex sets of probabilities, or so-called credal
sets [31], has not been considered so far.

The purpose of this paper is to lay out a basic framework to represent and
process bipolar information when information is modelled by such credal sets.
The idea behind this framework is simple and can be summarised in two main
steps:

1. the first step consists in collecting negative and positive information sep-
arately, and to represent each corpus of information by separate credal
sets;

2. the second step consists in merging positive and negative information in a
single representation, possibly coping with conflicting or new information
in the process.

After recalling the basics of credal sets [31] and their relation with Wal-
ley’s [39] lower previsions, Section 2 presents our proposition, i.e. how bipolar
information can be modeled and processed with credal sets. Section 3 then
provides some illustrative examples using some practical imprecise probabilistic
representations (i.e., p-boxes, probability intervals and possibility distributions).

2 Handling bipolar information with credal setss
This section first recalls the basics of credal sets [31]. Our proposition as to
how bipolar information should be processed with such representations is then
detailed in other subsections.

Credal sets [31], or convex sets of probabilities, are very general models of
uncertainty that encompass most known uncertainty models. They therefore
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provide an attractive and unifying framework to model and reason under un-
certainty. As uncertainty representations, they are equivalent to Walley’s [39]
coherent lower previsions, that extends de Finetti’s previsions [26] by integrating
imprecision to them.

2.1 Credal sets and lower previsions
In this paper, we consider a variable X assuming its values on a space X made
of mutually exclusive elements and whose exact value is ill-known or uncertain.
We also assume that this uncertainty is modelled by the means of a credal set
P, or convex set of probability distributions over X . We denote by L(X ) the
set of real-valued bounded functions on X . Given a function f ∈ L(X ), one can
compute the lower and upper expectations EP(f),EP(f) induced by P such
that

EP(f) = inf
p∈P

Ep(f) EP(f) = sup
p∈P

Ep(f),

where p is a probability distribution over X and Ep(f) the expected value of
f w.r.t. p. These two values are dual, in the sense that EP(f) = −EP(−f).
Thanks to this duality, one can only work with one of the two mappings (usually
E).

Alternatively, one can start from a lower mapping P : K → R from a subset
K ⊆ L(X ), and consider the induced credal set P(P ) such that

PP = {p ∈ PX |(∀f ∈ K)(Ep(f) ≥ P (f))}.

with PX the set of all probability mass functions over PX . In his theory of lower
previsions [39], Walley starts from the mapping P that he calls lower prevision.
He interprets P (f) as the supremum buying price for the uncertain reward f . A
lower prevision P is then said to avoid sure loss iff PP 6= ∅, and to be coherent
if the lower expectation EPP (f) = P (f) coincides with P for every f ∈ K (i.e.,
P is the lower envelope of PP ). He also shows that coherent lower previsions
and credal sets have the same expressive power (in the sense that any credal can
be identified by a unique lower prevision, and vice versa). Given a credal set
P, its lower (resp. upper) probability of an event A, denoted by PP(A) (resp.
PP(A)), corresponds to the lower (resp. upper) expectation of the indicator
function 1(A) of the event , that takes value one on A and zero elsewhere. By
duality, we have PP(A) = 1− PP(Ac).

Note that credal sets and coherent lower previsions are very general models,
in the sense that they encompass most of the other uncertainty models pro-
posed in the literature [40]. In particular both necessity measures of possibility
theory [20] and belief measures of evidence theory [35] correspond to particular
classes of lower probabilities inducing specific credal sets. We now detail the
two main steps of bipolar information handling: information representation and
merging.
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2.2 Collecting and representing bipolar information
Similarly to what is done in possibility theory [24] and other frameworks [29, 36],
we propose to model positive and negative information by using two separate
models of our chosen framework. That is, positive information is modelled by
a credal set P+, while negative information is modelled by another credal set
P−.

Negative information (P−): Negative information expresses constraints about
the value X can assume. It rules out some values, considering them as impos-
sible, or less likely than others. It can come from expert opinion about some
particular events, or from the answer of some model for which X is the out-
put value. The negative credal set P− corresponding to such information will
typically be induced by a collection of expectation bounds over a set of chosen
functions1 f1, . . . , fk ∈ L(X ), in the form

P (fi) ≤
∑
x∈X

f(x)p(x) ≤ P (fi). (1)

In many situations, functions f1, . . . , fk will be some indicator functions of
events A1, . . . , Ak, and the negative information will consists in lower and up-
per bounds over such events. Note that pieces of negative information are
treated conjunctively, in the sense that we consider the credal set induced by
all constraints (1) at once. This means that the more we accumulate negative
information, the more precise is P−. We assume here that P− 6= ∅ (i.e., the
lower prevision P given by Eq. (1) avoids sure loss).

Positive information (P+): Positive information consists most of the time
in a set of observations or of experiment results. Here, we consider that they
consists in a set of m data or observations {x1, . . . , xm}. However, these data
or observations alone are not sufficient by themselves to obtain a credal set P+.
A classical means to build a credal set P+ from these data is to associate the m
observations with a statistical model and a learning process. For example, multi-
nomial data can be associated to the well-known Imprecise Dirichlet model [7],
or to some confidence intervals derived from empirical frequencies [17]. Again,
such models usually become more and more precise as more data are accumu-
lated and we can consider that positive information is accumulated conjunctively
as well. Such a behaviour can be explained by the fact that the space X is com-
posed of mutually exclusive elements, meaning that observing one value more
often makes the others less likely.

Remark 1 There are cases where either positive or negative information should
be combined disjunctively instead of conjunctively.

Smets [36], when combining reasons to belief and reasons not to belief, pro-
pose a rule that combines disjunctively negative information and conjunctively

1For example, functions corresponding to some chosen events, or to moments such as the
mean or the variance.
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positive information. However, he works at a different level from ours, since we
work directly with knowledge (i.e., information) about variables, and not with
knowledge about evidences (i.e., meta-information).

In their possibilistic approach, Dubois and Prade [24] also work directly with
knowledge about variables, but propose to combine positive information disjunc-
tively and negative information conjunctively. However, their proposition con-
cerns variables taking their values on a conjunctive space X , i.e., the true value
of X can be several values of X (in their example, the opening hours of a mu-
seum). In that case, it appears natural to combine disjunctively positive infor-
mation, as observing a particular value does not make the others less likely.

2.3 Merging bipolar information
Once negative and positive information have been collected and represented, it
is desirable to combine them into a unique representation, making the most of
each information part. Such a unique representation then allows one to infer
more precise conclusions than the conclusions one could have infer from each
information part alone. This unique representation should also be coherent with
both positive and negative information.

As both negative and positive information are modelled by the means of
credal sets, it seems natural to merge them through a conjunctive combination
operator. The final representation is then the credal set

P+∩− := P+ ∩ P−

resulting from the conjunction of P+ and P−, provided the set P+∩− 6= ∅ is
not empty. Note that this conjunction can again be associated to operations
done on lower previsions (see [38, 16] for details). Note that a simple necessary
condition for P+∩− 6= ∅ is the following:

Proposition 1 P+∩− 6= ∅ implies that, for any f ∈ L(X ),

max(EP−(f),EP+(f)) ≤ min(EP−(f),EP+(f))

Proof Immediate, since for any probability distribution p ∈ P+∩−, we have

max(EP−(f),EP+(f)) ≤ Ep(f) ≤ min(EP−(f),EP+(f))

Now, it may be possible that positive and negative information conflict with
each other, i.e. that P+∩− = ∅. In such a case, it is desirable to restore
consistency through some revision process. As in [24], we propose to weaken
one type of information to restore consistency. Given a parameter ε ∈ [0, 1] and
a credal set P, let us first define the ε-discounted credal set Pε as

Pε = {εpP + (1− ε)p|pP ∈ P, p ∈ PX }. (2)

When positive and negative information conflict, then it seems reasonable to
weaken one of the two state of information by a value ε such that they are no
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longer conflicting. Note that the value ε is often interpreted as the reliability
of the given information. When dealing with knowledge about the value of
a variable, direct observations are usually judged more reliable than negative
information (as this latter one often comes from models or experts), and it seems
more reasonable to revise P− rather than P+. A solution to restore consistency
is to consider the minimal value ε∗ such that P−,ε∗ is consistent with P+, i.e.,

ε∗ = min {ε ∈ [0, 1]|P−,ε
∗
∩ P+ 6= ∅} (3)

and then take P−,ε∗ ∩ P− as our final state of knowledge. However, note that
the above (minimal) revision can lead to an overly precise final information state
(as will be shown in the examples of Section 3), and one may well consider some
value ε ≥ ε∗ (for instance, coming from some previous reliability assessment
about the information sources).

In principle, the same revision process can be applied to P+, instead of P−.
As pointed out in [24], this strategy is often more suited to cases where infor-
mation represent preferences rather than knowledge about a variable. However,
it could be used in the case of knowledge representation when the reliability of
observations is questionable.

2.4 Revising knowledge with new piece of information
Another case where keeping track of positive and negative information sepa-
rately can be of importance is when we learn a new piece of information from
some source. This new piece of information can be positive information, i.e.,
new observations, or negative information, given as a credal set P−new described
by new constraints.

In both cases, we can argue that it is desirable to add this new piece of
information to its proper corpus of knowledge before merging the information,
rather than adding the new piece of information to the merged information.
Namely, it is desirable to revise the model P+ by considering old and new
observations when the new information is positive, and to revise P− into P ′,−
such that P ′,− = P−new ∩ P− when the new information is negative.

Indeed, the following situation may happen: the new piece of information
P−new is not conflicting with P−, i.e. P−new ∩P− 6= ∅, while it is conflicting with
the merged knowledge, in the sense that P−new ∩ P+∩− = ∅. Thus, there would
be no problem in adding this new piece of information to P−, since it does
not conflict with it, while it would be conflicting with the merged information
P+∩−.

In this latter case, a safe behaviour would be to merge disjunctively the new
piece of information with the merged one (i.e., compute P−new ∪P+∩− ), as one
would no longer be able to tell the difference between negative and positive
information in P+∩−. This could lead to a possible bigger loss of information
than if we had added P−new directly to its proper corpus of information (again,
this will be illustrated in the examples of Section 3). Moreover, the two final
representations would not be the same.
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3 Illustrative examples
The above framework to deal with bipolar information is quite general, in the
sense that it can be applied to any credal set. However, computations with
such generic models can be fastidious, and it is often desirable to work with
simple models for which computations are more tractable. In this section, we
provide some illustrative examples using some popular imprecise probabilistic
models, for which the above scheme can be easily applied. The chosen examples
represent situations that are likely to be encountered in practical situations (e.g.,
risk analysis, classification problems, . . . ).

We provide for each example a means to build a representation from positive
and negative information. We then detail how the information merging can be
done with the representations, including how revision can be performed in case
of conflicting information, and finally we provide a numerical example.

3.1 p-boxes
A p-box [25], denoted by [F , F ] and defined on the real line R, is a pair of lower
and upper cumulative distributions describing our uncertainty about the value
of a given random variable. They consist in lower and upper probabilities given
over events of the type (−∞, x]. P-boxes are very often used in risk analysis
where variable values are ill-known. A p-box induce the credal set P[F,F ] such
that

P[F,F ] = {p ∈ PR|∀x ∈ R, F (x) ≤ P ([−∞, x]) ≤ F (x)}

Positive information: Following [25], it is possible to derive a p-box from
a set of (i.i.d.) observations (x1, . . . , xm) by using Kolmogorov-Smirnov confi-
dence limits to define bounds around the empirical distribution Fm, making no
assumption about the distribution form. The distribution Fm is defined as

Fm(x) =



0 for x ≤ x(1)
...

i/n for x(i) ≤ x ≤ x(i+1)

...
1 for x(m) ≤ x

where x(i) are the ordered sample values (i.e., x(i) ≤ x(j) if (i) ≤ (j)). Given the
unknown distribution F , we denote by DKS the maximal deviation such that

DKS = max {|F (x(i))− i/m|, |F (x(i))− i−1/m||i = 1, . . . ,m}.

DKS is a random variable whose exact distribution is unknown, but Kolmogorov
has shown that

√
mDKS has a limiting distribution that allows to define, for each

confidence level α ∈ [0, 1], a value Dm(α) such that P (DKS ≤ Dm(α)) ≤ 1−α.
Given a level α, we then define a p-box [Fm, Fm] such that

Fm = max(0, Fm −Dm(α)) and Fm = min(1, Fm +Dm(α))
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We denote by [F , F ]
+

the p-box generated by the accumulation of positive
information, and P+

[F,F ]
the credal sets induced by this p-box.

Negative information: Asking percentile estimations to an expert is a clas-
sical elicitation method [10]. However, the reliability of precisely estimated
percentiles may be questionable, and an expert may be more comfortable in
providing interval estimations rather than point estimations. Here, we consider
that an expert can give imprecise evaluations of percentiles, that is a set of
increasing values (x1, . . . , xm) with xi ∈ R is fixed and the expert provides esti-
mations of the probabilities of events2 [−∞, xi] for i = 1, . . . ,m. Other ways by
which a p-box could be built using negative information include using bounds
resulting from some uncertainty propagation through a physical model [30, 5].
We denote by [F , F ]

−
the p-box shaped after negative information, and P−

[F,F ]

the induced credal set.

Merging: When both P+

[F,F ]
and P−

[F,F ]
are induced by p-boxes, it is known [18]

that the credal set P+

[F,F ]
∩ P−

[F,F ]
is still induced by a p-box [F , F ]

−∩+
such

that
[F , F ]

−∩+
= [max{F−, F+},min{F−, F+}].

This means that in the particular case of p-boxes, calculations of the final rep-
resentation is straightforward, at least in the case where positive and negative
information are not conflicting. Treating exactly conflicting information is more
difficult, as applying Eq. (2) to a credal set induced by a p-box does not usually
result in another credal set induced by a p-box. However, given a value ε, the
p-box [F , F ]

ε
= [F ε, F

ε
] such that F ε = εF and F

ε
= εF + 1 − ε gives an

outer approximation of Pε. Such a procedure simply comes down to only retain
from Pε the information concerning the lower and upper probabilities on events
[−∞, x].

Numerical example: Assume that variable X evolves between [0, 16] and
that 10 samples (1; 1.5; 3; 3.5; 4; 6; 10; 11; 14; 15) have been collected concerning
this variable. Given a classical confidence level α of 0.95, the value D10(0.95) =
0.40925.

An expert also provides his opinion about the probabilities that the variable
is lower than the values 4, 8, 12, 16, in the form of the following lower and upper
bounds: [0, 0.2], [0.1, 0.3], [0.5, 0.7].

Figure 1 displays the p-boxes resulting from negative and positive informa-
tion, as well as the resulting merged p-box. In this case, they are non-conflicting.

2Note that the reverse can also be done, i.e., the expert is given a set of probability values
from 0 to 1 and is asked to provide intervals in which these percentiles fall.
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Figure 1: Illustrative example: p-boxes

3.2 probability intervals
Probability intervals [13] are lower/upper probability bounds given on singletons
x ∈ X . Probability intervals can thus be described by a set L = {[l(x), u(x)]|x ∈ X}
of intervals. They induce a credal set PL such that

PL = {p ∈ PX |∀x ∈ X , l(x) ≤ p(x) ≤ u(x)}.

Necessary and sufficient conditions for probability intervals to induce a non-
empty credal set and to be exact lower/upper probabilistic bounds are provided
by [13]. They can be summarized by the conditions that, ∀x ∈ X , u(x) +∑
y∈X\x l(y) ≤ 1 and l(x) +

∑
y∈X\x u(y) ≥ 1

Positive information: There exist mutliple models to compute confidence
bounds on multinomial data with only a limited number of samples. This can
be done, for instance, by considering statistical confidence intervals over multi-
nomial data [28] or by using the so-called Imprecise Dirichlet Model (IDM) [7].
In this paper, we have retained the latter option, which is the commonest when
working with imprecise probabilities. Letm be the total number of observations,
m(x) the number of times an element x ∈ X has been observed, and s ∈ [0,∞]
a positive hyperparameter. Probability intervals derived from the IDM are such
that, for anyx ∈ X ,

l(x) =
m(x)

m+ s
and u(x) =

m(x) + s

m+ s
. (4)

We will denote by L+ the set of probability intervals obtained in this way, and
by P+

L the induced credal set.

Negative information: As for p-boxes, negative information can be provided
by some experts or by a propagation through a model such as a decision tree [1]
or a credal network [12]. We denote by L− the obtained probability intervals
and by P−L the induced credal set.
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x1 x2 x3
u 0.3 0.9 0.2
l 0.1 0.7 0

x1 x2 x3
u 0.4 0.8 0.3
l 0.2 0.4 0

x1 x2 x3
u 0.3 0.8 0.1
l 0.2 0.7 0

Table 1: Probability intervals L+ (above left), L− (above right) and L+∩−

(bottom middle)

Merging: As in the case of p-boxes, the credal set P+
L ∩P

−
L resulting from the

merging of two probability intervals is again induced by a probability interval.
Probability intervals L+∩− inducing P+

L ∩ P
−
L are such that, ∀x ∈ X ,

l+∩−(x) = max{l+(x), l−(x), 1−
∑

y∈X\x

u+(y), 1−
∑

y∈X\x

u−(y)}

u+∩−(x) = min{u+(x), u−(x), 1−
∑

y∈X\x

l+(y), 1−
∑

y∈X\x

l−(y)}.

Also note that the result of Eq (2), when applied to probability intervals L,
result in a credal set still induced by probability intervals Lε such that, ∀x ∈ X ,

lε(x) = εl(x) and uε(x) = εu(x) + 1− ε,

therefore, in the specific case of probability intervals, the proposed framework
can be exactly applied without much computational costs.

Numerical example: We consider a 3-element space X = {x1, x2, x3} on
which are defined our probability intervals, as such a space gives us the op-
portunity to represent credal sets in barycentric coordinates (the space of all
probability mass functions is represented by a simplex where each vertex cor-
respond to an element of the space. Each point in the simplex then represents
a probability mass p, where the mass p(x) allocated to an element x is pro-
portional to the distance from the point p to the edge opposed to the vertex
corresponding to x).

Assume that the observed samples are such that m = 8 with m(x1) =
1,m(x2) = 7,m(x3) = 0. To model positive information, we use the IDM with
a parameter s = 2 and apply Eq. (4) to obtain the probability intervals L+.
Negative information is assumed to come from an expert opinion given as a set
of lower and upper bounds L−. The two probability intervals and the reulsting
merged intervals L+∩− are summarised in Table 1 and pictured in Figure 2.

To illustrate the problem of coping with new information, consider now that
a new expert (i.e. negative information) provides some complementary opinion
in the shape of probability intervals L−new that are summarized in Table 2. This
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x1

x2 x3

P−L

P+
L

P+
L ∩ P−L

Figure 2: Initial probability intervals and merged information

x1 x2 x3
u 0.7 0.5 0.2
l 0.2 0.1 0

x1 x2 x3
u 0.4 0.5 0.3
l 0.2 0.4 0

x1 x2 x3
u 0.64 0.7 0.58
l 0.12 0.24 0

x1 x2 x3
u 0.3 0.7 0.18
l 0.12 0.7 0

Table 2: New probability intervals L−new (above left), new information state
L−new ∩ L− (above right), discounted intervals (L−new ∩ L−)ε∗ (below left) and
merged intervals P+

L ∩ (P−L ∩ P
−
Lnew

)ε
∗
(below right)

new probability intervals are in conflict with L+∩−, but not with L− alone, and
we can thus revise our negative information with this new piece of information
by computing L−new ∩L−. Positive and negative information now conflicts. Us-
ing Eq (3), we obtain the value ε∗ = 0.6. The discounted probability intervals
(L−new ∩ L−)ε∗ and the merged one are summarized in Table 2. Figure 3 illus-
trates the complete process that makes them consistent again. As pointed out
in Section 2, the result is very precise (the probability of x2 is precisely known)
and it would perhaps be safer to adopt a strategy providing more cautious in-
ferences (such as taking ε ≥ ε∗ or simply ignoring the new piece of information
if its reliability is questionable).

3.3 comonotonic possibility distributions and clouds
A possibility distribution is a mapping π : X → [0, 1] such that ∃x, π(x) = 1.
From a possibility distribution [15, 21] can be defined a possibility measure such
that Π(A) = supx∈A π(x). In this paper, possibility measures are interpreted as
upper probabilities, and a possibility distribution induces the credal set

Pπ = {P ∈ PX |P (A) ≤ Π(A)}.
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x1

x2 x3

P−L ∩ P−Lnew

P+
L

(P−L ∩ P−Lnew )
ε∗

P+
L ∩ (P−L ∩ P−Lnew )

ε∗

Figure 3: New information and merging of conflicting information

The lower probability induced by a possibility measure is called a necessity
measure. Possibility measures are popular imprecise probabilistic models, due
to their simplicity and the fact that they can be interpreted (and elicited) as
sets of lower confidence bounds given over collection of nested sets, as recalls
the next proposition [11]:

Proposition 2 Given a distribution π, a probability distribution P is in Pπ fi
and only if

∀α ∈ [0, 1], 1− α ≤ P ({x ∈ X |π(x) > α}). (5)

However, possibility distributions alone can hardly be used in our bipolar
context. Indeed the intersection of two credal sets induced by possibility dis-
tributions does not usually result in a credal set induced by another possibility
distribution, nor in a credal set that can be approximated by a possibility distri-
bution without much loss of information. Also possibility distributions, although
attractive, remain of limited expressiveness as they do not allow for instance to
treat the case where an expert provides both lower and upper confidence bounds
over nested intervals. This is why we will need a richer representation, namely
clouds [34], to deal with this example and situation. Clouds are recent imprecise
probabilistic representation, defined as follows:

Definition 1 A cloud on a space X is a pair of mappings [π, δ] such that δ ≤ π,
and there is at least one element x ∈ X s.t. π(x) = 1 and one element y ∈ X
s.t. δ(y) = 0.

After Neumaier [34], a cloud [π, δ] induces a probability family P[π,δ] s.t.

P[π,δ] = {P ∈ PX |P (δ(x) ≥ α) ≤ 1− α ≤ P (π(x) > α)}.

Note that we retrieve Eq. (5) when δ = 0, in which case the cloud [π, δ] is
equivalent to the possibility distribution π alone. It is also known [19] that
P[π,δ] = Pπ∩P1−δ, where 1−δ is a possibility distribution and P1−δ its induced
credal set. Clouds therefore allow us to represent the merging of two distinct
possibility distributions, provided they satisfy Definition 1. However, this does
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not solve the problem of information merging when either negative or positive
information is represented originally by clouds. In this case, the subfamily of
comonotonic clouds presents important practical advantages.

Definition 2 A cloud is said to be comonotonic if ∀x, y ∈ X , π(x) ≤ π(y) ⇒
δ(x) ≤ δ(y).

From a practical standpoint, comonotonic clouds are particularly attractive
models. When they take a finite number of values, the credal set P[π,δ] is induced
by a set of lower and upper probabilistic bounds given over a collection of nested
subsets ∅ = A0 ⊂ A1 ⊂ . . . ⊂ AN = X that have the following forms

αi ≤ P (Ai) ≤ βi

and the corresponding cloud is such that, for all x ∈ X , δ(x) = 1 − βi and
π(x) = 1− αi−1 with x ∈ Ai \Ai−1.

Positive information: As possibility distributions can represent nested con-
fidence intervals, they are natural candidate to represent information derived
from statistical inequalities such as Chebyshev inequality [4]. They are also
adequate representations when only few measurements are available [32]. In
this paper, we consider that enough data are available so as to provide good
estimations of the mean value µ and the variance σ of variable X, and that
Chebyshev inequality can be used. The possibility distribution π+ induced by
this inequality is such that

π+(µ− k · σ) = π+(µ+ k · σ) =

{
1 if k < 1
1
k2 if k ≥ 1.

(6)

We denote by P+
π the credal set induced by the distribution π+.

Negative information: Clouds and their interpretation in terms of bounds
over nested sets gives a convenient way to elicit information from experts [27].
We consider here that a collection of intervals centred around x∗ are provided
to the expert, and that he is asked for confidence bounds around these intervals.
Such information generates a cloud [π−, δ−], and we denote by P−[π,δ] the induced
credal set.

Merging: When both π+, δ− and π− are all comonotonic, the credal set
P+
π ∩P−[π,δ] is again a cloud [π−∩+, δ−∩+] [18] such that δ−∩+ = δ− and π−∩+ =

min(π+, π−). Conflict happens when there is an element x ∈ X such that
δ−∩+(x) > π−∩+(x).

In case of conflict, applying Eq.(2) to a cloud [π, δ] does not result in a credal
set induced by a cloud, while it does in the case of possibility distribution (hence,
if the cloud is reduced to a single distribution, this problem does not happen).
However, as for p-boxes, given a value ε, the cloud [π, δ]

ε such that πε = επ+1−ε
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and δε = εδ gives an outer approximation of Pε[π,δ]. Other revision processes
have been proposed in literature [6], but they seem difficult to interpret in terms
of imprecise probabilities and credal sets.

Note that assuming comonotonicity of all functions π+, δ− and π− may
appear unreasonable in some situations: for instance, an expert most plausible
value for X (i.e., the value x∗ around which nested intervals are built) may
differ from a measurement obtained by a sensor or an estimated mean value. In
such a case, the merging result is no longer representable by a cloud but still
remains a lower probability (computing the merged representation then requires
heavier computational efforts). However, it is always possible to consider a
weakening of the information so that clouds are made comonotonic, but the
incurred information loss can be important.

Numerical example: We assume that estimations from data of the mean
and variance are respectively µ = 30 and σ = 5. Distribution π+ can then be
obtained by using Equation (6).

Let us now assume that an expert has provided the following constraints
about the value of X (knowing the estimated mean, one can propose this mean
as a starting point to the expert):

0.3 ≤ P (X ∈ [28, 32]) ≤ 0.6,

0.7 ≤ P (X ∈ [20, 40]) ≤ 0.9,

1 ≤ P (X ∈ [15, 45]) ≤ 1.

These opinions and constraints can be represented as a cloud [π−, δ−], and both
information can then be merged. The whole process is illustrated in Fig. 4. In
this case, there is no conflict between positive and negative information.

Linking clouds and bipolar possibility theory: let us explore a bit more
the links between clouds and bipolar possibility theory [24]. In bipolar possibility
theory, two distributions are defined, π and δ, and to them are associated four
measures: the classical possibility and necessity measures, respectively defined
on any event A ⊆ X as

Π(A) = sup
x∈A

π(x) and N(A) = 1−Π(Ac) = inf
x∈Ac

(1− π(x)),

and two other measures [22], called guaranteed possibility (∆) and potential
certainty (∇), and respectively defined on any event A ⊆ X as

∆(A) = inf
x∈A

δ(x) and ∇(A) = 1−∆(Ac) = 1− inf
x∈Ac

δ(x).

Now, let us consider that a cloud [π, δ] models the intersection of two credal
sets modelled by possibility distributions π (negative information) and 1 − δ
(positive information). We can then compute lower and upper probabilities of
Pπ for any event A ⊆ X

PPη (A) = Πη(A) = sup
x∈A

η(x) = Π(A),
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30

π+

Fig. 4.A Distribution π+ using Cheby-
shev inequality (µ = 30 and σ = 5)

30

π−

δ−

Fig. 4.B Distributions ob-
tained from expert opinion

30

π−∩+

δ−∩+

Fig. 4.C Distribution after merging

Figure 4: Cloud and possibility distributions and their merging result.
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PPη (A) = Nη(A) = inf
x∈Ac

1− η(x) = N(A),

where Π and N are the measures induced by the initial distribution π. On the
other hand we have that the lower and upper probabilities of P1−δ are such that

PP1−δ(A) = Π1−δ(A) = sup
x∈A

(1− δ(x)) = 1− inf
x∈A

δ(x) = 1−∆(A) = ∇(Ac).

PP1−δ
(A) = N1−δ(A) = inf

x∈Ac
(δ(x)) = 1−∇(A) = ∆(Ac).

Clearly, ∇ and ∆ respectively play the role of upper and lower probability
measures of positive information, and provided P[π,δ] 6= ∅, we have the inequality
(using Prop 1)

max(N(A),∆(Ac)) ≤ min(∇(Ac),Π(A)).

Note that this inequality is different from the following inequality

max(N(A),∆(A)) ≤ min(Π(A),∇(A)),

proved in [22] in the case where δ = π in the setting of possibility theory.
However, both inequalities confirms the role of ∆ as a lower uncertainty measure
and of ∇ as an upper uncertainty measure.

Although clouds are formally equivalent to interval-valued fuzzy sets intu-
itionistic fuzzy sets [3], their link with the pair π, 1 − δ is only apparent (as
noted in [24]). This comes from the fact that the two approaches models dif-
ferent things (e.g., the so-called mirror cloud [34] [1 − δ, 1 − π] corresponds to
negation for intuitionistic fuzzy sets, while in the current approach it models
exactly the same information as the cloud [π, δ]).

4 Conclusion
We have proposed a framework to handle bipolar asymmetric information in the
framework of imprecise probabilities, when this information concerns knowledge
about the value assumed by a variable. This framework mainly comes down
to consider two separate credal sets, one for positive information and one for
negative information, and to merge them conjunctively to obtain a final repre-
sentation. This is in the spirit of other propositions made in other uncertainty
theories to handle bipolar information, where two separate (positive and neg-
ative) representations are also merged to give a final representation. We then
have illustrated our proposition with some specific uncertainty representations
that are easier to handle than generic ones, and for which the proposed frame-
work applies easily.

This work is a first step towards the modelling and handling of bipolar infor-
mation within the theory of imprecise probabilities. It still has to be compared
with other approaches proposed within the frameworks of possibility theory and
evidence theory (although some elements have been given here, a deeper inves-
tigation would be needed). One of the main difference with these two latter
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approaches is that both positive and negative information are here combined
conjunctively, and give more precise models as more information becomes avail-
able. However, since we’re working with variable taking their values on spaces
made of mutually exclusive elements, such a behaviour is not counter-intuitive.

There are other situations where the use of bipolar information in imprecise
probabilities could be of interest, among which:

• the case where information concerns probabilities themselves, for example
in the case of linguistic assessments [14]. This would require to connect
the present proposition with axioms governing lower previsions, possibly
progressing towards an operational definition of bipolarity in terms of
betting strategy;

• the case where information concerns not knowledge but preferences, that
is when credal sets or lower previsions are used not to express uncertainty
but rather to express some preferences or utilities between different criteria
of an agent. With this objective in mind, the model of desirable gambles,
which have been recently considered as a solution to multicriteria decision
problems [37] and extends both credal sets and lower previsions, seems
particularly interesting to study.
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