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The characteristics of microcantilevers vibrating laterally in viscous liquid media are investigated

and compared to those of similar microcantilevers vibrating in the out-of-plane direction. The

hydrodynamic loading on the vibrating beam is first determined using a numerical model. A

semi-analytical expression for the hydrodynamic forces in terms of the Reynolds number and the

aspect ratio (beam thickness over beam width) is obtained by introducing a correction factor to

Stokes’ solution for a vibrating plate of infinite area to account for the effects of the thickness. The

results enable the effects of fluid damping and effective fluid mass on the resonant frequency and

the quality factor (Q) to be investigated as a function of both the beam’s geometry and liquid

medium’s properties and compared to experimentally determined values given in the literature.

The resonant frequency and Q are found to be higher for laterally vibrating microcantilevers

compared to those of similar geometry experiencing transverse (out-of-plane) vibration. Compared

to transversely vibrating beams, the resonant frequency of laterally vibrating beams is shown to

decrease at a slower rate (with respect to changes in viscosity) in media having higher viscosities

than water. The theoretical results are compared to experimental data obtained for cantilevers

completely immersed in solutions of varying aqueous percent glycerol. The increases in resonant

frequency and Q are expected to yield much lower limits of detection in liquid-phase chemical

sensing applications.VC 2012 American Institute of Physics. [doi:10.1063/1.3674278]

I. INTRODUCTION

Microcantilevers have been utilized as highly sensitive

chemical sensor platforms in air.1–11 Masses in the range of

picograms and femtograms have been detected using

these devices, with projected detection limits on the order

of attograms.11–13 While dynamically driven microcan-

tilever chemical sensors are well suited for gas-phase

detection,1–3,5–11,14–21 their usefulness as a sensing platform

is limited when operating in viscous liquid media.7,22–29 Due

to the additional fluid resistance (combined effects of fluid-

related inertial and viscous forces), the beam’s resonant fre-

quency, fres, and quality factor, Q, will drastically decrease

when the operating medium is changed from air to

liquid;22,28,30–32 these decreases are due to the increases in

the fluid damping and the effective fluid mass.

Several methods have been investigated to overcome

this additional fluid resistance. Microcantilevers can be

made stiffer by shortening their length.33,34 The resonant fre-

quency of a microcantilever operating in a fluid is roughly

proportional to the inverse of its length squared. Thus,

decreasing the length by 10% would increase the resonant

frequency by� 23%. Shorter microcantilevers also have less

surface area when interacting with the surrounding medium,

thus decreasing the amount of fluid damping and increasing

the quality factor. However, the smaller surface area also

decreases the amount of analyte that can be sorbed into a de-

posited layer when used in sensing applications. The deposi-

tion reproducibility of this sensing layer will also be less

accurate for shorter beams.33

Microcantilevers can also operate in higher-order flex-

ural modes.35–37 Higher-order modes have flexural mode

shapes that have one or more points along the length of the

microcantilever (besides the clamped end) that do not deflect

as a function of time.36 Both theoretical36 and experimental

investigations35,37 show that, when working in air or liquids,

the quality factor of a microcantilever operating in a higher-

order mode is higher than that of the same microcantilever

operating in the fundamental mode. However, there are also

some drawbacks to operating in higher-order flexural modes,

such as an increase in support loss.

When working in a vacuum, experiments have shown

that the quality factor of the microcantilever decreases with

an increasing mode number.38 The support losses for a par-

ticular microcantilever operating in the second mode have

been shown to be 10 times larger than operating in the first

mode.33,39 This tends to be less of a concern when operating

in air or liquid, since the viscous losses generally dominate

the support losses.34 Moreover, it is also relatively more
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difficult to excite these higher-order modes to achieve a suf-

ficiently strong signal.38

Another promising method for overcoming the addi-

tional fluid resistance is by exciting the microcantilever in an

unconventional vibration mode. Dynamically driven micro-

cantilevers are commonly excited flexurally in the transverse

or out-of-plane direction, as indicated in Fig. 1.1,3,7,26,32,40–46

Another vibration mode that has been previously investi-

gated in the literature is the in-plane (lateral) flexural

mode.22,35,38,47–51 This reduces the amount of fluid resistance

by decreasing the amount of fluid drag on the leading edge

of the beam. The reduction in the fluid resistance results in

an increase in the resonant frequency and the quality factor

of the microcantilever compared to similar beams vibrating

transversely.22,30,38 In many cases, the increase in these char-

acteristics can be investigated using standard beam theory, if

the hydrodynamic forces acting on the beam are properly

modeled.

There have been several attempts to model the hydrody-

namic forces acting on a beam vibrating in the in-plane

direction.22,38,49,50,52,53 While a well-known expression for

the hydrodynamic forces acting on a beam undergoing trans-

verse vibration has been given in the literature,23 this expres-

sion cannot be used to find the hydrodynamic forces acting

on a microcantilever vibrating in the in-plane direction as it

neglects the effects of fluid on the larger faces (of dimension

b) of the laterally vibrating beam. A more accurate approxi-

mation of the total hydrodynamic force acting on a laterally

vibrating microcantilever in liquid should include both the

effects of the pressure and shear stress exerted by the fluid

on all faces of the beam. Due to the symmetry of the prob-

lem, the hydrodynamic forces acting in the vertical direction

on a beam with a rectangular cross-section vibrating laterally

will cancel each other out. Only the hydrodynamic forces

acting in the horizontal direction will then affect the

characteristics of the beam. These forces are the fluid shear

force acting on the large faces and the pressure force acting

on the small faces (of dimension h, see Fig. 2). It can be

assumed that the microcantilever is long enough so that the

hydrodynamic force acting on the surface at the free end of

the beam is negligible.

When the beam’s thickness is small compared to its

width, the beam can also be approximated as a ribbon.54,55

(This has previously been shown valid for beams vibrating

transversally.23,31) In 1851, Stokes investigated the forces

acting on an infinitely wide flat plate brought from rest to si-

nusoidal, in-plane vibration.56 This is commonly called

Stokes’ second problem.57 The solution for a laterally vibrat-

ing beam of infinitely thin cross-section can be reduced to

the steady-state solution of Stokes’ second problem if the

beam under investigation is also quite wide relative to the

boundary layer thickness of the fluid.31 Recently, this

Stokes-type fluid resistance has been used to obtain analyti-

cal results for the quality factor associated with the viscous

FIG. 1. Geometry of a microcantilever of length L, width b, and thickness h vibrating in the out-of-plane direction (left) with a deflection of w(x,t) and

vibrating in the in-plane direction (right) with a deflection of v(x,t).

FIG. 2. (Color online) The hydrodynamic force acting on a laterally vibrat-

ing beam can be conceptually broken up into the forces acting parallel to the

surface (the fluidic shear force) and forces acting perpendicular to the sur-

face (the pressure force).
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fluid losses for laterally vibrating beams in liquid.49,50 The

quality factors predicted using this model were found to well

agree with the experimentally determined quality factors of

laterally excited beams when b � h. However, this method

neglected edge effects, which could be significant for beams

whose width b is small. Furthermore, it also neglects the

fluid resistance due to pressure on the thin faces of the beam

(those of corresponding dimension h), which may be impor-

tant for many practical beam geometries.

The hydrodynamic function of a transversely vibrating

beam of ribbon-like cross-section was previously found in

Ref. 52 by use of the method of moments to solve for the ve-

locity of the fluid around the ribbon. Recently, an investiga-

tion expanded upon this work to obtain numerical results for

both the transverse and lateral hydrodynamic function that

accounted for both the beam’s aspect ratio (h/b) and the

Reynolds number (Re) of the fluid flow.47 While the numeri-

cal results in the present paper match closely with those

given in Ref. 47, the previous work only provides values of

the hydrodynamic function at specific discrete combinations

of aspect ratio and Reynolds number. In the present paper,

an analytical expression will be given for this function that

can be used over wide, continuous ranges of h/b and Re. A

comparison between the results of Ref. 47 and those of the

present investigation will be provided. Other investigators

have attempted to use finite element analysis (FEA) in order

to account for the effects of thickness.31,58 Like the numeri-

cal method used in Ref. 47, FEA allows for the pressure and

shear force to be calculated on the beam’s cross-section, as

well as in the medium surrounding the beam. It is noted,

however, that Refs. 31 and 58 only investigate transversely

vibrating beams.

In this article, an FEA model will be developed and uti-

lized to calculate the hydrodynamic forces acting on a later-

ally vibrating beam. This method will account for both the

edge effects and thickness effects, which are not accounted

for when assuming Stokes-type fluid resistance. A set of cor-

rection factors will then be obtained so that the Stokes hydro-

dynamic function may be mapped into one that accounts for

these additional effects. Using the resulting hydrodynamic

function, relevant beam characteristics, such as the resonant

frequency and quality factor, will be obtained and investi-

gated as functions of beam geometry and medium properties,

including density and dynamic viscosity. The advantages of

operating in the in-plane flexural mode compared to the

out-of-plane flexural mode will also be investigated. The

results will be utilized to identify microcantilever geometries

that will yield more desirable characteristics for use in

sensing applications than those provided by conventional

(out-of-plane) microcantilever devices.

II. GENERALTHEORY

In a vacuum, using standard Euler-Bernoulli beam

theory, the equation of motion for a laterally vibrating micro-

cantilever is

EIlat
@4vðx; tÞ
@x4

þ qBbh
@2vðx; tÞ

@t2
¼ FyðxÞejxt; (1)

where

Ilat ¼ b3h=12: (1a)

In Eq. (1), E and qB are the Young’s modulus and mass den-

sity of the beam material, respectively, v(x,t) is the in-plane

(or lateral) deflection of the beam, and Fy(x) is the position-

dependent amplitude of the forcing function per unit length

operating at an angular frequency of x. Note that the equa-

tion for the moment of inertia, Ilat, has the width cubed

instead of the thickness (as is the case in transverse vibra-

tion). The same Young’s modulus is assumed for both lateral

and transverse vibration, i.e., that corresponding to axial

stress/strain along the longitudinal direction of the cantilever.

Thus, the flexural rigidity (EI) of a beam undergoing lateral

vibration is a factor of (b/h)2 larger than that of the same

beam undergoing transverse vibration. This indicates that lat-

erally vibrating beams (compared to transversely vibrating

beams) will be stiffer and have higher resonant frequencies.

In a vacuum, this represents the only difference between lat-

eral and transverse vibration when solving the equation of

motion.

Euler-Bernoulli beam theory, as employed herein,

places several assumptions on the beam geometry and

deflection:

• The beam’s cross-sectional area, density, and Young’s

modulus are uniform over the length of the beam
• The length of the beam greatly exceeds its width
• The amplitude of the vibration of the beam is sufficiently

small, so that the slope of the deflected beam is much

smaller than unity; this permits the beam curvature to be

approximated by @2vðx; tÞ=@x2

These assumptions generally hold true for standard com-

mercially available microcantilevers.23,38 However, some of

the geometries investigated in this work do not have lengths

that greatly exceed their widths. The effects of violating this

assumption will be discussed.

When a microcantilever is excited in a viscous liquid

medium, an additional force from the medium affects the

microcantilever and the equation of motion is modified to

EIlat
@4vðx; tÞ
@x4

þ qBbh
@2vðx; tÞ

@t2
¼ FyðxÞejxt þ Fmd;latðx; tÞ:

(2)

This additional hydrodynamic force, Fmd,lat, is a force per

unit length that is partially out-of-phase with the displace-

ment and can be represented as

Fmd;latðx; tÞ ¼ �g1;lat
@vðx; tÞ

@t
� g2;lat

@2vðx; tÞ
@t2

; (2a)

where g1,lat and g2,lat are time-independent coefficients asso-

ciated with the fluidic damping force per unit length and the

fluidic inertial force (effective fluidic mass) per unit length,

respectively.21,22,31 It is common to normalize Fmd,lat into a

dimensionless form called the hydrodynamic function, Clat,

where

014907-3 Cox et al. J. Appl. Phys. 111, 014907 (2012)



g1;lat ¼
p

4
qLb

2
Clat;IðRe; h=bÞx; (3)

g2;lat ¼
p

4
qLb

2
Clat;RðRe; h=bÞ; (4)

where the Reynolds number of the system, Re, is defined in

terms of qL and g, which are the mass density and dynamic

viscosity of the fluid, respectively.

The hydrodynamic function, Clat, is the total hydrody-

namic force per unit length normalized to the amount of

force per unit length it would take to excite fluid occupy-

ing a circular cylindrical volume with a diameter equal to

the microcantilever’s width to the same velocity as the

microcantilever.25,53 The subscripts R and I in Eqs. (3) and

(4) represent the real and imaginary parts of the hydrody-

namic function, respectively, where h/b is the aspect ratio

of the beam cross-section. The Reynolds number is a mea-

sure of the relative size of the fluid’s inertial and viscous

forces. An analytical expression for the Reynolds number

can be defined from the ratio of the inertial term to the vis-

cous term in the equation of motion of the fluid. The line-

arized incompressible form of the Navier-Stokes’ equation

can be used to model the fluid if the fluid is assumed

incompressible and the velocity gradient of the fluid is

small. The fluid can be considered incompressible as the

wavelength of the microcantilever’s vibration in the cases

of interest in this work greatly exceeds the width of the

microcantilever, which is the dominant length scale in the

flow.23 The velocity of the fluid is related to the velocity

of the vibrating microcantilever. Assuming that the micro-

cantilever’s amplitude of vibration is far smaller than any

length scale in the microcantilever’s geometry, the velocity

gradient of the beam and fluid can be considered small.

Thus, the equation of motion for the fluid can be given

as31,49,59

qL
@u

@t
¼ �rPþ gr2u; (5)

where P and u are the pressure and velocity at a particular

point in the fluid, respectively. The term qL
@u
@t is the term

related to the fluid’s inertial forces, while gr2u is the term

related to the fluid’s viscous forces. The Reynolds number, in

this form sometimes called the non-dimensional frequency52

or one fourth of the Valensi number,60 can then be calculated

by simplifying the ratio of these terms as Re¼ qLxb
2/(4g).

The viscosity is multiplied by a factor of four to keep the defi-

nition consistent with the one given in Ref. 52.

The properties of the medium of operation, along with

the excitation frequency x, will determine the skin depth of

the liquid layer surrounding the vibrating beam. The skin

depth or boundary layer thickness, denoted d, is defined as

the distance over which the fluid velocity decays to 1/e of its

maximum value.61 The larger the skin depth, the larger the

amount of fluid excited by the vibrating beam. Physically,

the boundary layer thickness can be thought of as the amount

of fluid trapped in the vortex created by the vibrating micro-

cantilever.62 The boundary layer thickness can be given as

d¼ (2 g/qLx)
1/2, which can be rewritten in terms of the

Reynolds number as

d ¼ b
ffiffiffiffiffiffiffiffi

2Re
p : (6)

The hydrodynamic function for a transversely vibrating

beam was found to be a function of d/b or a function of

the inverse of the square-root of the Reynolds num-

ber.31,61 It is expected that the hydrodynamic function for

a laterally vibrating beam will also depend on this ratio

and, thus, on the Reynolds number. When d/b and h/b are

sufficiently small, the hydrodynamic function for the lat-

eral case can be obtained from the steady state solution

of Stokes’ second problem. For this special case, the

shear force per unit area from the fluid, s, acting on the

top of the beam is56

s ¼ �V0e
jxt

ffiffiffiffiffiffiffiffiffiffiffi

gqLx

2

r

ð1þ jÞ; (7)

where V0 is the amplitude of the velocity at a particular point

along the beam. Due to the symmetry of the problem, the

total shear force is twice that on the top of the beam. Assum-

ing that the shear force is independent of y, the total shear

force (per unit length) over a beam of width b is given by

Fmd;lat ¼ 2

ðb=2

�b=2

sdy ¼ �2V0e
jxt

ffiffiffiffiffiffiffiffiffiffiffi

gqLx

2

r

ð1þ jÞb: (8)

The above equation states that the real and imaginary part of

the hydrodynamic force are equal in magnitude and are pro-

portional to the width b and the velocity amplitude V0 and

are also dependent on the square-root of the product of the

viscosity, fluid mass density, and excitation frequency. The

hydrodynamic function is then given as

Clat;StokesðReÞ ¼
4

p
ffiffiffiffiffiffiffiffi

2Re
p ð1þ jÞ ¼ 4d

pb
ð1þ jÞ: (9)

It is noted that this solution does not account for the edge

effects when d/b is not sufficiently small; nor does it account

for the pressure effects on the faces of dimension h. Using

finite element analysis (FEA), a set of correction factors can

be derived and applied to Eq. (9) to account for both the

edge and pressure effects.

III. NUMERICAL SIMULATION

A model of the laterally vibrating beam’s cross-section

in fluid was defined using the FEA program ANSYS. A 2D

mesh representing the cross-section of the fluid surrounding

an oscillating beam was modeled, with an unmeshed rectan-

gle representing the beam’s cross-section. Thus, the beam’s

cross-section is assumed to not undergo deformation. A

square outer boundary of the fluid was assumed, with the

beam cross-section having a constant width and a variable

thickness. Three boundary conditions were placed on the

mesh. A lateral sinusoidal velocity was imposed on the

cross-section, and a zero displacement and zero pressure

boundary condition were placed on the outer boundary. The

mesh was defined so that the node density was higher near

the beam and lower near the outer boundary. The outer
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boundary was set far enough away from the vibrating beam

(roughly 44 times the largest skin depth) so that its effects

could be neglected. The mass density and dynamic viscosity

of the liquid were set to that of water (qL¼ 1000 kg/m3 and

g¼ 1 cP). The amplitude of the displacement was held con-

stant while the beam’s frequency and velocity were varied in

order to investigate the effects of operating in different

Reynolds numbers. A transient analysis was performed over

2 cycles, which was determined (by evaluating the amplitude

variation over the two cycles) to be long enough for the tran-

sient effects to become negligible for the frequency range

considered. The pressure and shear force (per unit length)

acting on the fluid-beam interface in the lateral direction

were then computed at 200 different times per cycle over

two cycles. The amplitude of the hydrodynamic force was

then determined. Using the amplitude, the average phase

offset between the hydrodynamic force and the imposed

displacement over the last period was determined. The

hydrodynamic function over a range of aspect ratios (h/b)

and Reynolds numbers could then be calculated from the

determined hydrodynamic force.

In order to determine whether the mesh yielded conver-

gent results for the ranges of Reynolds number (from 10 to

10 000) and aspect ratio (from 1/56 to 1) investigated, the

hydrodynamic function was computed as the mesh density

was varied. The range of Reynolds numbers chosen corre-

sponds to the common range of Reynolds numbers when

using laterally vibrating microcantilevers with practical geo-

metries. The aspect ratio initially ranged from 1 to 1/100,

with equal steps on a logarithmic scale in order to in-

vestigate thin beams more thoroughly. However, the small-

est aspect ratio investigated was modified to h/b¼ 1/56, as

h/b¼ 1/100 proved to require an impractically high mesh

density for the chosen range of Reynolds numbers in order

to produce a convergent force. The number of elements

used was varied from about 1000 to approximately 80 000,

and the hydrodynamic force amplitude and phase were

observed to converge to particular values. When increasing

the number of elements of the convergent mesh chosen

by� 70%, the largest percentage difference in the hydrody-

namic function for the aspect ratios and Reynolds numbers

investigated was 5.19% for the real part of the hydrody-

namic function and 2.87% for the imaginary part of the

hydrodynamic function. The largest differences were noted

for microcantilevers with aspect ratios of� 1/56. This is

expected, as thinner microcantilevers require a higher num-

ber of elements to accurately model the forces along the

thickness. Increasing the number of elements used in the

chosen mesh would result in a slightly more accurate solu-

tion for the hydrodynamic function, but at an extreme cost

of time and computational complexity.

The same method was also used to compute the hydro-

dynamic forces acting on a transversely vibrating beam, and

the results were compared to those given in the literature.23

The real part of the hydrodynamic function calculated using

the chosen mesh differs from the values calculated using the

method given in Ref. 23, ranging from 1.6% lower when

Re¼ 10 to 4.3% higher when Re¼ 10 000. The imaginary

part of the hydrodynamic function also differs from the

values given in Ref. 23, ranging from 5.4% lower when

Re¼ 10 to 10.3% lower when Re¼ 3162. This difference is

most likely due to the assumption of zero thickness made in

the literature, such as in Ref. 23. It is noted that the recent

work done in Ref. 47, which includes the effects of a finite

aspect ratio, also indicates that the hydrodynamic function of

a transversely vibrating beam of finite thickness differs from

that of a transversely vibrating ribbon. There could also be

some difference due to approximations associated with the

numerical modeling. However, the differences in the two

hydrodynamic functions are not large enough to cause signif-

icant differences in the predicted characteristics of beams

vibrating in the fluid.

Figures 3(a) and 3(b) show the numerical results of the

hydrodynamic function as a function of the Reynolds num-

ber and aspect ratio (on a log scale) for the real and imagi-

nary part of the hydrodynamic function, respectively, of a

laterally vibrating beam. As the thickness of the beam

decreases, the hydrodynamic function tends to that of an

infinitely thin beam. When Re � 1 and h/b � 1, Stokes’

solution for a ribbon (Eq. (9)) can be used to estimate the

hydrodynamic function. For instance, there is less than a

1% difference between Stokes’ theory and the real part of

the hydrodynamic function predicted for Re¼ 10 000 and

h/b¼ 1/56. However, the imaginary part of the hydrody-

namic function predicted for that configuration has a 14.3%

difference with Stokes’ theory, which is the smallest differ-

ence over the range of Reynolds numbers and aspect ratios

investigated. If the results for h/b¼ 1/56 are excluded, the

minimum differences between Stokes’ theory and the pre-

dicted real part and imaginary part of the hydrodynamic

function are both 19% over the range of Reynolds numbers

and aspect ratios investigated. This is due to Stokes’ solu-

tion neglecting both the edge effects and thickness effects

of the beam and also errors in the numerical simulations. It

is again recalled that, for the comparison, the smallest as-

pect ratio investigated was h/b¼ 1/56, as h/b¼ 1/100

proved to require an impractically high mesh density for

the chosen range of Reynolds numbers in order to produce

a convergent force.

Figure 4 shows the real and imaginary hydrodynamic

function for a beam with h/b¼ 1/56 over a range of Reynolds

numbers. Also plotted is the hydrodynamic function calcu-

lated using Stokes’ solution and the values for the hydrody-

namic function given by Ref. 47 for a laterally vibrating

ribbon, accounting for the edge effects. Note that, in Fig. 4,

the discrepancy for low Reynolds numbers is mainly due to

the edge effects. Accounting for the edge effects, the remain-

ing discrepancy could be due to neglecting the effects of

thickness.

It can be seen from Fig. 3(b) that both the imaginary

part of the hydrodynamic function and Stokes’ solution con-

verge to zero as the Reynolds number is increased. However,

the real part of the hydrodynamic function, as shown in

Fig. 3(a), does not follow this trend. Even in an inviscid

medium (or Re approaching infinity), a laterally vibrating

beam of finite thickness will still displace fluid mass. An

approximation for the hydrodynamic function for the case of

an inviscid medium is given47 as
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Clat;inviscidðh=bÞ ¼
2

p2
h

b

� �2

1þ 2 ln
4pb

h

� �� �

;
h

b

� �

� 1:

(10)

Note that Eq. (10) has no imaginary part, as there is no vis-

cous damping on a beam operating in an inviscid medium.

Figure 5 shows the numerical results for the real and imagi-

nary part of the hydrodynamic function for an aspect ratio of

1/10, varying the Reynolds number from 10 to 10 000. Also

plotted in Fig. 5 are Stokes’ solution and the approximation

for the hydrodynamic function of an inviscid medium given

by Eq. (10). While the imaginary part of the hydrodynamic

function approaches (albeit rather slowly) Stokes’ solution

as the Reynolds number increases, the real part approaches

the approximation given by Eq. (10).

The results shown in Figs. 3(a) and 3(b) are similar to

the results given in Ref. 47. Direct comparison is limited to

aspect ratios of h/b¼ 1 and 1/10, as different step sizes were

used when varying the aspect ratio. If an analytical expres-

sion for the hydrodynamic function that covered all the

FIG. 4. (Color online) The real and imaginary part of the hydrodynamic

function of a laterally vibrating beam as a function of the Reynolds

number calculated using a finite element model, assuming an aspect ratio

of h/b¼ 1/56, compared to the thickness-independent analytical results

calculated using Stokes’ theory.

FIG. 5. (Color online) The real and imaginary parts of the hydrodynamic

function as a function of the Reynolds number calculated using a finite

element model and assuming an aspect ratio of 1/10 compared to the

thickness-independent analytical results calculated using Stokes’ theory and

the Reynolds number-independent asymptotic inviscid solution.

FIG. 3. (Color online) (a) and (b): The real (left) and imaginary (right) parts of the hydrodynamic function as a function of the aspect ratio and the Reynolds

number calculated using a finite element model and compared to the thickness-independent analytical results calculated using Stokes’ theory. The ratio of these

two produces a correction factor that may be applied to Stokes’ solution to account for the effects of thickness.

014907-6 Cox et al. J. Appl. Phys. 111, 014907 (2012)



combinations of aspect ratios and Reynolds numbers used in

this investigation could be obtained, the two techniques could

be more thoroughly compared. More importantly, one could

rapidly obtain the hydrodynamic function for any arbitrary

aspect ratio and Reynolds number within the ranges investi-

gated. Such an expression will be pursued in what follows.

An analytical form of the hydrodynamic function can be

obtained using both Stokes’ solution and the numerical results.

The ratios of the numerical results and the values of the hydro-

dynamic function calculated from Stokes’ theory are used to

obtain a correction factor for both the thickness and the edge

effects for the real and imaginary parts of the hydrodynamic

function. Fitting the trends in the ratio and assuming that the

correction factor goes to one for high Reynolds numbers and

thin beams, the hydrodynamic function with edge and thick-

ness effects taken into account is given by

ClatðRe; h=bÞ ¼
4

p
ffiffiffiffiffiffiffiffi

2Re
p ðCR þ jCIÞ; (11)

where the correction factors for the real and imaginary parts

of the hydrodynamic function are given, respectively, by

CR ¼ 1:658
h

b

� �1:83
ffiffiffiffiffiffi

Re
p

þ 3:08
h

b

� �0:85

þ1

 !

; (11a)

CI ¼ 2:56� 1:321
h

b

� �� �

1
ffiffiffiffiffiffi

Re
p þ 3:108

h

b

� �0:85

þ1

 !

:

(11b)

The imaginary part of Eq. (11) is within 5.7% of the results

from the numerical simulations over the investigated ranges

of aspect ratio (1/56� h/b� 1) and Reynolds number

(10�Re� 10 000). For the same range, the real part of

Eq. (11) is within 20.5% of the numerical results. It is noted

that this large discrepancy for the real part occurs when the

Reynolds number is high. When Re< 1000, the discrepancy

between the real part of the expression and the numerical

results decreases to no more than 5.8%. A more complicated

fitting model and, hence, a more complicated correction

factor could be used to improve the accuracy of the semi-

analytical method; however, at a high Reynolds number, the

microcantilever’s mass is usually much larger than the

effective fluid mass, in which case the error in the real part

of the hydrodynamic function will have minimal effect on

the microcantilever’s dynamic response.

Using this analytical expression, the hydrodynamic func-

tion can be calculated for aspect ratios and Reynolds numbers

between the simulated data points, and the results could be

used to rapidly evaluate the characteristics of a laterally

vibrating microcantilever in a viscous liquid medium. The

real and imaginary parts of the hydrodynamic function can

also be compared to results given recently in the literature.47

The difference between the two techniques, using the results

in Ref. 47 as a reference, ranges from –1.82% to 5.88% for

the real part of the hydrodynamic function and from –9.85%

to 2.86% for the imaginary part of the hydrodynamic

function. The largest difference occurs when using an aspect

ratio of 1/50 and a Reynolds number of 10. The difference in

the hydrodynamic function is larger when the Reynolds num-

ber is low. Using only the results for Re� 100, the range

decreases from –1.69% to 3.03% for the real part and from

–4.61% to 1.56% for the imaginary parts of the hydrodynamic

function. The methods used in this work and in Ref. 47, while

different, still yield similar values for the hydrodynamic func-

tion. However, as indicated earlier, the obtained analytical

expression can allow a more rapid evaluation of the microcan-

tilever characteristics when operating in the liquid-phase.

IV. RESULTS AND DISCUSSION

A. Frequency spectrum

Assuming a sinusoidal driving force, the steady-state

deflection of the beam as a function of the position along its

length can be derived from the equation of motion,32 Eq. (2),

as

vðx; tÞ ¼
X

1

i¼1

1

EIlatb
4
i � ðqBbhþ g2;latÞx2 þ jg1;latx

ðL

0

Fy xð Þ/i xð Þdx
ðL

0

/2
i xð Þdx

0

B

B

B

@

1

C

C

C

A

/i xð Þejxt; (12)

where /i(x) is the ith flexural mode shape of an elastic beam (in vacuum), defined as

/i xð Þ ¼ cos bix� cosh bixð Þ cos biLþ cosh biLð Þ þ sin bix� sinh bixð Þ sin biL� sinh biLð Þ
sin biL� sinh biLð Þ

� �

; (13)

and the mode number bi is the ith root of cosbiL cosh biLð Þ þ 1 ¼ 0. For i¼ 1, b1L � 1.8751. Investigating only the amplitude

of the deflection of the beam at the tip, one has

vmax Lð Þ ¼
X

1

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIlatb
4
i � ðqBbhþ g2;latÞx2

� �2þ g1;latx
� �2

q

ðL

0

Fy xð Þ/i xð Þdx
ðL

0

/2
i xð Þdx

0

B

B

B

@

1

C

C

C

A

/i Lð Þ: (14)
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Thus, for a given load function Fy(x), the amplitude of the

tip deflection as a function of the excitation frequency in

water can then be calculated by using the correct values for

g1,lat and g2,lat using Eqs. (3) and (4) and the hydrodynamic

function calculated using Eq. (11). It is shown in Fig. 6 that,

simulating a laterally excited microcantilever with a geome-

try of 200	 45	 12 lm3 with an assumed Young’s modulus

of silicon along the< 110> direction (169GPa)63 and a con-

centrated harmonically varying force at the tip, the resonant

frequency and 3-dB bandwidth are higher for the first in-

plane flexural mode compared to the first out-of-plane flex-

ural mode. The resonant frequency of a beam vibrating in

the in-plane direction (when b> h) is larger than the resonant

frequency of a beam with the same geometry vibrating in the

out-of-plane direction, due to its increased stiffness.

B. Resonant frequency

The derivation of the formulae for the resonant fre-

quency and the quality factor for a dynamically driven

microcantilever vibrating in the in-plane direction in a vis-

cous liquid medium follows the same procedures as those in

Ref. 32, except for the use of different values of the moment

of inertia (Ilat) and the hydrodynamic force (i.e., g1,lat and

g2,lat). Utilizing Eq. (14), an analytical expression for the res-

onant frequency is then given by

fres;lat ¼
1

2p

ffiffiffiffiffiffiffiffi

klat

Mlat

r

; (15)

where

klat ¼
biLð Þ4EIlat

L3
; (15a)

Mlat ¼ qBbhLþ Lg2;lat
� �

þ L

g1;lat
�

x
� �

þ xres;lat
2

� 	 d

dx
g1;lat

�

x
� �

� �

qBbhþ g2;lat þ xres;lat
2

� 	 d

dx
g2;lat
� �

� �

g1;lat
�

x
� �

;

(15b)

xres;lat

2

� 	 d

dx
g2;lat
� �

¼ �
ffiffiffi

2
p

qLb
2

8
ffiffiffiffiffiffi

Re
p 3:08

h

b

� �0:85

þ1

 !

;

(15c)

xres;lat

2

� 	 d

dx
g1;lat

�

x
� �

¼ �
ffiffiffi

2
p

qLb
2

4Re
2:56� 1:321

h

b

� �� �

�
ffiffiffi

2
p

qLb
2

8
ffiffiffiffiffiffi

Re
p 3:108

h

b

� �0:85

þ1

 !

:

(15d)

It is noted that the Reynolds number is dependent on the

frequency of excitation, x(¼ 2pf). Thus, Eq. (15) is a tran-

scendental equation in x, whose solution for the system’s

resonant frequency will be obtained by the following

process:

fres;lat ¼ lim
n�>1

Fn
1ðfguessÞ; (16)

where F1
n(fguess) is the function F1 applied n times to fguess,

F1(fguess) is the right-hand side of Eq. (15), and fguess is a

guess value of the resonant frequency. A good initial guess

for the resonant frequency could be taken as the resonant

frequency of the microcantilever in a vacuum, f0, which is

given by23

f0 ¼
biLð Þ2b
2pL2

ffiffiffiffiffiffiffiffiffiffi

E

12qB

s

: (17)

If Re � 1, Eqs. (15c) and (15d) can be considered approxi-

mately zero. Equation (15) can then be simplified to

fres;lat¼
biLð Þ2
2pL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIlat

qBbhþg2;lat
� �

þ g1;lat
�

x
� �2

qBbhþg2;lat
� ��1

s

:

(18)

Equation (18) shows that, as expected, as the beam becomes

stiffer, the resonant frequency will increase, and when the

total mass or damping increases, the resonant frequency will

decrease.

The resonant frequency of laterally vibrating micro-

cantilevers predicted from theory can be compared to the

experimentally determined resonant frequencies of laterally

vibrating microcantilevers of various geometries given in

Ref. 30. An average beam thickness of 14.48lm was

reported in Ref. 30. The beam was primarily made of silicon

with a nominal Si thickness of 12 lm. However, there is an

additional triple-layer passivation sandwich consisting of

alternating plasma-enhanced chemical vapor–deposited

oxide and nitride films in order to mitigate the effects of pin-

holes on the circuitry used to excite the microcantilever.30

FIG. 6. (Color online) The simulated resonance curve of a 200	 45	 12lm3

silicon microcantilever, assuming a Young’s modulus of 169GPa and a

density of 2330kg/m3, excited at its free end both in-plane and out-of-plane in

water.
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The beam density was assumed to be that of silicon, or

2330 kg/m3. The Young’s modulus of the composite system

is a function of the Young’s modulus of the individual layers

and can be determined from the experimental data. Using the

reported resonant frequencies of each beam in air,30 an

effective Young’s modulus appropriate to the composite

system was determined. The mass density and dynamic

viscosity of air at room temperature can be estimated as

qair¼ 1.205 kg/m3 and gair¼ 0.01827 cP.64 Using these

values in Eq. (15), the Young’s modulus can be varied until

Eq. (15) matches the reported resonant frequency in air of a

particular beam. The average effective Young’s modulus of

the microcantilevers in air calculated using this procedure

was 127.5GPa.

Figure 7 shows the comparison of the simulated resonant

frequencies to that of the experimentally determined resonant

frequencies in air. The lengths of the beams used in Ref. 30

are 200, 400, 600, 800, and 1000lm and the widths used are

45, 60, 75, and 90lm. Note the resonant frequency’s linear

dependence on b/L2 when b/L2< 0.001lm–1. For shorter

beams (L¼ 200lm), the shear deformation, rotational inertia,

and support compliance effects, which are not accounted for

when applying Euler-Bernoulli beam theory to a perfectly

clamped cantilever,65,66 become significant, and the resonant

frequency’s linear dependency on b/L2 no longer holds. The

effective Young’s modulus calculated for these short beams

deviates greatly from the average effective Young’s modulus

used in the simulations (127.5GPa), which causes the large

difference (up to 31.5%) between the predicted and the experi-

mentally determined resonant frequencies for the L¼ 200 lm

data set. When b/L2< 0.001lm–1, the maximum difference

drops to 9.8%.

When the beam is vibrating laterally in a viscous liquid

medium, the same qualitative b/L2 dependence remains, as

was observed in air (see Fig. 8). However, the addition of

pressure effects causes a dependence on the thickness. It is

noted from Eq. (15) that, while the spring constant klat in

water is still linearly dependent on the thickness, the thick-

ness dependence of the effective mass (Mlat) is not straight-

forward and depends on the ratio of the beam mass to

effective displaced fluid mass. As h increases and exceeds b,

the resonant frequency reduces to that of a microcantilever

undergoing out-of-plane vibration with width h and thickness

b. The theory again diverges from the experimental data

when the beam is shorter, i.e., for b/L2> 0.001 lm–1. The

maximum percentage difference between the simulated reso-

nant frequency and the experimentally determined resonant

frequency in water is 28.7%. When b/L2< 0.001 lm–1, this

difference drops to 11.8%.

The resonant frequency can also be investigated as a

function of the properties of the liquid medium. The resonant

frequency of a laterally vibrating beam decreases from its

value in air, f0,
3 by

Df ¼ f0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

qBLbh

Mlat

r
� �

: (19)

As the viscosity or density of the medium is increased, the

effective mass,Mlat, will increase. The theoretical results were

compared to the results from experiments performed in differ-

ent percent aqueous glycerol mixtures, providing a range of

dynamic viscosities and densities for the liquid medium. A

microcantilever with a geometry of 200	 60	 6.7lm3, fabri-

cated using the same method as in Ref. 30, was used in the

experiments with aqueous glycerol solutions (up to 20% w/w,

FIG. 7. (Color online) The simulated resonant frequency of laterally excited

microcantilevers in air compared to the experimentally determined resonant

frequency as a function of b/L2 for widths of 45, 60, 75, and 90lm; lengths of

200, 400, 600, 800, and 1000lm; and a thickness of 14.48lm. The Young’s

modulus of the beam was specified as 127.5GPa, the average effective

Young’s modulus of the specimens. Experimental data are from Ref. 30.

FIG. 8. (Color online) The simulated resonant frequency of laterally excited

microcantilevers in water compared to the experimentally determined reso-

nant frequency as a function of b/L2 for widths of 45, 60, 75, and 90lm;

lengths of 200, 400, 600, 800, and 1000lm; and a thickness of 14.48lm.

The Young’s modulus of the beam was assumed to be 127.5GPa.

Experimental data comes from Ref. 30.
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or 1.734 cP). The shift in the resonant frequency from its

value in water as a function of percent aqueous glycerol is

given in Fig. 9(a). The predicted shift in the resonant fre-

quency using Eq. (19) is also shown. Using Eq. (17) and the

experimentally determined resonant frequency in air, the

effective Young’s modulus for this beam was determined to

be 85.4GPa. This value is smaller due to the model not incor-

porating the shear deformation, rotational inertia, and support

compliance effects of the short beam. The theoretical results

calculated using Eq. (19) show similar trends; however, the

theory overestimates the frequency drop. When using longer

beams (i.e., 1000	 90	 10.9lm3), the predicted decrease in

the resonant frequency has shown better agreement with the

experimental results (see Fig. 9(b)). This suggests that the dif-

ference could be due to effects that are not accounted for

when the assumption of a long beam is made. This assumption

neglects the effects of the shear and rotational inertia of the

beam, which cause the resonant frequency to be lower. These

effects tend to be larger for shorter beams, which have higher

quality factors compared to longer beams.

It can be seen from Fig. 6 that care should be taken

when choosing the beam’s geometry so that the lateral flex-

ural mode’s resonant frequency does not interfere with the

resonant frequency of a higher-order transverse flexural

mode, which would cause interaction between the two

modes, especially when using the device in an oscillator cir-

cuit in various applications. Using Eq. (15), the aspect ratio

at which two modes have the same resonant frequency and

could thus interfere with each other is

h

b
¼ bi

bj

 !2 ffiffiffiffiffiffiffiffiffiffiffiffi

Mtrans

Mlat

r

; (20)

where i and j are the mode numbers of the particular lateral

and transverse flexural modes, respectively, that will cause

interference, and Mtrans is calculated using Eq. (15b) and the

well-known values for g1 and g2 of a transversely vibrating

beam instead of g1,lat and g2,lat.

From Eqs. (15) and (20), it can be seen that vibrating

microcantilevers in the in-plane direction as opposed to the

out-of-plane direction increases the resonant frequency of

the same mode number by a factor of

fres;lat;i

fres;trans;i
¼ b

h

ffiffiffiffiffiffiffiffiffiffiffiffi

Mtrans

Mlat

r

: (21)

When operating in vacuum or a low density medium, such as

air, the effective masses are the same (essentially just the

beam mass) and the resonant frequency increases by a factor

of b/h. In a viscous and/or high-density liquid medium, the

ratio of the effective masses is greater than one and the ratio

of the resonant frequencies is, therefore, larger than b/h. For

example, for the beams investigated in Ref. 30, the funda-

mental resonant frequency of transversely excited beams is

predicted to decrease by 32% to 49% when placed in water.

However, the resonant frequency of the same beams vibrat-

ing laterally is predicted to drop by only 5.8% to 15%. For

comparison, the experimental data in Ref. 30 shows a drop

of 3.7% to 18.3% for the beams undergoing lateral excita-

tion. The ratio of the resonant frequencies of laterally and

transversely vibrating beams is thus higher in water (ranging

from 4.5 to 12.12 for the geometries given in Ref. 30) com-

pared to the ratios when operating in air (ranging from 3.31

to 6.62, or roughly b/h). This is because the difference in the

effective masses (beam mass plus effective fluid mass)

increases as the dynamic viscosity and density of the

FIG. 9. (Color online) (a) and (b): Predicted and experimentally determined shift in the resonant frequency of laterally vibrating microcantilever from water to

a solution of aqueous glycerol with a geometry of (a) 200	 60	 6.7lm3 and (b) 1000	 90	 10.9lm3.
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medium increase. As this trend continues for higher viscos-

ities, it is thus even more advantageous to operate in the

in-plane flexural mode when operating in high-viscosity

media in chemical (or biological) sensor applications.

C. Quality factor

A fundamental problem encountered by microcantile-

vers operating in the liquid phase is the drastic decrease in

the microcantilever’s quality factor, denoted Q, compared to

the corresponding quality factor in the gas phase. This

decrease in the quality factor increases the frequency noise

(which is proportional to fres/Q when operating in an oscilla-

tor configuration40,67,68), thus increasing the limit of detec-

tion (LOD) in biochemical sensing applications. The quality

factor is defined as 2p times the ratio of the maximum

energy stored in a resonating system to the amount of energy

dissipated in one cycle.69 The 2p keeps the definition

consistent with a second definition, which is the ratio of the

resonant frequency to the 3-dB bandwidth of the system,

Qlat;3dB ¼ fres;lat=Df3dB: (22)

It is common when working with microcantilever systems to

use the 3-dB bandwidth definition,23,32,68,70 and it is noted

that, when the loss is low, the two definitions are equivalent.

If it is assumed that g1,lat and g2,lat are frequency-

independent within the 3-dB bandwidth, an expression for

the quality factor can be derived from the equation of motion

as

Qlat ¼ 2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g1;lat=x

qBbhþ g2;lat

s
 ! !�1

: (23)

When Re � 1, using Eqs. (3) and (4), Eq. (23) reduces to

Qapprox ¼
qBbhþ g2;lat

g1;lat=x
; (24)

which is identical to the expression for the quality factor

published in the literature when low loss is assumed.23,61

If it is assumed that the beam’s mass is much larger than

the effective fluid mass, Eq. (24) can be rewritten as

Qapprox ¼
qBh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pfres;lat
p

ffiffiffiffiffiffiffiffiffiffi

2gqL
p

CI

; qBhb � g2;lat
� �

: (25)

Equation (25) will underestimate the quality factor, since it

neglects the energy associated with the effective fluid mass.

Even though fres,lat is approximately dependent on qB
–1/2, it

can still be seen from Eq. (25) that the quality factor is

improved when increasing the density of the beam material.

This makes sense because, for a given vibration amplitude,

increasing the density of the beam increases the amount of

kinetic energy (converted to stored energy during a cycle of

vibration), while keeping the amount of fluidic damping con-

stant. Neglecting viscosity’s effect on CI, Eq. (25) also

shows, contrary to intuition, that the majority of the drop in

the system’s quality factor when operating in water as

opposed to air arises from the increase in the medium’s

density (1.205 to 998.23 kg/m3 for 20 
C) instead of the

increase in the medium’s viscosity (0.01827 to 1 cP for

20 
C).64 Using the relationship of the resonant frequency to

the beam geometry given in Sec. IV B, the quality factor is

found to be a linear function of hb1/2/L, implying that

shorter, thicker and wider beams should have higher quality

factors. This result is consistent with the result derived

earlier in Refs. 49 and 50 by a different method.

The quality factor was analyzed using both the numeri-

cal results obtained using FEA and the approximate fit of the

hydrodynamic function. As noted previously, the largest dis-

crepancy between the numerical results and the approximate

fit given by Eq. (11) is when the Reynolds number is large. It

is then expected that the geometries investigated with the

largest Reynolds numbers would also produce the largest dis-

crepancy in the quality factor. For the range of geometries

investigated in this work, the largest Reynolds numbers are

found when L¼ 200 lm. The calculated quality factors were

found to be within 5% of those obtained using the results

from the finite element model. It is then assumed that

Eq. (11) is appropriate to use when calculating characteris-

tics of laterally vibrating microcantilevers in liquid phase.

The predicted quality factors calculated using Eq. (23)

were compared to those experimentally determined in water as

a function of b1/2/L in Fig. 10. The simulation assumed a later-

ally vibrating beam in water with a Young’s modulus of

127.5GPa and a beam density of 2330kg/m3. While the pre-

dicted quality factors ranged from 22.3% lower to 36.2% higher

than the experimentally determined quality factors given by

Ref. 30, the trend was found to still follow the b1/2/L depend-

ency. This confirms that shorter and wider beams have higher

quality factors. The discontinuities in Fig. 10 are due to changes

in the beam’s length. Thicker beams are also expected to

FIG. 10. (Color online) Quality factors of laterally vibrating microcantile-

vers in water. The width is varied between 45 and 90lm, the length from

200 to 1000lm, and the thickness is set at 14.48lm. The Young’s modulus

of the beam was assumed as 127.5GPa.
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increase the quality factor by increasing the mass and stored

energy of the beam; however, this trend does not hold as h/b

approaches 1. Figure 11 shows this effect, both experimentally

and theoretically, for a beam of 200lm length and 60lm

width. A Young’s modulus of 127.5GPa was assumed for all

thicknesses. Note the roughly linear increase in both the pre-

dicted quality factor and the experimentally determined quality

factor. Also note that the slope of this increase and, thus, the

benefit of using thicker beams decreases as the thickness

increases.

The quality factor will also change as a function of the

medium of operation. Figure 12 shows the quality factor of a

200	 60	 6.7 lm3 beam as a function of percent aqueous

glycerol. The theoretically predicted quality factors calcu-

lated using Eq. (23) are also given. While both the experi-

mental results and the theoretically predicted results show

similar trends, the experimentally determined quality factors

are again larger than the theoretically predicted quality fac-

tors. Calculated values for the quality factors using only

Stokes fluid resistance (using Eq. (9) for the hydrodynamic

function) are also shown in Fig. 12. However, this expression

neglects the pressure effects of the fluid on the smaller faces

(of dimension h), i.e., it is based on assuming only a Stokes-

type fluid resistance on the top and bottom faces of the

beam. The theoretically predicted quality factors would be

smaller if the shear deformation and support compliance

effects were taken into account. Thus, these effects are not

the source of the discrepancy. Another assumption made

when calculating the hydrodynamic forces was that the beam

was infinitely long. This assumption was made to neglect the

edge effects near the end of the beam in the lengthwise direc-

tion and might not be appropriate for the given geometry. It

is noted that the quality factors of longer beams (e.g.,

1000	 90	 10.9 lm3), not shown here, more closely match

the characteristics predicted by theory, just as with the reso-

nant frequency.

The experimentally determined quality factors are larger

than the commonly obtained values for transversely vibrat-

ing beams in water, which are usually on the order of 10.24

Even with the addition of the thickness and edge effects, the

quality factor of a laterally vibrating beam is still higher than

that of the same beam vibrating transversely. Using Eq. 25,

the ratio of the quality factor of a laterally vibrating beam to

that of a transversely vibrating beam of similar geometry is

approximately given by

Qlat;approx

Qtrans;approx
¼ qBbhþ g2;lat

qBbhþ g2;trans

CI;trans

CI;lat
: (26)

Note that the first fraction on the right-hand side of Eq. (26)

is smaller than one (when b> h), as transversely vibrating

beams yield a larger effective fluid mass compared to later-

ally vibrating beams. The second fraction is the ratio of the

amounts of viscous damping, which is normally much

greater than one for the cases considered. The improvement

in the quality factor is also a function of the medium of oper-

ation. Unlike the comparable trend in the resonant frequency,

the improvement is smaller for media with higher viscosities

and densities. The predicted improvement in the quality fac-

tor for the beams investigated in Ref. 30 ranges from a factor

of 3 to 4.5 in air and from a factor of 1.55 to 2.53 in water.

Since the experimentally determined quality factors are

found to be higher than the predicted quality factors in prac-

tice, the improvements will be larger. However, the best

improvements in the predicted quality factor are obtained for

the shortest and widest beams investigated. Thus, shorter and

wider beams have both larger resonant frequencies (and thus

FIG. 11. (Color online) Quality factors of laterally vibrating microcantile-

vers in water with lengths of 200lm, widths of 60 lm, and varying thickness

from 6.83lm to 22.77lm. The Young’s modulus of the beam was assumed

as 127.5GPa. Experimental data comes from Ref. 30.

FIG. 12. (Color online) Predicted and experimentally determined quality

factors of a 200	 60	 6.7lm3 laterally vibrating microcantilever as a func-

tion of percent aqueous glycerol.
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higher sensitivities in chemical sensor applications) and

higher quality factors (and thus better limits of detection).

V. CONCLUSIONS

The resonant frequency and quality factor of microcantile-

vers vibrating in the in-plane direction in a viscous liquid me-

dium are analyzed in terms of the beam’s geometry and the

properties of the medium of operation and compared to those

of microcantilevers vibrating in the out-of-plane direction. The

hydrodynamic force acting on the beam is evaluated, account-

ing for both the shear force and the pressure force. It is noted

that, even with relatively thin beams, there is a need to account

for the effects of thickness to obtain accurate estimates of the

hydrodynamic forces. A set of correction factors are determined

for modifying the hydrodynamic function given by Stokes for

an infinitely wide beam to include both the edge effects and the

effects of the pressure acting on the thickness.

Theoretical results show that the resonant frequency of

beams vibrating in the in-plane direction will be at least a

factor of b/h higher than that of beams vibrating in the out-

of-plane direction. The ratio of the resonant frequencies will

be higher for beams operating in media with higher densities

and dynamic viscosities. The calculated resonant frequencies

are shown to match trends in the experimentally determined

resonant frequencies published in the literature, provided

that the beam is long enough to neglect shear deformation,

rotational inertia, and support compliance effects. The qual-

ity factor is shown to be a function of beam density, fluid

density, fluid viscosity, and hb1/2/L. Shorter, thicker, and

wider beams vibrating laterally are shown to produce higher

quality factors compared to longer beams of a smaller cross

section. It is shown from experiments with viscous solutions

that laterally vibrating microcantilevers can be excited and

have relatively high (20 to 60) quality factors, even when

operating in media with higher dynamic viscosities than

water. When compared to transversely vibrating beams, the

predicted characteristics (i.e., the resonant frequency, quality

factor) are shown to be higher. For chemical sensor applica-

tions, considering the resonant frequency and mass sensitiv-

ity, this increase is larger for media with higher dynamic

viscosities.
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41D. Paci, K. U. Kirstein, C. Vančura, J. Lichtenberg, and H. Baltes, Analog

Integr. Circuits Signal Process. 44, 119 (2005).
42C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, IEEE J.

Solid-State Circuits 37, 12 (2002).
43J. Pei, F. Tian, and T. Thundat, Anal. Chem. 76, 2 (2004).
44M. Calleja, J. Tamayo, A. Johansson, P. Rasmussen, L. Lechuga, and

A. Boisen, Sens. Lett. 1, 1 (2003).
45N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 7

(2004).
46I. Dufour and F. Ludivine, Sens. Actuators B 91, 353 (2003).
47D. Brumley, M. Willcox, and J. Sader, Phys. Fluids 22, 052001 (2010).

014907-13 Cox et al. J. Appl. Phys. 111, 014907 (2012)

http://dx.doi.org/10.1021/ac022156i
http://dx.doi.org/10.1021/cr0681041
http://dx.doi.org/10.1063/1.1614876
http://dx.doi.org/10.1063/1.1614876
http://dx.doi.org/10.1063/1.114165
http://dx.doi.org/10.1063/1.114165
http://dx.doi.org/10.1109/JSEN.2005.845517
http://dx.doi.org/10.1016/j.snb.2008.05.014
http://dx.doi.org/10.1016/j.snb.2008.04.042
http://dx.doi.org/10.1063/1.1602156
http://dx.doi.org/10.1063/1.1602156
http://dx.doi.org/10.1063/1.1569050
http://dx.doi.org/10.1063/1.1650542
http://dx.doi.org/10.1063/1.2194128
http://dx.doi.org/10.1063/1.126426
http://dx.doi.org/10.1016/S0925-4005(02)00315-5
http://dx.doi.org/10.1016/S0925-4005(02)00315-5
http://dx.doi.org/10.1063/1.2901145
http://dx.doi.org/10.1063/1.2763965
http://dx.doi.org/10.1109/84.825786
http://dx.doi.org/10.1016/S0925-4005(99)00110-0
http://dx.doi.org/10.1109/JMEMS.2006.885850
http://dx.doi.org/10.1063/1.368002
http://dx.doi.org/10.1063/1.372455
http://dx.doi.org/10.1016/S1369-7021(09)70249-4
http://dx.doi.org/10.1063/1.116626
http://dx.doi.org/10.1016/j.sna.2007.07.010
http://dx.doi.org/10.1016/j.sna.2007.07.010
http://dx.doi.org/10.1063/1.2108130
http://dx.doi.org/10.1063/1.2767202
http://dx.doi.org/10.1109/JMEMS.2010.2052093
http://dx.doi.org/10.1063/1.2202232
http://dx.doi.org/10.1021/ac800269x
http://dx.doi.org/10.1016/j.snb.2004.11.086
http://dx.doi.org/10.1063/1.3062204
http://dx.doi.org/10.1063/1.1759379
http://dx.doi.org/10.1063/1.1759379
http://dx.doi.org/10.1063/1.2654274
http://dx.doi.org/10.1063/1.2709620
http://dx.doi.org/10.1021/ac061795g
http://dx.doi.org/10.1109/JSSC.2002.804359
http://dx.doi.org/10.1109/JSSC.2002.804359
http://dx.doi.org/10.1021/ac035048k
http://dx.doi.org/10.1166/sl.2003.010
http://dx.doi.org/10.1063/1.1763252
http://dx.doi.org/10.1063/1.3397926


48X. Zhang and W. Tang, in Proceedings of IEEE Workshop on Micro Elec-

tro Mechanical Systems, Oiso, Japan, 25–28 January 1994 (MEMS ’94,

Proceedings, 1994), pp 199–204.
49S. M. Heinrich, R. Maharjan, L. Beardslee, O. Brand, I. Dufour, and

F. Josse, in Proceedings of the International Workshop on Nanomechani-

cal Cantilever Sensors, Banff, Canada, 26–28 May 2010.
50S. M. Heinrich, R. Maharjan, I. Dufour, F. Josse, L. Beardslee, and

O. Brand, in Proceedings of the IEEE Sensors 2010 Conference,

Waikoloa, HI, 1–4 November 2010.
51R. Cox, F. Josse, S. M. Heinrich, I. Dufour, and O. Brand, in Proceedings

of the IEEE International Frequency Control Symposium, Newport Beach,

CA, 2–4 June 2010.
52E. Tuck, J. Eng. Math. 3, 1 (1969).
53R. P. Kanwal, Q. J. Mech. Appl. Math. 8, 2 (1955).
54C. A. Eysden and J. Sader, Phys. Fluids 18, 123102 (2006).
55R. Clarke, S. Cox, P. Williams, and O. Jensen, J. Fluid Mech. 545, 397

(2005).
56G. Stokes, Trans. Cambridge Philos. Soc. 9, 6 (1851).
57S. P. Hu, J. Mech. 21, 1 (2005).
58W. Zhang and K. Turner, Sens. Actuators, A 134, 2 (2007).

59T. Iyengar, N. Srinivasacharyulu, and J. Ramana, J. Appl. Math. Phys. 39,

649 (1988).
60H. Hosaka, K. Itao, and S. Kuroda, Sens. Actuators A 49, 87 (1995).
61A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, and J. Aimé,
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