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A NOETHER-DEURING THEOREM FOR DERIVED CATEGORIES

ALEXANDER ZIMMERMANN

Abstract. We prove a Noether-Deuring theorem for the derived category of bounded
complexes of modules over a Noetherian algebra.

Introduction

The classical Noether-Deuring theorem states that given an algebra A over a field K and
a finite extension field L of K, two A-modules M and N are isomorphic as A-modules, if
L ⊗K M is isomorphic to L ⊗K N as an L ⊗K A-module. In 1972 Roggenkamp gave a
nice extension of this result to extensions S of local commutative Noetherian rings R and
modules over Noetherian R-algebras.

For the derived category of A-modules no such generalisation was documented before. The
purpose of this note is to give a version of the Noether-Deuring theorem, in the generalised
version given by Roggenkamp, for right bounded derived categories of A-modules. If there
is a morphism α ∈ HomD(Λ)(X,Y ), then it is fairly easy to show that for a faithfully
flat ring extension S over R the fact that idS ⊗ α is an isomorphism implies that α is
an isomorphism. This is done in Proposition 1. More delicate is the question if only an
isomorphism in HomD(S⊗RΛ)(S ⊗R X,S ⊗R Y ) is given. Then we need further finiteness
conditions on Λ and on R and proceed by completion of R and then a classical going-down
argument. This is done in Theorem 4 and Corollary 9.

For the notation concerning derived categories we refer to Verdier [6]. In particular, D(A)
(resp D−(A), resp Db(A)) denotes the derived category of complexes (resp. right bounded
complexes, resp. bounded complexes) of finitely generated A-modules, K−(A− proj) (resp.
Kb(A− proj), resp K−,b(A− proj)) is the homotopy category of right bounded complexes
(resp. bounded complexes, resp. right bounded complexes with bounded homology) of
finitely generated projective A-modules. For a complex Z we denote by Hi(Z) the homology
of Z in degree i, and by H(Z) the graded module given by the homology of Z.

1. The result

We start with an easy observation.

Proposition 1. Let R be a commutative ring and let Λ be an R-algebra. Let S be a

commutative faithfully flat R-algebra. Denote by D(Λ) the derived category of complexes

of finitely generated Λ-modules. Then if there is α ∈ HomD(Λ)(X,Y ) so that idS ⊗L

R α ∈

HomD(S⊗RΛ)(S⊗L

RX,S⊗L

R Y ) is an isomorphism in D(S⊗RΛ), then α is an isomorphism

in D(Λ).

Proof. Let Z be a complex in D(Λ). Since S is flat over R the functor S ⊗R − :
R −Mod −→ S −Mod is exact, and hence the left derived functor S ⊗L

R − coincides with
the ordinary tensor product functor S ⊗R −. We can therefore work with the usual tensor
product and a complex Z of Λ-modules.

We claim that since S is flat, S ⊗R − induces an isomorphism S ⊗RH(Z) ≃ H(S ⊗L

R Z).
If ∂Z is the differential of Z, then

0 −→ ker(∂Z) −→ Z
∂Z−→ im(∂Z) −→ 0
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is exact in the category of Λ-modules.
Since S is flat,

0 −→ S ⊗R ker(∂Z) −→ S ⊗R Z
idS⊗R∂Z−→ S ⊗R im(∂Z) −→ 0

is exact. Hence

ker(idS ⊗R ∂Z) = S ⊗R ker(∂Z) and im(idS ⊗R ∂Z) = S ⊗R im(∂Z).

This shows the claim.
Since idS⊗Rα is an isomorphism, its cone C(idS⊗Rα) is acyclic. Moreover, C(idS⊗Rα) =

S ⊗R C(α) by the very construction of the mapping cone. But now,

0 = H(C(idS ⊗R α)) = H(S ⊗R C(α)) = S ⊗R H(C(α)).

Since S is faithfully flat, this implies H(C(α)) = 0 and therefore C(α) is acyclic. We
conclude that α is an isomorphism in D(Λ) which shows the statement.

Remark 2. Observe that we assumed that X
α

−→ Y is assumed to be a morphism in D(Λ).

The question if the existence of an isomorphism S ⊗R X
α̂

−→ S ⊗R Y in D(S ⊗R Λ) implies
the existence of a morphism α : X −→ Y in D(Λ) so that idS ⊗L

R α is an isomorphism is
left open. Under stronger hypotheses this is the purpose of Theorem 4 below. The proof
follows [5] which deals with the module case.

Lemma 3. If S is a faithfully flat R-module and Λ is a Noetherian R-algebra, then for all

objects X and Y of D−(Λ) we get

HomD−(S⊗RΛ)(S ⊗R X,S ⊗R Y ) ≃ S ⊗R HomD−(Λ)(X,Y ).

Proof. We use the equivalence of categories K−(Λ−proj) ≃ D−(Λ) and suppose therefore
that X and Y are right bounded complexes of finitely generated projective Λ-modules. We
even may assume that X and Y are right bounded complexes of finitely generated free
Λ-modules. But

S ⊗R HomΛ(Λ
n, U) = S ⊗R U

n = (S ⊗R U)n = HomS⊗RΛ((S ⊗R Λ)n, S ⊗R U)

which proves the statement.

Theorem 4. Let R be a commutative Noetherian ring, let S be a commutative Noetherian

R-algebra and suppose that S is faithfully flat as R-module. Suppose S⊗R rad(R) = rad(S).
Let Λ be a Noetherian R-algebra, let X and Y be two objects of of D−(Λ) and suppose that

EndD−(X)(X) is a finitely generated R-module. Then

S ⊗L

R X ≃ S ⊗L

R Y ⇔ X ≃ Y.

Remark 5. We observe that if R is local and S = R̂ is the rad(R)-adic completion, then S
is faithfully flat as R-module and S ⊗R rad(R) = rad(S).

Proof of Theorem 4. According to the hypotheses we now suppose that EndD−(Λ)(X) is
a finitely generated R-module and that S ⊗R rad(R) = rad(S). We only need to show ”⇒”
and assume therefore that X and Y are in K−(Λ− proj), and that S⊗RX and S⊗R Y are
isomorphic.

Let XS := S⊗RX and S⊗R Y =: YS in D−(S ⊗RΛ) to shorten the notation and denote
by ϕS the isomorphism XS −→ YS . Since then XS is a direct factor of YS by means of ϕS ,
the mapping

ϕS =

n
∑

i=1

si ⊗ ϕi : XS −→ YS

for si ∈ S and ϕi ∈ HomD−(Λ)(X,Y ) has a left inverse ψ : YS −→ XS so that

ψ ◦ ϕS = idXS
.
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Then,
0 −→ rad(R) −→ R −→ R/rad(R) −→ 0

is exact and since S is flat over R we get that

0 −→ S ⊗R rad(R) −→ S −→ S ⊗R (R/rad(R)) −→ 0

is exact. This shows
S ⊗R (R/rad(R)) ≃ S/(S ⊗R rad(R)).

By hypothesis we have S ⊗R rad(R) = rad(S), identifying canonically S ⊗R R ≃ S. Then
there are ri ∈ R so that 1S ⊗ ri − si ∈ rad(S) for all i ∈ {1, . . . , n}.

Put

ϕ :=

n
∑

i=1

riϕi ∈ HomD−(Λ)(X,Y ).

Then
n
∑

i=1

ψ ◦ (1S ⊗ (riϕi))− 1S ⊗ idX =

n
∑

i=1

(ψ ◦ (1S ⊗ riϕi)− ψ ◦ (si ⊗ ϕi))

=
n
∑

i=1

(1S ⊗ ri − si) · (ψ ◦ (idS ⊗ ϕi))

∈
(

rad(S)⊗R EndD−(Λ)(X)
)

and since EndD−(Λ)(X) is a Noetherian R-module, using Nakayama’s lemma we obtain that

ψ ◦ (
∑n

i=1 1S ⊗ riϕi) is invertible in S ⊗R EndD−(Λ)(X). Hence idS ⊗R ϕ is left split and
therefore

XS
idS⊗Rϕ
−→ YS −→ C(idS ⊗R ϕ)

0
−→ XS [1]

is a distinguished triangle, with C(idS ⊗R ϕ) being the cone of idS ⊗R ϕ. However,

C(idS ⊗R ϕ) = S ⊗R C(ϕ)

and hence

XS
idS⊗Rϕ
−→ YS −→ S ⊗R C(ϕ)

0
−→ XS [1]

is a distinguished triangle.
Since ϕS is an isomorphism, ϕS has a right inverse χ : YS −→ XS as well. Now, since

XS ≃ YS, since S is faithfully flat over R, and since EndD−(Λ)(X) is finitely generated as
R-module, using Lemma 3 we obtain that EndD−(Λ)(Y ) is finitely generated as R-module
as well. The same argument as for the left inverse ψ shows that (idS ⊗ ϕ) ◦ χ is invertible
in S ⊗R EndD−(Λ)(Y ). Hence

XS
idS⊗Rϕ
−→ YS

0
−→ S ⊗R C(ϕ)

0
−→ XS [1]

is a distinguished triangle. This shows that S ⊗R C(ϕ) is acyclic, and hence

0 = H(S ⊗R C(ϕ)) = S ⊗R H(C(ϕ)).

Since S is faithfully flat over R also H(C(ϕ)) = 0, which implies that C(ϕ) is acyclic and
therefore ϕ is an isomorphism.

This proves the theorem.

Let A be an algebra over a complete discrete valuation ring R which is finitely generated
as modules over R. We shall need a Krull-Schmidt theorem for the derived category of
bounded complexes over A. This fact seems to be well-known, but for the convenience of
the reader we give a proof.

Proposition 6. Let R be a complete discrete valuation ring and let A be an R-algebra,
finitely generated as R-module. Then the Krull-Schmidt theorem holds for Kb(A− proj).
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Proof. We first show a Fitting lemma for Kb(A− proj).
Let X be a complex in Kb(A − proj) and let u be an endomorphism of the complex

X. Then X = X ′ ⊕X ′′ as graded modules, by Fitting’s lemma in the version for algebras
over complete discrete valuation rings [1, Lemma 1.9.2]. The restriction of u on X ′ is an
automorphism in each degree and the restriction of u on X ′′ is nilpotent modulo rad(R)m

for each m. Therefore u is a diagonal matrix

(

ι 0
0 ν

)

in each degree where ι : X ′ −→ X ′

is invertible, and ν : X ′′ −→ X ′′ is nilpotent modulo rad(R)m for each m in each degree.

The differential ∂ on X is given by

(

∂1 ∂2
∂3 ∂4

)

and the fact that u commutes with ∂

shows that ∂3ι = ν∂3 and ∂2ν = ι∂2. Therefore, ∂3ι
s = νs∂3 and ∂2ν

s = ιs∂2 for all
s. Since ν is nilpotent modulo rad(R)m for each m in each degree, and ι is invertible,
∂2 = ∂3 = 0. Hence the differential of X restricts to a differential on X ′ and a differential
on X ′′. Moreover, X ′ and X ′′ are both projective modules, since X is projective. Since X
is actually in Kb(A− proj), there are only finitely many degrees with non zero components,
the restriction of u to X ′′ is nilpotent modulo rad(R)m for each m.

Hence, the endomorphism ring of an indecomposable object is local and the Krull-Schmidt
theorem is an easy consequence by the classical proof as in [4] or in [1].

This shows the proposition.

Remark 7. If R is a field and A is a finite dimensional R-algebra, then we would be able
to argue more directly. Indeed, X ′ = im(uN ) and X ′′ = ker(uN ) for large enough N . Then
it is obvious that X ′ and X ′′ are both subcomplexes of X. Observe that R may be a field
in Proposition 6.

We obtain the following consequence of Proposition 6.

Proposition 8. Let R be a complete discrete valuation ring and let A be a Noetherian

R-algebra, finitely generated as R-module. Then any complex X of Db(A) admits a unique

decomposition X ≃
⊕

i∈I Xi into indecomposable complexes Xi and the decomposition is

unique up to isomorphism and permutation of factors.

Proof. Since A is Noetherian, Db(A) ≃ K−,b(A − proj) and given a bounded complex
X, it is isomorphic to a complex Y := PX in K−,b(A − proj). Since the homology of Y is
bounded, we may find N0 so that Hn(Y ) = 0 if |n| ≥ N0. We cut the complex Y in degree
N0, in the sense that there is a complex σN0

Y given by (σN0
Y )m = Ym if m ≤ N0 and

(σN0
Y )m = 0 if m > N0. For m ≤ N0 the degree m differential of σN0

Y is the same as the
differential of Y , and is 0 in larger degrees.

ker(∂N0
)[N0 + 1] : . . .

∂N0+2

−→ PN0+1 −→ 0 −→ . . . −→ 0 −→ 0
↑ ↑ ↑ ↑

Y : . . .
∂N0+2

−→ PN0+1
∂N0+1

−→ PN0

∂N0−→ . . .
∂m+1
−→ Pm −→ 0

↑ ↑ ↑ ↑

σN0
Y : . . . −→ 0 −→ PN0

∂N0−→ . . .
∂m+1
−→ Pm −→ 0

which gives the distinguished triangle

σN0
Y −→ Y −→ ker(∂N0

)[N0 + 1]
∂N0+1

−→ σN0
Y [1].

The choice of N0 implies that HN0
(σN0

Y ) = ker(∂N0
). By Proposition 6 we see that σN0

Y
decomposes

σN0
Y ≃ Q1 ⊕ · · · ⊕Qs

uniquely into a direct sum of indecomposable objects Qi for i ∈ {1, . . . , s}. The decomposi-
tion is induced by idempotent endomorphisms e1, . . . , es of σN0

Y and hence the idempotent
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endomorphisms e1, . . . , es of σN0
Y induce idempotent endomorphismsHN0

(e1), . . . , HN0
(es)

of HN0
(σN0

Y ). Therefore

ker(∂N0
) =

s
⊕

i=1

(HN0
(ei))(ker(∂N0

))

so that the cone of σN0
Y −→ Y is a projective resolution of ker(∂N0

). Since this module
decomposes into a direct sum, also the resolution decomposes into a direct sum, and hence
the idempotent endomorphisms ei of σN0

Y extend to idempotent endomorphisms êi of the
initial object Y .

A maybe more direct way of seeing this is to observe that the decomposition σN0
Y ≃

Q1 ⊕ · · · ⊕ Qs induces a decomposition ∂N0
=
⊕s

i=1 ∂
i
N0

for the corresponding differential

∂i of Qi. Hence

ker(∂N0
) = ker

(

s
⊕

i=1

∂iN0

)

=

s
⊕

i=1

ker
(

∂iN0

)

and Y in degrees bigger than N0 is a projective resolution of the module
⊕s

i=1 ker(∂
i
N0

),

whence a direct sum of projective resolutions of the modules ker(∂iN0
) for all i ∈ {1, . . . , s}.

Hence, the Krull-Schmidt theorem holds for Db(A) as well.

For the next Corollary we follow closely [5].

Corollary 9. Let R be a commutative semilocal Noetherian ring, let S be a commutative

R-algebra so that Ŝ := R̂ ⊗R S is a faithful projective R̂-module of finite type. Let Λ be a

Noetherian R-algebra, finitely generated as R-module, and let X and Y be two objects of

Db(Λ) and suppose that EndDb(Λ)(X) is a finitely generated R-module. Then

S ⊗L

R X ≃ S ⊗L

R Y ⇔ X ≃ Y.

Proof. If S⊗L

RX ≃ S⊗L

RY in Db(S⊗RΛ), we get Ŝ⊗L

RX ≃ Ŝ⊗L

RY in Db(Ŝ⊗RΛ). Since

R is semilocal with maximal ideals m1, . . . ,ms we get R̂ =
∏s

i=1 R̂mi
for the completion

R̂mi
of R at mi. Now, Ŝ is projective faithful of finite type, and so there are n1, . . . , ns with

Ŝ ≃

s
∏

i=1

(R̂mi
)ni

and therefore Ŝ ⊗L

R X ≃ Ŝ ⊗L

R Y implies
s
∏

i=1

(R̂mi
)ni ⊗L

R X ≃
s
∏

i=1

(R̂mi
)ni ⊗L

R Y.

Hence
(R̂mi

⊗L

R X)ni ≃ (R̂mi
⊗L

R Y )ni

for each i, and therefore by Proposition 8

R̂mi
⊗L

R X ≃ R̂mi
⊗L

R Y

for each i. By Theorem 4 we obtain X ≃ Y .

We get cancellation of factors from this statement.

Corollary 10. Under the hypothesis of Theorem 4 or of Corollary 9 we get X⊕U ≃ Y ⊕U
in Db(Λ) implies X ≃ Y .

Proof. This is clear by Corollary 9 in combination with Proposition 8.
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Remark 11. In [3] we developed a theory to roughly speaking parameterise geometrically
objects in Db(A) by orbits of a group action on a variety. For this purpose we need to
assume that A is a finite dimensional algebra over an algebraically closed field K, so that it
is possible to use arguments and constructions from algebraic geometry. Using Theorem 4
we can extend the theory to non algebraically closed fields K as well.
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