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Abstract 

This paper concerns the monitoring of water ultra-filtration devices by vibration analysis. Damaged devices 
are characterized by the presence of air bubbles that can be heard by a trained service engineer. The present 
study investigates the feasibility of an automated detector that could complete the engineer’s expertness. A 
description of the filtration devices is given and the main features of the transients to be detected and the ambient 
noise are brought to light. Based on these features, six detectors are proposed. They are tested and compared 
through Monte Carlo simulations over data built from real life signals. 
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1. Introduction  

Ultrafiltration using hollow fibers is a commonly used method for drinking water production because it allows 
removing micro particles up to ten nanometers and pathogens without using chemicals. Fibers are organized like 
spaghettis inside ultrafiltration modules (tubes). High pressure water is injected through the fibers. Part of it runs 
through the fibers membranes and reaches the inside of the module as pure as source water. However, due to the 
high water pressure, fibers may be damaged, causing the dirty water to reach the module and be mixed with the 
pure water.  

Some integrity tests have been investigated that induce the dismantling of modules [GUO10], which requires 
time and money. Moreover water analysis methods do not allow determine which module is damaged within the 
set of modules [GUO10].  

The diagnosis technique used in practice consists in injecting air into the fibers within a water filled module. 
The air is normally stopped by the fiber membrane but in the presence of a damaged fiber, the air passes through 
this damaged fiber creating some bubbles inside the module. This bubble emission exhibits a recognizable 
acoustic signature, a transient signal, which can be used for detection purpose. Currently skilled technicians 
listen to these bubble sounds in order to report on the module state but the subjectivity of this test may induce 
both detection errors and improper estimation of damages. 

Time and money could be saved with an on-line based fault diagnosis system that would be able to 
automatically detect bubbles and therefore to identify damaged modules. Such a system would not need to stop 
water production but would only require integration of equipments into or on the modules. However, for this 
system, a correct identification of damaged modules is essential and depends on the quality of the transient 
detectors. 

The purpose of this study is hence to investigate for an efficient automated bubble detection technique. 

To fulfill this goal, in-situ measurements are carried out for precise transients and noise characterization. 
Transient types can therefore be identified. Appropriate detectors are then proposed and their performance is 
evaluated. 



The experimental setup is described in section 2. In section 3, both noise and transients are characterized. In 
section 4, performance detection curves are presented for each transient type with the proposed detection 
methods and detection curves are shown on a real life signal. 

2. Experimental Setup 

2.1. Sensor selection 

Microphone seems to be a natural way to replace human ear. However, the noisy environment of the modules 
makes accurate measurements difficult. In addition, the pressure wave crosses multiple medium interfaces: water 
to module wall, module wall to air and air to microphone membrane. Accelerometers actually appear to be better 
fitted to the case. Firstly, they reduce the number of interfaces by two: water to wall and wall to accelerometer. 
Secondly, they reproduce what happens when the technician sticks his ear to the module, i.e. the vibration is 
directly transmitted to the inner ear by the cranium bones. For those reasons and based on preliminary 
experiments, the system has been chosen to be based on vibration analysis rather than sound analysis.  

The selected sensor is a high sensitivity integrated circuit piezoelectric accelerometer (ICP) Kistler 8786A5 
with a range of ±5 g, a sensitivity of 1000 mV/g and a bandwidth of 6 kHz. The sensor is fixed on the module 
with a special wax. 

2.2. Acquisition Chain 

The data acquisition setup is composed of the following parts (Figure 1): 

‐ A high sensitivity accelerometer. 

‐ A signal conditioner MEIRI ME2680 with an ICP sensor amplifier card ME26C-ICP. The amplifier has 
an adjustable gain between 1 and 20, an adjustable output range up to 10V and a bandwidth of 30 kHz.  

‐ A National Instrument data acquisition card NI PCI-4472 composed of eight 24-bit analog to digital 
delta-sigma converters at a maximum of 102400 samples per second, with an alias-free bandwidth of 45 
kHz. 

‐ A computer with Labview environment. 

 

Signal Conditioner 
ME26C‐ICP 

DAQ Card NI PCI‐4472 
with Labview 

Ultrafiltration 
Module 

Accelerometers 
8786A5

Figure 1: Data Acquisition Chain.  
 

2.3. Measurements 

Preliminary measurements on damaged modules show a maximum useful frequency at 5 kHz. So, in order to 
maintain a good signal quality, a sampling frequency of 50 kHz has been chosen. The voltage gain of 
instrumentation amplifier has been adjusted to maximize the output voltage at 10 V, with a value of 13.33. So 
we have a full measurement range of 750 mg. The 24 bits analog to digital converter provides a quantum of 
0.089 µg. 

A database has been established with damaged and undamaged modules measurements during the integrity 
test process. Each measurement is associated to an information file with the module serial number and its 
location  inside the plant. On each damaged module, two measurements have been made, one before repairing 
and one afterwards. 



The identification of damaged modules is primarily based on the presence of bubbles that have to be detected 
as transient signals buried in ambient noise. In order to develop detection procedures in the classical binary 
hypothesis testing way, the noise and added transients have to be characterized. 

3. Noise and Transient Signals Characterization 
 

3.1. Noise 

3.1.1. Histogram 

First, in order to characterize the noise inside a module, some records have been made from undamaged 
modules. A statistical study performed over temporal signals shows a Gaussian distribution of this background 
noise as displayed in Figure 2. The standard deviation may vary according to the production or module position 
but is generally around 10 to 50 mg. 
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Figure 2: Histogram of the temporal vibration recorded on an undamaged device (20 s duration). The blue plot 
represents the data histogram while the red one represents Gaussian fit of the histogram, . 

 

3.1.2. Background noise 

The power spectral density of the records, using Welch's averaged periodogram with a 10 ms rectangular 
window, exhibits two pink noises at -60 dB/dec up to 800 Hz and -10 dB/dec at higher frequencies (Figure 3). 
Figure 4 displays the time-frequency representation of this noise calculated with a short-time Fourier transform 
using a Hanning window of 1 s. 

 
 

Time-Frequency (dB) – Window length = 1 s 

 
Figure 3: Noise Power Spectral Density, estimated on 

20 s duration records. The sampling frequency is 50 kHz. 
Figure 4: Noise Spectrogram. 
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3.1.3. Engine noise 

We can also note the presence of constant frequencies along some signals. Figure 5 and Figure 6 show the 
spectrograms of an undamaged module with some components at 300, 800, 900, 1400, 1700, 2800 and 3400 Hz. 
This unfavorable case is not permanent since all these frequencies are induced by the pumps used during the 
filtration process. 

Figure 5: Noise Spectrogram (550 to 5000 Hz). 
The observed pure tones are caused by pumps. 

 
Figure 6: Noise Spectrogram (550 to 2000 Hz). 

Pumps are the major contributions to the observed pure tones. 
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3.2. Transients 

Secondly, we have identified phenomena inside damaged modules: different kinds of transients were 
observed. We have classified them into five categories, depending on their time-frequency features and the 
corresponding sound that can be heard when sending the vibration signal to a loudspeaker. In what follows, these 
five categories will be denoted types {A, B, C, D, E} and labeled {"glou-glou", "slup", "tic-tic", "tac-tac", "tap-
tap"} sounds, respectively. Figure 7 is a spectrogram example of a damaged module. Repetitive events are 
mostly observed. Depending on the types, the events can either be narrow band mono-component transients 
(Figure 8-a) or multi-component transients (Figure 8-b). Mono-component transients are composed of one 
central frequency which may vary (Figure 8-a, center frequency of 1 kHz ± 200 Hz). Multi-component transients 
are constituted of several local central frequencies that are synchronized or not (Figure 8-b, center frequency 
between 200 Hz and 2 kHz). Note that the sounds produced by these multi component transients are 
characteristic of bubble pops. 
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Figure 7: Spectrogram of one damaged module. 



              
(b)     Multi component transients (a) Mono component transient

Figure 8: Temporal representation and spectrogram of two transient types. 
 

In Figures 9-a to 9-e the five different types of transients are exposed through their temporal representation, 
their spectrogram and their temporal histogram. In many cases, the distribution is far from the Gaussian one 
(cases when the normalized kurtosis value  is far from the 0 value [NIK93]). 

  
Figure 9 ‐ a: Spectrogram and temporal histogram of the type A transient (glou‐glou),  4.1 
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Figure 9 ‐ b: Spectrogram and temporal histogram of the type B transient (slup),  0.2 
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Figure 9 ‐ c: Spectrogram and temporal histogram of the type C transient (tic‐tic),  1.1 
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Figure 9 ‐ d: Spectrogram and temporal histogram of the type D transient (tac‐tac),  7.3 
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Figure 9 ‐ e: Spectrogram and temporal histogram of the type E transient (tap‐tap),  8.8 
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4. Proposed detection techniques and test method 

Based on noise and signal features, several detectors can be proposed. First, as can be seen on the transients 
spectrograms as well as on their temporal representation, the bubbles produce local bursts of energy. The 
simplest detector is thus based on the energy calculation. Second, it was shown both by time and frequency 
analysis and by ear study coupled with different band pass-filters, that bubbles are located above 800 Hz, while 
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the noise exhibits very strong energy at low frequencies. Therefore, a high-pass filter can be applied to the signal 
prior to the energy detector. Third, the magnitude distribution of many transients deviates from Gaussianity as it 
is shown on the histogram plots of section 3.2, whereas the noise exhibits the Gaussian property. Thus higher 
order statistics, for example the fourth-order cumulant, can be used to measure deviations from Gaussianity. 
Fourth, the signals of interest are naturally non-stationary, so that time-frequency or time/scale representations 
are dedicated tools to properly analyze these data. We tested adaptive segmentation in the time domain using 
Malvar wavelet decomposition [Rav98] and adaptive segmentation in the frequency domain using wavelet 
packet decomposition [Rav01]. 

The selected detectors as well as the test method will be more precisely described in the following parts, while 
the experimental results will be given in the last part of this section.  

4.1. Energy detector 

Let us denote by  the nth sample of the observation, and N the total number of samples. The energy  
is adaptively estimated using the following expression: 

1 · 1 ,  2;                                                   1  
 
where the initial energy is set as 1 1 . The adaptive step can be any µ 0; 1 , and it is to be chosen by 
taking into account the duration of the transients. In what follows, this step is fixed to  µ 0.1 for all 
experiments. 

4.2. Energy detector with prior filtering 

The preliminary study showed that transients are located above 800 Hz, while the noise energy dramatically 
decreases with frequency. Therefore it is interesting to apply a high-pass filter to the data prior to the detection. 
The second detector is thus the combination of a butterworth high-pass filter at frequency 500 Hz followed by 
the energy detector. 

4.3. Fourth-order moment with prior filtering 

This detector aims at detecting deviations from Gaussian property. A second-order estimator (energy 
estimator) is not sufficient to detect nonGaussian events. For that purpose, higher-order statistics are often used. 
In particular, the normalized kurtosis value which is a normalized value of the fourth-order cumulant, is known 
to be zero when the process is Gaussian. Let us recall the definition of the normalized kurtosis value . For any 
zero-mean random variable  desc  tribing he process,  writes: 

3                                                                                                        2  

with  representing the mathematical expectation. The normalization factor is the energy whose online 
estimation may thoroughly impact the kurtosis estimated value. A simple way to estimate  is to  normalize the 
variable with respect to the total energy of the observation before estimation. So, for this detector, the  
estimation is reduced  th to e simple online  fourth-order moment: 

1 1 ,  2;                                       3  ·

where the initial moment is set as 1 1 . This detector may be seen as a complementary tool to the 
online energy detector: the periods where the energy is constant may be associated to high values of 

 indicating nonGaussian periods, i.e. the presence of transients. This third detector is then a combination of a 
butterworth high-pass filter at frequency 500 Hz followed by the online fourth-order detector, the step being 
fixed to  µ 0.1. 

4.4. Fourth-order cumulant with prior filterin  g

Considering a zero-mean random variable  describing the process, its fourth-order cumulant is expressed as: 

3                                                                                                 4  

The online estimation of the  basically requires the estimation of the fourth-order moment as well as the 
second-order moment (energy). So, estimation errors are not only due to the fourth-order moment estimator but 
also to the second-order moment estimator.  To get a direct online estimation of the fourth-order cumulant and to 
make the estimation robust with respect to the second-order moment estimation, the adaptive version of this 
estimator described in [AMB95] is processed: 



1 · 1                                                                                    5
1 · 3

 
1 1

In the below presented experiments, the steps are fixed to  0.05 and 0.01. 

For this fourth detector, the 500 Hz high-pass filter is also applied prior to the calculation of the fourth-order 
cumulant.  

4.5. Wavelet transform and kurtosis 

In the frequency domain, transients produce local high coefficients because of their oscillatory components. 
The non-Gaussian property of the transients is therefore enhanced in the transformed domain whereas the noise 
which is Gaussian remains Gaussian. This property is used to get an adaptive segmentation of the data in the 
time domain using Malvar wavelet decomposition. This segmentation acts like a pre-detection of transient 
signals. Indeed, the idea is to get large temporal segments for stationary periods corresponding to the noise only 
condition (with Gaussian coefficients) whereas short temporal segments are obtained when nonstationary periods 
appear due to the presence of any transient (with non-Gaussian coefficients). The segmentation is a data driven 
procedure that is achieved according to the Gaussianity nature of  wavelet coefficients, using the split and merge 
algorithm [WIC94]. The total record duration must have a number of samples that is a power of two in order to 
consider a dyadic partition of the sequence. At the beginning, the finest equal size temporal segmentation is 
considered and wavelet coefficients are computed. At the next level, wavelet coefficients are computed for twice 
longer segments until reaching the total sequence duration. To get a non redundant time frequency 
representation, a selection of wavelet coefficients (i.e. nodes in the tree structure) is achieved. The algorithm is 
the following: at a given level, if the wavelet coefficients of two consecutive segments are Gaussian, then merge 
them. Otherwise let them dissociated. In this procedure, the fourth-order cumulant is measured to zero for 
making the Gaussian / non-Gaussian decision. Practically, the comparison to zero is achieved using the 
Byenaymé-Tchebychev inequality, considering the number of coefficients at the current level and a confidence 
percentage value in the decision making (90% taken in the simulations). The same procedure continues with the 
following two by two segments, at the considered level. When splitting, the highest cumulant node value is 
marked (except at the leaf level where the two nodes are marked) and replaces the father node value. This is for 
keeping a local high non-Gaussianity trace. This procedure is repeated from the leafs (32 samples segments) to 
the root (1 segment with all the samples) of the tree structure. The marked nodes permit to select the best adapted 
wavelet decomposition basis. Then the kurtosis values of the retained coefficients are computed to form the 
detection curve [Rav98]. 

4.6. Wavelet packet decomposition 

According to [RAV01], the wavelet packet decomposition acts like a filtering that is adapted to the statistical 
data content. The algorithm steps are described as follows. First, a denoising procedure based on wavelet packet 
decomposition is achieved. This procedure only keeps frequency bands that are non-Gaussian, which allows 
dealing with the important low frequency components due to the pink noise. A denoised version of the data is 
computed by inverse transforming selected coefficients of the wavelet packet decomposition. Both wavelet 
packet decomposition and coefficient selection are based on a kurtosis computation criterion. Secondly, adaptive 
energy values are evaluated along the time on the denoised signal yielding a temporal detection curve. The 
Daubechies wavelet (order 16), a decomposition depth of 8 and a confidence percentage of 99% have been fixed 
for the simulations. 

4.7. Test method 
The performance of the proposed detectors is evaluated with the Receiver Operating Characteristic (ROC) 

curves, through a Monte Carlo set of experiments. The ROC curve is the representation of the detection rate  
as a function of the false alarm rate . Any detection threshold applied at the output of the receiver is 
associated to a value of the couple ( ,  ). The ROC curve is the location of the ( ,  ) points obtained 
when changing the detection threshold [WHA71]. The experiments are carried out for all types of transients 
presented in section 3.2. For the experiments, each type of transient is defined as a unique pattern  which is 
a “clean” transient extracted f  the tions of a damaged module.  rom vibra

In order to estimate the  and  probabilities, the noise only condition and the transient plus noise 
condition have to be created. The detector under test is then applied to a set of 250 synthetic observations 

 or  with a desired signal-to-noise ratio (SNR). For each observation, the noise 



sequence  is a temporal slice extracted from the vibrations of undamaged modules. A detection is decided 
when the receiver output is greater than a given threshold. Counting the number of detections gives an estimation 
of the  and  values under the noise only condition and the transient plus noise condition respectively. 

A typical detector under test is characterized by a ROC curve which is located between the blue curve (ideal 
detector) and the red curve (poorest detector which is a chance line) as illustrated in Figure 10. A global 
efficiency measure of the detector can be evaluated as the area located between the curve of the detector under 
test and the poorest detector, divided by the area of the upper triangle of the graph. For an ideal detector, this 
parameter would be equal to one, whereas for the worst possible detector it would be zero. This parameter allows 
an easy comparison between different detectors and will be denoted by “mean performance” of the detector. 

 

Figure 10: Example of a typical ROC curve (green line). This curve is located between the ideal curve (blue line) and the 
poorest one (red line). This latter is denoted chance line in the text. 
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4.8. Experimental results 

The ROC curves of all the proposed detectors are presented on Figure 11 for SNR=0 dB. The mean 
performance of the detectors are given on Figure 12. Without any surprise, rather poor results are obtained with 
the energy detector which uses few of the available information about transient features. It can be noted from 
these figures that high-pass filtering the data efficiently improves the results obtained by this very simple 
method. After filtering, the basic use of fourth-order moment does not improve the detection performance with 
respect to the use of second-order moment. Taking into account both statistics in the robust fourth-order 
cumulant estimation greatly helps improving the detection performance, especially for A and B transient types. 
For all the transient types except to the type E, the Malvar wavelet decomposition permits a better detection than 
the temporal detectors. This can be explained by the fact that the type E transient is more widely spread in the 
time-frequency plane than the others preventing a correct adapted wavelet decomposition. Note also that none of 
the methods really makes better than of  the high-pass filtering and energy computation method. Due to a 
difficult time-frequency signature, the other proposed methods have no positive effect on type E transient 
detection. The results concerning the wavelet packet are disappointing (except for the type A transient). Indeed, 
the method sometimes suppresses frequency bands that correspond to transient content and is also not able to 
systematically suppress the low energy frequency bands. 

 All these results are summed up on Figure 12. The wavelet packet results and have not been reported on this 
figure. The best method among those that have been tested remains the Malvar wavelet transform detector, 
whose detection rate is above 96% in all cases and reaches 99% for the type A transient. The fourth-order 
cumulant is also very interesting since the results look very similar. This method has the advantage to be 
computationally low-cost but suffers from the parameters adjustment. For example, the type B "slup" transient 
and the E "tap-tap" transient show comparable results, i.e. 96% and 95% respectively. With the parameters 
choice  0.01 and 0.005 (instead of  0.05 and 0.01 previously), the results are very different, 
i.e. 89% and 98% respectively (not shown here). 

Note that the 0dB SNR simulates very poor operating conditions, since the real SNR is most of the time far 
above that value. 
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Figure 11: ROC curves of the proposed detectors for the five types of transients, SNR = 0 dB. 



 
Figure 12: Mean performance of the tested detectors for each type of transient, SNR=0dB. 
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Three detectors have been applied on a real data sequence. On the example shown on Figure 13, the Malvar 
wavelet decomposition method clearly shows the presence of weak transients in comparison with the simple 
energy detector, even after band-pass filtering in the 200-2000 Hz frequency band. The presence of transients is 
accredited by human expertise and corroborated by time-frequency representations.  
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Figure 13: (a) Time representation of a damaged module (b) Energy of the Malvar wavelet decomposition basis 
coefficients (c) Energy of the time representation (d) Energy of the time representation after 200‐2000 Hz band‐

pass filtering. 
 

5. Conclusion 
In this paper, we presented a feasibility study concerning the development of an automated diagnosis device 

for water ultrafiltration modules. Several detectors have been proposed for the detection of transient signals that 
are distinctive of damaged filtration fibers. Some Monte Carlo simulations have been performed over simulated 
signals constructed from real life recordings. These simulations showed that one of the detectors based on 
Malvar wavelet decomposition gives better results than any other for most of the transients to be detected. 
Providing the parameters are properly tuned, the fourth-order cumulant based detector also allows detection of 



very weak transients in ambient noise. However, this kind of test is not sufficient and needs testing the 
algorithms on long time continuous real data sequences. This approach needs the creation of annotated database 
which is not an easy task because of uncertainties in human diagnosis. The work is under progress. Moreover, at 
the time being, the tested method cannot identify the class of the detected transients. Other methods are under 
investigation for this classification problem. 

The presented results are preliminary since occurrence behaviors of the transients have not been taken into 
account for a precise diagnosis of the modules. The occurrence of transients may be continuous along the time 
with a specific mean delay between two occurrences. On the contrary, when a bubble appears, a volley of 
transients may be sporadically detected. Lastly, other indicators like the air pressure decrease velocity during the 
integrity test procedure, can be merged to the transients detection procedure in order to improve the decision 
making. 
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