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A review of two models for tolerance analysis of an assembly:  

Jacobian and Torsor 

 
The dimensional and geometrical variations of each part of an assembly have 

to be limited by tolerances able to ensure both a standardized production and 

a certain level of quality, which is defined by satisfying functional 

requirements. The appropriate allocation of tolerances among the different 

parts of an assembly is the fundamental tool to ensure assemblies that work 

rightly at lower costs. Therefore, there is a strong need to develop a tolerance 

analysis to satisfy the requirements of the assembly by the tolerances imposed 

on the single parts. This tool has to be based on a mathematical model able to 

evaluate the cumulative effect of the single tolerances. 

Actually there are some different models used or proposed by the literature to 

make the tolerance analysis of an assembly constituted by rigid parts, but 

none of them is completely and univocally accepted. Some authors focus their 

attention on the solution of single problems found in these models or in their 

practical application in computer-aided tolerancing systems. But none of 

them has done an objective and complete comparison among them, analyzing 

the advantages and the weakness and furnishing a criterion for their choice 

and application. 

This paper briefly introduces two of the main models for tolerance analysis, 

the jacobian and the torsor. These models are briefly described and then 

compared showing their analogies and differences. The evolution of these two 

models, known as unified jacobian-torsor model, is presented too. 

 
Keywords: tolerance analysis, jacobian model, torsor model 

 

Introduction 

 
There is a strong need for industries to produce high precision assemblies at lower costs. 

Therefore, there is a strong need to use tolerance analysis to predict the effects of the 

tolerances that have been assigned to the components of an assembly on the functional 

requirements of the assembly itself. The aim of the tolerance analysis is to study the 

accumulation of dimensional and/or geometric variations resulting from a stack of dimensions 

and tolerances. The results of the analysis are meaningfully conditioned by the adopted 

mathematical model.  

Some are the models proposed by the literature to carry out a tolerance analysis of an 

assembly constituted by rigid parts. The foremost works are found in Requicha that 

introduced the mathematical definition of the tolerance’s semantic (Requicha 1983, Requicha 

1993) and proposed a solid offset approach for this purpose. Since then, a lot of models are 
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proposed by the literature: the vector loop uses vectors to represent relevant dimensions in an 

assembly (Chase et al. 1995, Chase et al. 1996, Gao et al. 1998); the variational uses 

homogeneous transformation matrix to represent the variability of an assembly due to 

tolerances and assembly constraints (Martino et al. 1989, Boyer et al. 1991, Gupta et al. 

1993); the matrix uses displacement matrix to describe any roto-translational variation a 

feature may be subjected to (Salomons et al. 1996, Desrochers et al. 1997); the tolerance-map 

uses hypothetical solid including points in n-dimensions which represent all possible 

variations of a feature or an assembly (Davidson et al. 2002, Mujezinovic et al. 2004, Ameta 

et al. 2007, Shen et al. 2008, Singh et al. 2009); the jacobian uses an approach derived from 

the description of kinematic chains in robotics to formulated the displacement matrices; and 

the torsor uses screw parameters to model three dimensional tolerance zones. In the literature, 

some studies compare these models for tolerance analysis by dealing with their general 

features (Hong et al. 2002, Shen et al. 2005). Other studies compare the main Computer 

Aided Tolerancing softwares that implement some of the models of the tolerance analysis 

(Salomons et al. 1998, Prisco et al. 2002); but these studies focus the attention only on the 

general features of the considered models. Moreover, there does not exist a paper that 

compares the different analytical methods on the basis of a case study that underlines in a 

clear way all the advantages and the weakness; therefore, no guidelines exist to select the 

method more appropriate to the specific aims. 

The purpose of this work is to analyse two of the most significant models for tolerance 

analysis of rigid-parts assembly: the model called jacobian and the model called torsor. The 

comparison of the models starts from their application to a case study. Dimensional and 

geometrical tolerances have been considered as part of stack-up functions. The worst and the 

statistical approaches have been taken into account. The application of the Envelope Principle 

(ASME 1994) and of the Independence Principle (ISO 1985) has been deeply investigated. 

Finally, the evolution of these two models, called unified jacobian-torsor model, is presented 

too; it should overcome the limits of the two compared models. 
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Two further works of the authors compare the other main developed models of the 

literature: the matrix and the vector loop models (Marziale and Polini 2009) and the 

variational models (Marziale and Polini 2010). 

Section 2 gives an overall explanation of the jacobian and the torsor models. Section 3 gives 

a comprehensive comparison of the two models by means of a case study that is characterized 

by 2D tolerance stack-up functions. It offers some guidelines for those who will have to make 

the choice too. Finally, Section 4 presents the evolution of the two models, the unified 

jacobian-torsor, that seems to overcome some of the limits of the jacobian and torsor models. 

Tolerance analysis models 

Jacobian model 

Jacobian model uses pairs of Functional Elements (FEs) to represent both the dimensions and 

the variations of an assembly. The Functional Elements pairs are arranged in chains 

representing those dimensions that stack together to determine the resultant assembly 

Functional Requirement (FR). This model is based on the idea that the tolerances allow small 

linear and angular dispersions to a functional element with respect to its nominal position, 

orientation and form (this last is usually neglected). These dispersions are expressed by pairs 

of Functional Elements used to model a stack around the Functional Requirement of an 

assembly. Two types of FE pairs in a tolerance stack can be distinguished: internal pairs, 

which are pairs of the same part, and kinematic pairs, which are pairs of different parts in 

contact; however these two types of elements are schematized in the same way.  

Based on the results sought in the kinematic of robot, a generic dispersion in a pair of 

Functional Elements can be expressed by a set of six virtual joints and coordinate frames (see 

Figure 1). In this way the spatial relationship relating the position and the orientation of the 

terminal FE, expressed in the Datum Reference Frame (DRF) of the base FE, is given by 

(Lafond et al. 1999, Laperrière et al. 1999): 
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where 
j

i
D  is the variable quantifying the translation from frame i to frame j (linear dimension 

of the part), and 
j

i
Ω  is the variable quantifying the rotation from frame i to frame j (angular 

dimension of the part). It follows that the relative position and orientation of any FE in the 

stack of “n” elements, with respect to the DRF of the base FE, as a result of both nominal 

dimensions and degrees of freedom of the FEs involved in the tolerance stack, is given by: 

 
n
n
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6
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6
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... −⋅⋅⋅=  (2) 

where “n” represents the total number of FE pairs (both internal and kinematic) involved in 

the tolerance stack. The global deviation of the FR, expressed in DRF of the first feature R0, 

can be expressed as: 
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where sδ
r

is the vector of the 3 small translations of the considered point, expressed in the 

DRF of the first feature R0; δα
r

is the vector of the 3 small rotations of the considered point, 

expressed in the DRF of the first feature R0; [ ]1 2 6...
iFE

J J J  is the 6x6 Jacobian matrix 

associated with the FE of the i
th
 FE pair (internal or kinematic) to which the tolerances are 

applied, with i = 1 to n; 
iFEδ

r
 is the 6-vector of small dispersions associated with the FE of the 

i
th
 FE pair (internal or kinematic) to which the tolerances are applied, expressed in the local 

DRF, with i = 1 to n.  

For small rotational virtual joints, the i
th
 column of the Jacobian matrix Ji is computed as: 
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while for small translational virtual joints, there is no contribution to small rotational 

displacements of the point of interest and the i
th
 column of the Jacobian matrix Ji is computed 

simply as: 
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−
. Equation (3) relates 

the small dispersions of the assembly FR to the virtual joints of the FE pairs, that form the 

stack, by a Jacobian matrix that is easily to evaluate from the nominal position of the features. 

Despite this advantage, the virtual joints displacements, that are the independent variable in 

equation (3), are difficult to relate to the tolerances applied to the assembly components. 

To better understand this method, the basic steps to build a stack of Functional Element’s 

pairs and to carry out a tolerance analysis are given below: 

(1) Identify the assembly Functional Requirement and the Functional Element’s pairs - 

the first step is to identify the Functional Requirement of the assembly and the 

Functional Elements that are involved in the stack. Therefore, the Functional 

Elements are arranged in consecutive pairs to form the Functional Requirement stack. 

(2) Locate the virtual joints and the DRFs of each FE - the next step is to locate the 

virtual joints and the DRFs of each FE. Therefore, the transformation matrix (1) is 

calculated for each FEs. 

(3) Create the chain and the Jacobian matrix - The Functional Requirement chain (2) is 

evaluated by means of the transformation matrix evaluated in the step 2. Therefore, 

the Jacobian matrix of the assembly Functional Requirement is evaluated too by 

equations (4) and (5). 

(4) Derive the Functional Requirement equation - once calculated the Jacobian matrix of 

the Functional Requirement, the dispersion of the virtual joints, due to the applied 
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tolerances, have to be derived. Therefore, the displacement of the Functional 

Requirement may be evaluated and its equation (i.e. the stack-up function) may be 

formalized. 

(5) The stack-up function may be solved by means of the usual methods of the literature 

(Whitney 2004) for both the worst case or statistical case approaches. 

A fundamental consideration about this model is that it is based on both a Technologically 

and Topologically Related Surfaces (TTRS) (Clément et al. 1998) and a positional 

tolerancing (Clément et al. 1994) criteria; therefore, the tolerances of a generic drawing need 

to be translated according with the previously described criteria before performing the 

analysis. Moreover, this model may be applied to assemblies involving joints which makes a 

linear structure among the parts (stack-up function, see Figure 2a), while joints which makes 

a complex structure among the parts (network function, see Figure 2b) are not supported. 

Torsor  model 

The torsor model uses screw parameters to model three dimensional tolerance zones 

(Desrochers et al. 1999, Legoff et al. 1999). Each actual surface of a part is modelled by a 

substitute surface. A substitute surface is a surface that has the shape of the nominal surface 

and it is used to model the actual surface. A substitute surface is characterized by a set of 

screw parameters which are the deviation of the substitute surface from the nominal one. For 

each of the seven types of tolerance zone, there are the correspondent screw parameters 

obtained by annulling the ones that leave the surface invariant in its local frame. The obtained 

screw parameters are arranged in a particular mathematical operator called “torsor”. 

Considering a generic feature, if uA, vA, wA are the translation parameters of the point A, and 

α, β, γ are the rotation angles (considerated small) as regards to the nominal position, the 

torsor of point A is given by: 
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where R is the DRF where the screw parameters are evaluated. Once known the torsor of 

point A, the torsor of point B may be evaluated as: 
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where: 
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where ABx, ABy and ABz qre the vectors of the distance between points A and B along the x, 

y and z axes respectively. 

To model the interaction between the parts of an assembly, three kinds of torsors (or Small 

Displacement Torsor SDT) may be defined (Ballot et al. 1995, Ballot et al. 1997): a part SDT 

for each part of the mechanism (A, B, …) to model the displacement allowed to the part; a 

deviation SDT for each surface (A1, A2, …) of each part to model the geometrical variations 

of the surface; a gap SDT between two surfaces linking two parts to model the joint 

properties. 

Therefore, a union of the set of SDTs that are involved at the joints is used in order to obtain 

the global behaviour of the mechanism. This may be bone by considering that, with the worst 

case approach, the cumulative effect of a simple chain of n-elements is simply expressed by 

adding the single components of the torsors: 

 nnn TTTT /12/11/0/0 ... −+++=  (9) 

(it is to observe that to compute this sum is necessary that the components of all the single 

torsors are referred to the same point B and in the same datum reference frame R). 

The basic steps of the torsor model are (Villeneuve et al. 2001): 

(1) Identify the elements of the parts and the relations among them - the first step is to 

identify the elements of the parts and the relations among them; these information are 
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usually reported in a Surfaces Graph. The Functional Requirements and the stacks to 

relate these FRs are identified too. 

(2) Define the parameters of the mechanism - a deviation torsor has to be associated to 

each surface of the parts, therefore, a characterization of the global SDT of each part 

has to be done. The shape of the gap torsor, that is associated to each joint according 

to the functional conditions required by the assembly, has to be defined too. 

(3) Computate the cumulative effect of the torsors involved in each stack in order to 

evaluate the Functional Requirements by equation (9).  

Finally, some fundamental considerations are needed. The first is that this model is developed 

under the hypothesis to use the TTRS and the positional tolerancing criteria. The second is 

that the solution of stacks arranged in a network is not completely developed in spite of the 

different works produced in the last years (Teissandier et al. 2007, Franciosa et al. 2009). The 

third is that the torsor components assume a double meaning. In a first approach the small 

displacement torsor components are simple parameters and they are computed by means of 

common algebraic rules. An example of this approach is in (Legoff et al. 1999) where a 

tolerance problem involving network functions is solved. In the second approach the small 

displacement torsor components are admissible intervals according with the applied tolerance 

ranges. An example of this approach is in (Teissandier et al. 1999). The first approach gives a 

solution to the tolerance analysis problems very similar to the other approaches of the 

literature; while the second approach may theoretically relate the variability range of the 

Functional Requirements of the assembly to the assigned tolerance ranges. However, this 

second approach needs to compute the small displacement torsor components, that are 

intervals, by means of the arithmetic by interval, that is not fully developed yet. In the 

following we make reference only to this second approach, since its potentialities seem more 

interesting in tolerance analysis. 
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Models comparison 

Case Study 

To compare the two models previously described the case study shown in Figure 3 has been 

used. The two-dimensional geometry of the example assembly is made of a rectangular box 

containing two disk-shaped parts. The width g of the gap between the top disk and the upper 

surface of the box is assumed as the functional requirement to be investigated by the analysis. 

Goal of the tolerance analysis problem is to identify the tolerance stack-up function that 

defines the variability of g, and describes it as a function of the geometries and tolerances of 

the components involved in the assembly.  

Tolerance analysis is based on the dimensional and geometrical tolerances illustrated in 

Figure 4. The example is adapted from a real-life industrial application and properly 

simplified to make it easier to be presented and discussed in this context. The applied 

tolerancing scheme, which may not appear as entirely rigorous under the viewpoint of a strict 

application of standardized tolerancing rules, is directly derived from the current practice 

adopted for the actual industrial product.   

The case study is representative of all the main aspects and critical issues involved in a typical 

tolerance analysis problem, and it is simple enough to allow for applying a simplified manual 

computation procedure for obtaining the extreme values of the gap g, for the special case 

where only dimensional tolerances are considered. The manual computation is based on 

searching for the worst-case conditions, i.e. the combinations of part dimensions that give 

origin to the maximum and minimum gap values; since no geometric tolerances are 

considered, part geometries are assumed at nominal states. 

The maximum value of the gap has been calculated by considering the maximum height and 

width of the box, together with the minimum value of the radius of the disks: 

( ) ( ) mmg 1064.295.1995.1995.19504295.1995.195.80 22
dimmax =−−−−⋅−−=

  (10) 

In the same way the minimum value of the gap is due to: 
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( ) ( ) mmg 4909.005.2005.2005.2080.49205.2005.205.79 22
dimmin =−−−−⋅−−=

  (11) 

The variability of the gap is the difference between the maximum or the minimum values and 

the nominal one: 

 
( ) ( )
( ) ( ) mmggg

mmggg

N

N

78.04909.02702.1

84.02702.11064.2

dimmin2dim

dimmax1dim

−≅−−=−−=∆

+≅−=−+=∆
 (12) 

Although operating on a simplified problem (geometrical tolerances are neglected) the 

manual computation of the gap boundary values provides a useful support for the quantitative 

comparison of the five methods, at least when they are applied by considering dimensional 

tolerances only. The manually-obtained, extreme gap values will be used as reference values 

later on, then the results of the five methods will be discussed.   

Jacobian model solution 

Dimensional tolerances only 

The jacobian model of the case study is made under the simplified hypothesis to consider as 

fixed at 90° the orientation of the four sides of the box. This simplification is needed to avoid 

the network in the assembly. Indeed it is to observe (see Figure 3) that the functional 

requirement g has to be measured between the top side of the box and the second disk. Being 

the second disk assembled with the sub-assembly box-disk 1, firstly the assembly between 

part 1 and part 2 has to be solved. Therefore, the assembly between the part 3 and the sub-

assembly box-disk 1 has to be solved. Once indicated with x1 and x2 the dimensions of the 

box, with x3, and x4 the diameter of the two disks and with U1, U2, U3, U4 the assembly 

variables (see Figure 5), the simplification adopted makes it possible to directly solve the 

assembly problem as: 

 31 xU =   

 32 xU =  (13) 
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 413 xxU −=  

 ( ) ( )2431
2

4334 xxxxxxU −−−++=  

Therefore, the functional requirement g and the functional elements pairs of the case study are 

identified (Figure 5). The first functional elements pair is associated with the points G and Ω 

and it is an internal one. The second functional elements pair is associated with the points Ω 

and O1, while the third functional elements pair is associated with the points O1 and O2; they 

are both externals. The last internal functional elements pair is associated with the points O2 

and H. The required functional requirement g is correspondent to the functional elements pair 

is associated with the points G and H, and it is evaluated as the chain of the four functional 

elements pairs just identified. At this point, is possible for each FE to locate the virtual joints 

and the reference frames, and to evaluate the transformation matrices 
24

0
3
0

2
0

1
0

,...,,, TTTT  

with the equations (1) and (2). The matrix of the total transformation is equal to: 
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Therefore, the Jacobian matrix of the functional requirement is evaluated using equations (4) 

and (5): 
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where ( ) ( )2431
2

4343 xxxxxxxh −−−+++= . 

Once calculated the Jacobian matrix of the functional requirement pair, the stack-up function 

may be formalized considering that the requirement ∆g must be evaluated as the translation of 

point H long the –Z0 axis (Figure 5), and then as the third component of equation (3). It is: 

 ( ) ( ) 1812431116415024 zzxxxzzxxzzzg δδδφδδφδδ −−−−⋅+−−⋅+−=−=∆  

  (16) 

where izδ  (i=0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20) is the translation along the i
th
 axis and 

izδφ  (i=3, 4, 5, 9, 10, 11, 15, 16, 17, 21, 22, 23) is the rotation around the i
th
 axis. This 

equation relates the functional requirement ∆g to the virtual joints displacements assigned to 
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the functional requirement pairs; now it is necessary to relate these virtual joints 

displacements to the tolerances assigned on the components. 

This step is the critical task of the jacobian model. However considering the simplification 

adopted (angles fixed) is 5 11 0z zδφ δφ= =  and then: 

 181260 zzzzg δδδδ −−−−=∆  (17) 

Moreover, with reference to Figure 5 of the four functional requirement pairs and to equations 

(13), and considering the nominal dimensions: 

 20 xz δδ −=  

 36 xz δδ =  (18) 

( ) ( ) 431
2

431
2

4312 2910.12910.12582.0 xxxxxxxxz δδδδ ⋅+⋅+⋅−=





 −−−+∇=  

 418 xz δδ =  

and then is: 

 4321 2910.22910.22582.0 xxxxg δδδδ ⋅−⋅−+⋅=∆  (19) 

Once obtained the required stack-up function, it can be solved with the usual methods of the 

literature. For example, for the worst case approach (Whitney 2004): 

 
( )

mm

tSg i
i

iWC

78.07807.0

05.02910.205.02910.250.020.02582.0
4

1

±≅±=

=⋅+⋅++⋅±=⋅∑±=∆
=  (20) 

while for statistical case approach: 

 ( ) mmtSg
i

iiSC 53.05281.0
4

1

2 ±≅±=∑ ⋅±=∆
=

 (21) 

Dimensional and geometrical tolerances  

If the dimensional and the geometrical tolerances are considered, none changes as regards to 

the previous case, since it has been adopted the simplification to consider fixed the angles in 

order to avoid the network. In fact, to solve the stack-up function, it is needed to relate the 

virtual joints displacements to the tolerances assigned on the components. However, the form 
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tolerances (the planar one applied on the bottom side of the box and the two circularities 

applied on the circles) do not produce any effect because in the jacobian model the features 

are considered with nominal shape; the other ones (the perpendicularity applied on the left 

side of the box, and the two parallelisms applied on the other sides of the box) cannot produce 

any orientation deviation, since the angles of the box are considered fixed. 

Therefore, the simplification to consider fixed the angles of the box, due to the need to avoid 

network, causes the assigned geometrical tolerances do not produce any effects and the results 

are the same as the previous case where are considered only dimensional tolerances. 

Moreover, the application of the Envelope Principle or of the Independence Principle does not 

produce any effect for the jacobian model. 

Torsor model solution 

Dimensional tolerances only 

The required functional characteristic g has to be evaluated by considering that there is a 

network among the components of the assembly. At the state of the art, the solution of 

parallel chains through the torsor method is not completely developed. Therefore, the 

simplification to consider fixed the angles of the box has been used in order to avoid the 

network. This simplification may solve the assembly problem as showed in equations (13). 

The first step of the method is to identify the elements of the parts (see Figure 6), and the 

relations among them; these information are reported in the surfaces graph of the case study 

(see Figure 7). Considering the angles of the box as fixed, the network can be solved and, 

therefore, the surfaces graph is simplified as showed in Figure 8. The cumulative torsor G is 

expressed as: 

 

R

H

H

H

H

g

v

u

TTTG

















∆

=++−=

γ
β
α

1,33/11,1  (22) 

where T1,1 is the torsor of feature 1 of part 1 (the box); T3,1 is the torsor of feature 1 of part 3 

(the circle 2); and T1/3 is the torsor of the link between part 1 and part 3. Therefore, the 

functional requirement ∆g is expressed by the translation component along the global Z axis. 
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The next step is to evaluate the components of the torsors (indeed it is enough to evaluate the 

third components due to translation). For the T1,1 torsor, with reference to Figure 9 and Table 

1 and considering that the case study is a 2D problem on x-z plane (i.e. α=0, γ=0, v=0), it is: 

 

1,1
1,1

1,11,1

RMM
w

T





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


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




−

−

−−

= β  (23) 

where M is the median point of the feature. Considering that the point of interest is H, from 

equation (8): 
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 (24) 

and then from equation (7): 
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 (25) 

This torsor (note that only three of its components are not null) is expressed in the local frame 

of the feature and it has to be expressed in the global reference frame R (Figure 9). In this 

simply case it is possible to note that the local y-axis coincides with the global Y-axis, 

therefore, the angle β1,1 is the same too. The local x and z axes are the inverse of the global X 

and Z axes respectively, therefore, the correspondent translation needs to be inverted. It is: 

 

( )
RMH

w

T





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5
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β
β

β
 (26) 

Considering the simplification of considering fixed the angles of the box, β1,1 = 0 and 

therefore: 
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=
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1,1 0  (27) 
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This torsor has constrained by considering that the extreme points F and Q remain into the 

tolerance zone. It results: 

 
( ) ( )
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1,1  (28) 

where t1,1 is the thickness of the tolerance zone of S1,1, and t2 is the dimensional tolerance of 

the dimension x2. Note that this torsor shows the admissible range of variations of the small 

displacements associated to the feature. In the same way the torsor T3,1 of feature 1 of part 3 

may be computed; it results: 
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1,3  (29) 

where t4 is the dimensional tolerance of the dimension x4.  

The evaluation of the torsor linking part 1 and part 3 (T1/3) is very difficult because it needs 

the solution of the networks among the components of the assembly. By adopting the 

simplification that the angles of the box are fixed, it is possible to solve this problem as the 

sum of two terms: 

 3/22/13/1 TTT +=  (30) 

The first term (T1/2) is the torsor of the link between part 1 and part 2. With reference to 

Figure 9 it is: 
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The second term (T2/3) is the torsor of the link between part 1+2 and part 3. With reference to 

Figure 9 it is: 
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( ) ( )
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 (32) 

where t1,2 , t1,3 , and t1,4 are the thicknesses of the tolerance zones of S1,2, S1,3 and S1,4; and t1 , 

t3 , and t4 are the tolerances on the dimensions x1 ,  x3  and x4.  Therefore, the functional 

requirement is: 

 ( ) 22910.22910.22582.0 13114321 ttttttg ++⋅+⋅++⋅±=∆  (33) 

Now, it is necessary to relate the thicknesses of each tolerance zone assigned to each feature 

to the tolerances required on the components. This is another critical step of the torsor model. 

However, under the simplified hypothesis adopted (i.e. fixed angles of the box) and by 

considering only dimensional tolerances, it may have: 

 mmtttt 014131211 ====  

 mmt 40.01 =  

 mmt 00.12 =  (34) 

 mmt 10.03 =  

 mmt 10.04 =  

And, therefore, the functional requirement in the worst case approach 

is:

( ) mmgWC 78.07807.0210.02910.210.02910.200.140.02582.0 ±≅±=⋅+⋅++⋅±=∆
            (35) 

as obtained with the jacobian approach. It may be added that the torsor method does not 

allow to evaluate the results due to a statistical approach, since the torsor’s components are 

considered the extreme possible intervals of the small displacements, and this is not 

compatible with the statistical approach where a probably density function is to each 

parameter. 
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Dimensional and geometrical tolerances  

If the dimensional and the geometrical tolerances are considered, equation (30) is still valid 

(under the hypothesis of fixed angles of the box), and it is always needed to relate the 

thickness of the tolerance zones to the tolerances required on the components. Moreover, by 

using the simplification to consider fixed the angles of the box, none changes as regards the 

case of only dimensional tolerances. Therefore, the simplification to consider fixed the angles 

of the box causes the geometrical tolerances do not have effects on the results of the case 

study. 

Moreover, the application of the Envelope Principle or the Independence Principle does not 

produce any effect for the torsor model too. 

Comparison 

Table 1 shows the results due to the application of the two considered models to the same 

case study. If only the dimensional tolerances are applied, the worst case approach 

gives small under estimated results of about 4%, when compared with the geometrical 

exact solution. This is probably due to the same way the dimensional tolerances are 

schematize (i.e. the first datum is nominal, the variability due to the dimensional 

tolerance is considered applied only on one of the two features delimiting the 

dimension).  If the geometrical tolerances are applied too, the worst case approach 

gives the same result, since it has been adopted the simplification to consider fixed the 

angles of the box in order to avoid the network. In fact, to solve the stack-up function, 

it is needed to relate the virtual joints displacements to the tolerances assigned on the 

components. However, the form tolerances (the planar one applied on the bottom side 

of the box and the two circularities applied on the circles) do not produce any effect 

because in the jacobian model the features are considered with nominal shape; the 

other ones (the perpendicularity applied on the left side of the box, and the two 

parallelisms applied on the other sides of the box) cannot produce any orientation 
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deviation, since the angles of the box are considered fixed. The statistical approach 

gives similar results, when only dimensional tolerances or both dimensional and 

geometrical tolerances are applied. In this case the variability range is smaller than 

that of the worst case approach, as it is foreseen. 

The jacobian model has the advantage, as regards the torsor model, to be able to perform the 

analysis by both the worst case and the statistical approaches. Moreover, the jacobian model 

allows to evaluate the jacobian matrix from the nominal conditions and, therefore, it is 

possible to directly relate the displacements of the functional requirements to the virtual joints 

displacements. Another advantage of the jacobian model is that it uses the usual algebraic 

rules to evaluate the displacements of the functional requirements, while the torsor model 

needs intervals algebraic rules which are much complex; this aspect is fundamental to 

approach the solution of the network functions which need to be developed for both the 

models.  

Despite these advantages of the jacobian model, its virtual joints displacements are difficult 

to relate to the tolerances applied on the components. This step is critical for the torsor model 

too, but it seems easier to approach, despite with this second model the computation of the 

displacement components of the points of interest in the same global datum reference frame is 

very difficult and it has to be developed completely yet. 

Unified Jacobian-Torsor model 

 
As just underlined, the jacobian model takes its best advantage in the simplicity to evaluate 

the jacobian matrix from the nominal conditions; equations (4) and (5). This makes it possible 

to directly relate the displacements of the functional requirements to the virtual joints 

displacements; equation (3). The solution of the network functions seems easier to approach 

than the torsor one too. Despite this advantage, the virtual joint displacements are difficult to 

relate to the tolerances applied on the components.  
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The torsor model allows to easily evaluate the variability ranges of the small displacements 

from the tolerances applied on the components, but it is very difficult to relate these ranges to 

the variability ranges of the functional requirements of the assembly. 

In the last years the idea of the Unified Jacobian-Torsor model has been presented in order to 

evaluate the virtual joint displacements from the tolerances applied on the components by the 

torsors and, therefore, to relate the displacements of the functional requirements to the virtual 

joint displacements by the jacobian matrix (Laperrière et al. 2002, Desrochers et al. 2003); it 

is theoretically possible since the deviations are usually small and the equations may be 

linearized. The proposed unified model expands the functionalities of the jacobian model 

under two important aspects (Ghie et al. 2003). First, the punctual small displacement 

variables of the former jacobian formulation are now considered as intervals formulated and 

solved using interval-base arithmetic. The equations describing the bounds within which the 

feature is permitted to move, which are the constraint equations of the torsor formulation, are 

applied on the unified model. Second, some of the small displacement variables used in the 

model are eliminated due to the invariant nature of the movements they generate with respect 

to the toleranced feature. This standard result of the torsor formulation is applied to the 

unified model. The effect of this is to significantly reduce the unified model size.  This new 

model enables to perform tolerance analysis and tolerance synthesis (Laperrière et al. 2002) 

or to redesign the assembly tolerances (Ghie et al. 2007). The Unified Jacobian-Torsor model 

has been developed for deterministic (worst-case) computer aided-tolerancing. Recently, the 

same set of interval-based deterministic equations has been applied to a statistical context 

(Ghie et al. 2010) and the model has been used to develop a method for obtaining the 

functional requirement cost for product (Ghie 2009). 

Conclusions 

 
This paper firstly makes a brief review of two state of the art tolerance analysis models for 

rigid-parts assembly, the jacobian and the torsor. The two models are compared, in order to 
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highlight the advantages and the weakness of each model, on the basis of the experimental 

results and the information available from the literature. 

The two considered models have some common limits. The first two deal with the assembly 

cycle: the two models have not developed yet an approach to consider functional requirement 

functions arranged in a network and to correctly represent the coupling with clearance 

between two parts. The third deals with the representation of the tolerances applied on the 

assembly’s components: the two models does not give a complete correspondence among the 

model variables (displacements) and the part’s tolerances. In other words the translation of 

the part’s tolerances into model variables does not satisfy the standards (ASME or ISO). The 

last deals with the form deviations and the Independence Principle: the two models do not 

allow to consider form deviations (the features are considered with nominal shape) and to 

apply the Independence and/or the Envelope Rule to different tolerances of the same parts. 

However, the jacobian model has the advantage to directly relate the displacements of the 

functional requirements to the virtual joints displacements by the evaluation of the jacobian 

matrix from the nominal conditions. Moreover, it can be used to perform both a worst case 

and a statistical case approaches. 

The torsor model has an easily evaluation of the variability ranges of the small displacements 

from the tolerances applied to the components. 

The experimental results of the case study show how both the jacobian and the torsor models 

give the same underestimated result; this is due to the adopted simplification to consider fixed 

the angles of the box.  

To overcome these limits in the last years a new model called Unified Jacobian-Torsor Model 

has been proposed, but it is still object of research. 

Further researches include the definition of a new and original model able to overcome the 

limits that have been highlighted in this work. 
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Figure captions 

Figure 1. Virtual joints and coordinate frames to FE pairs 

Figure 2. Stack-up function a) and Network function b) 

Figure 3. The case study 

Figure 4. The case study with dimensional and geometrical tolerances 

Figure 5. Functional Requirement and the Functional Elements pairs of the case study 

Figure 6. Torsor model: elements and parts of the case study 

Figure 7. Torsor model: surface graph of the case study 

Figure 8. Torsor model: simplified surface graph of the case study 

Figure 9. Torsor model: tolerance zones of the case study 
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Table captions 

Table 1. Case study results 
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Figure 1 
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Figure 2 
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Page 36 of 48

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

Figure 8 
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Figure 9 
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Table 1 

∆∆∆∆g Tolerance case 

Method Approach only dimensional dim. & geo. 

exact geometric solution worst case +0.84 mm 

-0.78 mm 

- 

worst case ±0.78 mm ±0.78 mm jacobian 

statistical case ±0.53 mm ±0.53 mm 

worst case ±0.78 mm ±0.78 mm torsor 

statistical case - - 
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