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The Impact of Edge Deletions on the Number of
Errors in Networks

Christian Glacet *, Nicolas Hanusse*, and David Ilcinkas*

LaBRI, University of Bordeaux, CNRS, INRIA

Abstract. In this paper, we deal with an error model in distributed
networks. For a target ¢, every node is assumed to give an advice, ie.to
point to a neighbour that take closer to the destination. Any node giving
a bad advice is called a liar . Starting from a situation without any liar,
we study the impact of topology changes on the number of liars.

More precisely, we establish a relationship between the number of liars
and the number of distance changes after one edge deletion. Whenever
£ deleted edges are chosen uniformly at random, for any graph with n
nodes, m edges and diameter D, we prove that the expected number of
liars and distance changes is O(Z2 D1y in the resulting graph. The result
is tight for ¢ = 1. For some specific topologies, we give more precise
bounds.

Keywords: dynamic graph, errors and faults, shortest path and routing

1 Introduction

1.1 The Search Problem.

Everyone has already faced the problem of reaching a destination in an uncer-
tain network. This is typically the case whenever you are in an unknown city,
without a map, and you aim at reaching, let us say, the closest cash machine.
The only thing you can do is ask for some information from people in the street.
Unfortunately, there is no evidence that all the information you get is reliable.

Nowadays, in a communication network, a corresponding situation can oc-
cur. Let us consider the routing task. Due to its dynamicity (change of topology,
time required to update local information) and its large-scale size, current net-
works are not immune to faults and crashes. It is no more realistic to blindly
trust the data stored locally at each node. For instance, the Border Gate Pro-
tocol (BGP) used in Internet to route messages between autonomous systems
implicitly assumes that some paths are known to reach any target. Ideally, these
paths are as short as possible. Unfortunately, many messages do not reach their
destination because no paths are temporally known although some paths could
exist. Is there a way to find such paths ?

In the following, for a given target ¢, we informally refer to a liar as a
node containing bad information about the location of t. The word liar is used
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even if nodes have not necessarily malicious intentions, but are simply ignorant.
A series of papers [HKK04, HKKKO08 HIKN10] tackle the problem of locating a
target (node, resource, data, ...) in presence of liars.

A first model was introduced by Kranakis and Krizanc [KK99]. They de-
signed algorithms for searching in distributed networks having the ring or the
torus topology, when a node has a constant probability of being a liar. A more
realistic model was proposed by Hanusse et al. [HKKO04]: the number of liars is a
parameter k and during a routing query, the information stored at every node is
unchanged. The main performance measure is the number of edge traversals dur-
ing a request. Several algorithms, either generic or dedicated to some topologies,
and bounds are presented in [HKK04,HKKKO08,HIKN10] and are typically of the
form O(d + kM) (for path,grids, expanders,...) or O(d 4+ 2°*)) for bounded
degree graphs, d being the distance between the source and the target.

In these papers, there is an implicit assumption: the number of liars is small.
Our goal is to evaluate whether this is realistic or not. Starting from a network
without any liar, we aim at estimating bounds on the number of liars obtained
after few changes of topology. It turns out that this problem is related to the
problem of estimating the number of distance changes after few edge/node dele-
tions or insertions. In this paper, we focus on edge deletions for the following
reasons: it is a more atomic event than node deletion (any node deletion can
be represented as a sequence of edge deletions) and a deletion is much more
dramatic than an insertion in our context. On the one hand, after one deletion,
there is potentially no known or existing path toward the target and on the other
hand, after one insertion, we could only miss a shortcut.

1.2 Related Works

The influence of topology changes on graph parameters is studied in several
works. In [CG84,SBvL87], it is proved that for any sequence of ¢ edge deletions
that do not disconnect the graph, the diameter D of any unweighted graph turns
to be less than D(¢+1). Our work is also related to the computation of the most
vital node of a shortest path [NPWO03], that is the node whose removal results
in the largest increase of the distance for a given pair of source/target, and the
Vickrey pricing of edges [HS01].

Recently, some work on dynamic data structures for shortest paths/distance
computation problems has been proposed. By dynamic, we mean that the data
structures can tolerate some topology changes in a given network. A dynamic
network model defines how the underlying graph changes/evolves over time.
More precisely, the following type of models are usually considered:

e [Ewolving models without constraint: it consists in an ”online” insertion and /or
suppression of links and/or nodes. Roughly speaking, if G(t) is the network
at time ¢ then G(0) and G(t) can be quite different.

e Fuailure model: G(t) is a subgraph of G(0). In practice, we consider that few
nodes/links are removed from G(0).



The most standard model of dynamic network is the following: starting from
an initial graph, a sequence of ¢ insertions/deletions of edges/nodes is done.
Each query has to be answered taking into account the ¢ updates. The most
naive solution consists in recomputing all shortest paths after any update but
it is generally quite costly. For instance, the update time of the fastest dynamic
algorithms for the all-pairs shortest path takes O(n?polylog(n)) [DI104,Tho04].
It turns out that in the failure model, it is not always necessary to recompute all
shortest paths. Some solutions provide efficient data structures dedicated to the
problem of reporting shortest path or distance queries for £ = 1. More precisely,
we can distinguish data structures dedicated to ezact solution [DTCR08,BK09]
or constant approximation of the solution [KB10,CLPRI10], that is a constant
factor of shortest path/distance after one edge/node deletion. The challenge is to
handle efficiently more than ¢ > 1 updates. To our knowledge, the more general
result is the ¢-sensitivity distance [CLPR10] oracle for which a data structure
of size O(¢sn'*1/%1logn) is able to approximate the distance between any node
pairs within a factor O(s - ¢) for undirected graphs in O(¢ log®™M) n) time. Note
that the data structures report distances / routing paths, given the knowledge
of the ¢ nodes/edges to avoid. They provide a similar result for weighted graphs
and, only if £ < 2, for compact routing.

In these works, the implicit model is the one of a strong adversary model:
the worst sequence of updates. This is sometimes too pessimistic to explain
and to model macroscopic observations done on real dynamic networks. In
the following, we will also consider the random fault adversary model: any se-
quence of ¢ updates has the same probability to occur. Estimating the number
of distance changes in a dynamic network can be used to get a tight analy-
sis of the update time. In King’s algorithm analysis ([Kin99] - section 2.1 or
[Ber09]), the update time to maintain a shortest path tree turns to be O(D -
#number of distance changes from the root) for connected bounded degree graphs
whenever ¢ = 1. Our results allow to analyse the random fault case.

1.3 Contribution

Models The network is modelled by a graph G = (V, E) of |V| = n nodes and
|E| = m edges. G is assumed to be unweighted and can be disconnected. Note
that D correspond to the maximum diameter of all the connected components.
The neighbourhood of vertex u is noted I'(u) and includes u itself. Given a target
located at a node ¢, each node v € V' \ {t} has an advice Adv(u) € I'(u) \ {u}.
Node w is a truthteller if Adv(u) belongs to a shortest path from u to ¢ and
otherwise u is a liar. The set of advice A can also define a directed subgraph of
G, noted G 4. There is an arc (u,v) in G4 if and only if v = Adv(u). Whenever
there exists no liar , G 4 is a shortest path spanning tree rooted at t¢.
We shall investigate two main parameters:

o the number of liars k = kg (A) for a set of advice A in graph G
e and the size of the set S of nodes whose distance to ¢ has changed after one
edge deletion.



For instance, in Figure 2, we have n — D lying nodes pointing toward a dead-end
in the rightmost drawing and D — 1 nodes whose distance to ¢ has changed after
one edge deletion.

Given a graph G without any liar and a target ¢, we aim at analysing the
combined effect of the choice of set of advice A and the set of £ edges. Note that
A is not arbitrary since we assume that G has no liar. After a deletion, it may
happen that the resulting graph turns to be disconnected. Nodes that do not
belong to the connected component of node ¢ become liars. The set of advice is
unchanged with a potential exception: if a deleted edge was used as an advice,
one extremity needs to draw another advice among its current neighbours. We
focus on two models:

e The adversary model: this model represents a worst-case analysis. An
adversary has the capacity of choosing A, the set of edges to remove and the
potential new advice to draw. Thus, k is maximal in this model.

e The random fault model: A is assumed to be chosen uniformly at random
in the universe of set of advice without liars for the given graph. The set of
edges to delete and the potential new advice are chosen uniformly at random.

G is the resulting subgraph of G after ¢ deletions .

Results The majority of our results focus on the random fault model since most
of the results in the adversary model are simpler. However, it is interesting to
take the two models in order to see a potential gap between them.

More precisely, our main result deals with the random fault model : after
{ deleted edges are chosen uniformly at random, for any graph of n nodes, m

edges and diameter D, we prove that the expected number of liars, E(k), and
?Dn
m

the expected number of distance changes E(|S]) is in O(
graph.

Table 1 shows our results after one deletion in both models. Note that the
notation O(-) simultaneously stands for a lower bound and an upper bound. The
lower bound means that there ezists a graph of the family for which the number
of liars is in £2(+).

Note that an edge deletion does not necessarily imply the creation of a liar
even if some nodes have changed their distance to ¢, for instance the complete
graph 1). Conversely, some liars can appear without any change of distance
within the graph.

For the family of graphs of diameter D, it is easy to reach the bound for the
adversary model : just take a path of D nodes and add a star of n — D leaves
to one extremity. If ¢ is located to the other extremity, one edge deletion can

) in the resulting

! In the complete graph, if an edge is removed,

e cither this edge was used as an advice by node u € V, in this case d(u,t) = 2 and
any new advice takes closer to t ;
e or not and therefore no liar is created.



Fig. 1. Number of liars induced by a single edge deletion

Topology Adversary|Random fault
Graphs of diameter D|O(n) oL

Square Grid O(y/n) e(1)

ErdsRnyi model ! o)
Hypercube logn — 1 9(@)

disconnect the graph implying k& and |S| to be of linear size. Even if somebody
would restrict edge deletion to connected graphs, we can easily claim a lower
bound of 2(n — D — 1) (see Figure 2).

\< — 1 nodes
t

N D — 1 nodes
truthtellers o
liars @

Fig. 2. An example of an edge deletion that creates n — D — 1 liars

The structure of the paper is the following: we start by exhibiting a relation-
ship between the number of distance changes and the number of liars induced
by an arbitrary edge deletion (Lemma 2). Then, we prove that, in the random
fault model, E(|S[) < 22 Combining with Lemma 2, we show that E(k) < 2D
(Theorem 1). This result is then improved ( Theorem 2) and generalized to ¢ edge
deletions (Theorem 4) . More precisely, we prove that the deletion of ¢ random
edges creates at most O(@) liars. In the last section, we give more precise
bounds for specific topologies (see Table 1).
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2 General Results

2.1 Preliminaries

We start by presenting some notations and some easy facts used in our paper.

G. G after deletion of edge e, G. = (V, E \ e), or simply G.
d(u,v) distance in G from u to v.

distance in G from u to v.

)
dg(u, v)
) X’s neighbourhood in G, I'(X) = {J,cx I'(v)
)
)

u
alu,v
X
X
F(e) indicates if edge e = {x, y} belongs to the set of adv1sed edges G 4.
More precisely, F(e) =1 if Adv(z) =y V Adv(y) = = and F(e) = 0 otherwise.
Many of our proofs are based on the notion of (s, ¢)-arterial edges:

Definition 1. An edge {z,y} is (s,t)-arterial if it belongs to all shortest paths
from s tot

The deletion of a (s, t)-arterial edge implies
the event &4 : dz(s,t) > d(s,t) (1)

Otherwise, there exists a shortest path from s to ¢ which does not contain {x, y}.
The set of arterial edges from s to ¢ is denoted Cj ;. It follows that

Lemma 1. The distance from s to t is modified by a single edge deletion if and
only if this edge belongs to Cs .

2.2 Relationships Between the Number of Liars and the Number of
Distance Changes

Let us denote S = S = {s € V' | the deletion of e implies & ;} the set of nodes
that have changed their distance to ¢ after the deletion of some edge e.

Lemma 2. In any graph containing ko liars, the number of liars k after deletion
of an edge e always satisfies

|Adv(S)\ S| <k < [Adv(S)| + F(e) + ko (2)

Proof. In any graph with kq liars, after one edge deletion, we study the impact
for every node (ie.advice) on the resulting number of liars k. For every node u
with v € V and Adv(u) = v, we have :

if u is a truthteller

{1}
dg(u,t) —dg(v,t) € {{0, —1}if u is a liar
If u¢ S and v € S then

—1} if u was a truthteller
if u was a liar

de(u,t) — dg(v,1) € {%O 0

X) set of nodes advising another node that belongs to X, ie.Adv™*(X) = {u € V | Adv(u

) € X}



hence u becomes (or remains) a liar. The minimum number of liars after one
deletion is then

k> |Adv(S)\ S|

Let us now consider the upper bound. First assume that the removed edge e #
{u,v}. If v ¢ S then u remains a liar:

e ycSand v ¢S then :
~ B [2, 00] (impossible?)  if u was a truthteller
de(u,t) = dg(v.1) € { {0,1} (could be a liar) if u was a liar
o ifu¢ Sand v ¢S then dz(u,t) —dz(v,t) = da(u,t) — da(v,t).

If e S and v e S, then dz(u,t) — dz(v,t) € {1,0, -1}, so u could be a liar or
not independently of its previous state. So, the maximum number of liars added
by one edge deletion is at most ’Adv71(8)|. Then

k< |AdvT'(S)| + ko

Finally, if the removed edge e = {u,v}, ie.F(e) = 1, then u has to change its
advice and becomes a liar. In the worst situation, the number of liars is then
increased by one. a

2.3 Upper Bounds for £ = 1 Deleted Edge in the Random Fault
Model

According to our model, and as we have already seen in Lemma 2, liars apparition
is due to distance changes and advice deletion.

Number of distance changes

Lemma 3. In any m-edge graph G = (V, E), if an edge, chosen uniformly at
random, is removed from E then the number |S| of distance changes satisfies

3)

1
VteVIE(S) == > [C
msEV\{t}

Proof. From Lemma 1, if edge {x,y} is chosen uniformly at random in F then

VseV : |C |
P s,t
(gst) m

Let X, ; be a random variable defined by X, ; = 1if &, and X, ; = 0 otherwise.
We get

1
E(S)=E( >, Xu)= D> EXu)= ) PE)=_ >, [Cul
seV\{t} seV\{t} seV\{t} seV\{t}
O

2 impossible because u and v are neighbours



Corollary 1. For any n-node, m-edge graph of diameter D, after one random
edge deletion, we have in the random fault model

D(n—1)
E(S]) < ——=. 4
(s < == (4)
Proof. In a graph of diameter D, by definition, all shortest paths lengths are at
most D. So, Vs € V '\ {t}, there is at most D (s, t)-arterial edges in E. O

Number of Liars Applying Lemma 2, we get

Corollary 2. For any n-node, m-edge graph of diameter D and mazimal degree
A without liar, after one random edge deletion, we have E(k) < W,

This turns to be optimal up to a constant factor for bounded degree graphs
(see Theorem 3). However, this is not the case whenever the graph has nodes of
unbounded degree.

Theorem 1. For graphs of diameter D without liar, after random one edge
deletion , we have
E(k) < 2D (5)

Proof. According to Lemma 2, for any edge e, if |S¢ ;| nodes change their dis-
tance to t, then the number of added liars after deletion of edge e, is at most
AdV(S)| + Fle) < X,es IAdv ()] + F(e).

Take the possible m edge deletions trials and consider the m corresponding
sets S; for i going from 1 to m. In a given trial in which event & ; occurs, each
node s adds at most |[Adv'(s)| < degree(s) — 1 liars (excluding itself) since G
contains initially no liar and at least one neighbour of s is closer to t than s.
Since Vs € V' \ {t}, event &, can occur in at most |Cs ;| < D instances among
the m ones. It follows that for given s, >, s |Adv™!(s)| < D(degree(s) — 1).

Thus, for any i € [1,m], we have kg < |Adv™H(S;)|[+F(e) < > ses, degree(s).
Summing over all values of i, we get

kg, < Z Z degree(s) = Z Z degree(s) < Z D-degree(s) = 2m-D

1=1 =1 s€S; seV\{t}i:s€S; seV\{t}
It turns out that E(kz) < 222 = 2D. O

A more precise bound can be found by reasoning on a hierarchical cutaway
of G from distance 0 to D with respect to target t. The following part shows a
detailed proof based on this principle to get a tighter upper bound (< %)

Nodes in danger Let T, be the set of nodes that have at least one shortest
path to v € V through v € V. Let L; = {z € V | d(x,t) = i} be the set of nodes
at distance i from t. Every node v € T, with x € L; is in danger® with respect
to level i if and only if only one shortest path from x to ¢ exists. In Figure 3, all
nodes from sets 7, + and 7, ; are in danger.

3 can potentially turns into a liar



Distances and shortest paths Let C; = {{z,y} |z € L;,y € Li_1 AI'(z)NL;—y =
{y}} be the set of arterial edges between L; and L;_;. Let B:(i — 1) be the set
of nodes at distance at most ¢ — 1 from ¢. If G is not connected then the set of
edges that does not belong to the connected component of ¢ is Cuo.

_.v.t

Fig. 3. G levels and nodes in danger (grey filled areas)

Lemma 4. For any graph, containing an arbitrary number of liars ko. If the
edge {x,y} is deleted uniformly at random between levels L; and L;—1 and i < D
then the number of liars added knpew? is

n— By(i—1)|

E(knew | {xay} € Cz) S |C|

(6)

and E(kpew | {z,y} € Cx) = 0.
Proof. The number of arterial edges between L; and L;_; is
ICi| = {z € Li, [I'(x) N Li—1| = 1}]

Since all the nodes in danger belong to UxeLi Tz, the average number of liars
added by a random deletion between levels L; and L;_; is at most

|User, Tatl _n=Bii-1)

]Eknew T,y €Ci S >~
(new [ 425} € C) < =10 @

Note that some of the kg liars could belong to UzELi Tzt These liars will be

counted twice.
O

4 Note that knew = k — ko



10

Theorem 2. For D > 2, the numbers of liars added kpe, by deleting an edge
chosen uniformly at random in E is

< D(n-1)
m m

IN
&)

E(knew) (7)

For D =1, E(kpew) = knew = 0. This result holds for arbitrary graphs, unnec-
essarily connected.

Proof. The average number of liars added is the sum of the expected number of
liars induced by deletions between every levels Ly, Lo, ..., Lp

0o D

E(knew) = Y (Blknew | {2,y} € C)xP({z,y} € Ci) = D (E(knew | {2y} € C)xP({z,y} € C:))

i=1 i=1
The probability of deleting an edge at level i is

P({z,y} €C) = i

Thus, from lemma 4

n—|B(i —1)| |C4
new<z |C| Xm 7_7Z|Bt7’_1|

Vi € D,|By(i — 1)| > i — 1, hence, the average number of liars added is

_ D(n — 2=1
E(knew) S & _ D(D 1) (TL 2 )
m 2m m

2.4 Lower Bound for £ = 1 in the Random Fault Model
Theorem 3. For any integers n,m, D such that m >mn > 2D > 20,

e there exists a graph of n + O(1) nodes, O(m) edges and diameter D for
which the expected number of liars after a random edge deletion is greater
than (2=8)n

m

o there exists a graph of ©(n) nodes, ©(m) edges and diameter D for which the

expected number of distance changes after a random edge deletion is Q(%)

Proof. Let us consider a graph H (see Hy in  Figure 4) built in the following
way: take a complete graph of size r and a stable of size r’. Add two extra nodes
u,v and link them to the r + 7’ nodes. This graph has diameter 2, r + 7' + 2
nodes and w + 2(r + r') edges. Take now four copies of H named H;, Hs,
Hj and Hy. For i going from 1 to 4, link u; t0 v(; mod 4)+1 by a path of D/2 —4



Fig. 4. Sample graph in which the lower bound is reached

11
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edges. The resulting graph G has diameter D. We set up r = [ ng ] and

r' = [252 —r]. It follows that G has n + O(1) nodes. The total number of
edges is ©(n). This graph is presented in Figure /.

Without loss of generality, assume now that target ¢ is either between u; and
vg or belongs to Hy. In the first case, it follows that every node of Hs (excluding

vz and potentially uz) has vz as advice toward ¢. The probability that the deleted

random edge belongs to the path from us to vg is p = Dz—;g. The expected number
of liars/distance changes is at least p(r + /) > %.

For the second case, every node of H3 excluding ugz or vz can point arbitrarily
to us and vs. Take the node given by the majority. If vs (resp. us) is chosen,
then p corresponds to the probability that the deleted random edge belongs to
the path from us to vs (resp. vs to uyg). The expected number of liars turns to
be greater than p(%r/) > (%;i)".

In this last case, in order to get a similar lower bound for the expected
number of distance changes, we just have to slightly modify each H; copy. We
just substitute each node of the stable set by an edge between two nodes. Each
copy turns to have r + 2r’ nodes and @ + 27 + 31’ edges. We only have
to consider the distance change from ¢ and r’ nodes of this new set. To have
r’ = O(n), we might have to consider a graph G with ©(n) nodes (at most 2n
is enough). O

3 Number of Liars After ¢ Deletions

Lemma 5. After{ edge deletions in any graph G of diameter D, every connected
component of the resulting graph have diameter at most D({ + 1).

Proof. As claimed in [SBvLS87], given ¢, the maximum diameter of the graph
obtained by deleting ¢ edges from a graph G of diameter D is D(£+ 1), assuming
that the resulting graph is still connected. Now, if a single deletion disconnect in
two parts a connected component of diameter D, both resulting components will
have diameter at most D. So, after £ 4+ 1 deletions, any connected component
has at most diameter D(¢ 4 1). O

Theorem 4. Let G be a n-nodes, m-edges graph of diameter D without any

liars. For any £ < m, after ¢ edges deletion uniformly at random in G the
2

number of liars is O(*22).

Proof. As stated in Theorem 2, deleting one edge into a graph of diameter D
creates an average of at most D(n—1)/m liars. From Lemma 5, after the deletion
of £ edges, the expected number of liars is

¢ , ¢ ,
]E(k)gz Di(n—1) SZ Di(n—1) < D(n_l))Zi
i=1 j =

m—(i—1)

or
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4 Specific Topologies

In this section, we show how tight the bounds are for some specific topologies.
We just briefly describe the sketch of proofs. The study gives a justification for
the introduction of the adversary model. In order to get tight bounds in the
random fault model, we exhibit the worst configurations of advice and evaluate
their probabilities in the random fault model.

Theorem 5. In the adversary model,

e k= 0O(n) for ErdsRnyi’s random graphs with parameter p = 1/2;
o k= 0O(y/n) for square grids;
o k =logy,n —1 for hypercube.

In the random fault model,

o k=0(1/n) for ErdsRnyi’s random graphs with parameter p = 1/2;
e k= 0O(1) for square grids;
e k=0(1/logn) for hypercube.

Here is some clue about the behaviour of the different graph families in the
adversary model :

e ErdsRnyi’s random graphs: each pair of nodes is connected with probability
p. For p = 1/2, almost all graphs have diameter 2. If the deleted edge is
between L1 and Ly then only 1 node can turn into a liar. However, a deletion
between Lo = {t} and L, can create ©(n) liars since on average, there are
(n — 1)/4 neighbours in Ly of any individual node of L;.

e grids: only nodes that share a coordinate (same row or column) with ¢ have
(s,t)-arterial edges and thus can change their distance to t. The number
of distance changes is then |S| = ©(y/n) for square grids. An adversary
can force all neighbours of S to point to S. From Lemma 2, we get that
k=06(/n).

e hypercube: only target’s neighbours can increase their distance to t after
one edge deletion, so |S| < 1 and only k& < log,n — 1 nodes of level Ly can
become liars.

In order to get tight bounds for the random fault model, we simulate the m
possible edge deletions and average k:

e ErdsRnyi’s random graphs: only edges leading to advice deletion can create
liars. Condition on this event, on average, only ©(1) liars appear. However,
this event occurs with probability @(1/n). In the other cases, no liar are
obtained.
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e grids: with probability 1—©(1/+/n), there is no (s, t)-arterial edge between a
random node and ¢. It follows that, with probability 1—©(1/4/n), we have at
most one new liar (if the deleted edge contains an advice). With probability
O(1/y/n), we have O(y/n) liars.

e hypercube: only edges leading to an advice deletion or being neighbours of
t can create liars. However neighbours of ¢ can not become liars. For nodes
of levels L;>9, there is no distance change after one edge deletion. Since
E(F(e)) = nﬁ);zln = 6(1/logn), we have E(k) = O(1/logn). To get a lower
bound of £2(1/logn), we just have to consider the n/2 closest nodes from ¢.
The probability that the deleted edge is linked to one of these nodes is at

1

least 1/2 and condition on this event, with probability at least TToggm & NeW

advice is required and create a liar.

5 Conclusion

This work shows the importance of the diameter for the number of distance
changes and liars appearances in a dynamic graph model. Of course, it would be
interesting to consider edge/node addition. Contrary to edge deletion, an edge
addition can drastically change the distance within the graph. Even for grids,
the number of distance changes would be §2(n) after a random edge addition.
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