N
N

N

HAL

open science

Cross Clustering Heuristics for addressing the
Manufacturing Cell Formation problem
Roland de Guio

» To cite this version:

Roland de Guio. Cross Clustering Heuristics for addressing the Manufacturing Cell Formation prob-

lem. 1992. hal-00651989

HAL Id: hal-00651989
https://hal.science/hal-00651989

Preprint submitted on 14 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00651989
https://hal.archives-ouvertes.fr

Cross Clustering Heuristics for addressing the
Manufacturing Cell Formation problem

Roland DE GUIO

INSA de Strasbourg
24, boulevard de la Victoire, 67084 Strasbourg Cedex FRANCE
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This paper, written in 1992, summarizes and regroups in one paper several cross clustering
algorithms that are presented in my PhD memoire in French and that are referred to or presented
partially in several of my papers. They are also implemented in several recent applications (2010) for
manufacturing flows analysis and used in other context like inventive problem solving (2009). It is
also used to compare its performance towards metaheuristics including the functions of these
algorithms.
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SUMMARY

The first aim of this paper is to present heuristics used to solve the
generalized blocks seriation models as developed by Marcotorchino in
[1]. The second aim is to show how they can be used to solve several
problems in the area of Group Technology in manufacturing

KEY WORDS:
Optimal clustering Clustering algorithms
Manufacturing cells Group technology

Block seriation
1. INTRODUCTION

A rough statement of the blocks seriation clustering problem
would be the following: "We are a direct simultaneous partitioning of
an non negative value matrix with n rows and m columns in order to
obtain a high density of the largest values in the diagonal blocks".

To clarify the assertion "largest values' let us give some examples.
Example 1:

Matrix A is a binary matrix. The goal is to obtain, by permuting
the rows and columns of this matrix, a matrix B 1in the ones are
concentrated in the diagonal blocks. One observes that the set of rows
on one side and the set of columns on the other side are clusters
solving the block seriation problem as stated previously. For this
reason, the clustering problem must be stated in more detail. Some
authors predefine the number of clusters ([6];(16]) and add size
constraints to the clusters ([19];{12];[1];(17]). 1In other block
seriation problems some rows or columns of the matrix are left
unclassified ([18];[21;{8]). J.M Proth [6] and F.Marcotorchino [14]
are looking for the best relational match to an ideal block seriation
matrix. For others the number of clusters does not matter and the
density of ones inside diagonal blocks defines the number of clusters
(15].

Example 2:

Matrix A is now composed of non negative wvalues. The blocks
seriation problem can be summarized as clustering the rows and columns
of A in order to obtain a matrix B whose non zero values are
concentrated in diagonal blocks.J.R Kumar, A.Kusiak and A. Vanelli
[11] limit cluster size to a given range, as do G. Harhalakis, R.
Nagi, and J.M Proth [9]. In this paper we define a model based on a
relational analysis approach which generalizes F. Marcotorchino's
block seriation model for binary matrices.

Example 3:{7]([12]

The matrix is still composed of non negative wvalues, but the
number of zeroes does not matter. Let Nmax be the maximum value of the
matrix elements and Nmin the minimum one. The data we should 1like to
group in the diagonal blocks can, for example, be those belonging to
the interval [limit...Nmax] where limit belongs to JNmin, Nmax].



In the further developed models , the number of clusters is an
unknown quantity and the constraints on the partition are defined by
the minimum density of values inside the diagonal blocks. However,
presented heuritics can be used to solve blocks seriation problems
which include constraints on cluster number or cluster size [15].

The examples previously mentioned are mainly drawn from the field
of production management. The list is not exhaustive and one could
give more than a hundred references in this one field. In [14] one can
find numerous references from a large range of scientific fields,
which deal with the block seriation problem without constraints on the
number of clusters.

We present two formulations of the block seriation clustering
problem : a general maximization formulation, and an equivalent binary
linear programming formulation. Each of these formulations is helpful
to analysis of the block seriation problem. We also study the quasi
seriation problem and present its application to solve the seriation
problem. Mathematically there may be more than one maximum to a
maximization problem. We present, an heuristic which facilitates
discovery of the equivalent solutions if they exist. Finally, we show
how to apply previous results in production management.

2. GENERAL, MAXIMIZATION FORMULATION.
2.1 The quasi seriation problem.

Given A[aij] a matrix of non negative integer values with n rows and m

columns.
Let I be the set of rows of matrix A.
Let J be the set of columns of matrix A.

Nmax is the integer which verifies
Nmax=Max (a. .)
1]
(L,J)€ IxJ

Nmin is the integer which verifies:
Nmin=Min(a, .)
1]

(L, j0€ IxJ

The problem consists in maximizing the function defined by:

p
fr(x,Y,p)=% Foooa, o riNeamene el (1)
=1 i i&is Ry ol
1 1 A 1k'

where:
- p is the number of clusters of both partitions we sought.
- X={ X?'XZ""Xp} is a partition of the set I—XO in p clusters.

- XO is the set of non classified rows.



- Y={ Y .,Yp} is a partition of the set J-Y in p clusters.
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- YO is the set of non classified columns.

Let Dg be the set of feasible solutions of the quasi seriation
problem.

0

A triplet (X,Y,p) 1is said a feasible solution of the quasi
seriation problem if the following constraints are verified:

1. X is a partition of I-X, in p clusters. (2)
2. Y is a partition of JuY0 in p clusters. (3)
Remarks
— Constraints (2) and (3) force the 1integer p to verify:

1€p<Inf(m,n) where Inf(m,n) is the lowest of the two values m and
n ;
- p is given by the pair (X,Y).

* * *
A triplet (X ,Y ,p ) is said an optimal solution or an optimal triplet
of the quasi seriation problem if it satisfies:
* * *
fr(x ,Y ,p )=fr(x,Y,p) V(X,Y,p) € Dg
2.2 The block seriation problem.

The block seriation problem can be stated as a quasi seriation problem

whose set of feasible solutions Db is the subset of Dg which

verifies:

Dbz( (X,Y,p)e Dg / x0=0 and YO=0}.(0 is the empty set)

2.3 The concept of diagonal blocks.

For a given triplet (X,Y,p) we define p sets .ﬂz for <¢=1,..,p as
follows
E% [ S R I T ih: = E!}I

The triplet (X,Y,p) defines the generic terms of the p diagonal
blocks of the permuted matrix as the sets.Dz for <=1,..,p

One can note that the concept of diagonal blocks depends only on the
initial matrix and on the pair (X,Y). (The number of clusters p 1is
entirely defined by (X,Y)).

3. THE LINEAR INTEGER MODELS



3.1 Case of binary data [13].

F. Marcotorchino puts forth the generalized relational model of blocks
seriation for a given binary matrix A[aij] defined as in section 2

(Nmax=1,Nmin=0).

Let Z[zij] be a binary matrix with n rows and m columns defined by:

{ ¥ 1 if aij belongs to a diagonal block.

£ .= I otherwise.

The problem is to find Z matrix that maximizes the criterion F(2)
where:

n m
= 3(1— -
F(Z) z Z aaljzij + 31 alj)(1 le) (4)
i=1 j=1
subject to the constraints:
i} z + o+t Z ., = Z.. 2 V(i,i")eIxI;V(j,j")eixd (C1)
1] 1] 1] 17
- < Vi,i' (5,5
Zl'j' + zi,j + i3 iy 2 (i,1')<eIxI;V(]j,] )edxd (Cc2)
zZ ., + z + 2z, . - 2,,., 2 V(i,i")eIxI;V(j,]")eIxd (C3)
13 1] 1] 1)
, O+ Z. ., + 2., -z, . < 2 V(i,i")elxi;V(j,j'")eIxd (C4)
1] 1) 1] 1)
L =, Z 1 ¥asd (C3)
-
w
Y z..2 1Viel (C6)
v=41 17
zij: {0,1} V(i,j)eixd (C7)
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The constraints (C1), (C2), (C3), (C4) oblige generic terms of matrix
Z diagonal blocks to contain only "1" values and non diagonal blocks
to contain only "0" values.

F(Z) maximization under (C1), (C2), (C3), (C4), (C7), constraints 1is
an equivalent formulation of the quasi seriation problem for Nmax=1
and Nmin=0 as stated in section 2.1. The proof 1is given in [147.

Figures 1,2,3,4 illustrate the correspondences between diagonal blocks
of matrix A and Z and the triplet (X,Y,p).

Adding (C5) and (C6) called "assignment constraints', forces all rows
and columns to be classified (xozYO:G). The number of row families 1is

equal to the number of column families. F(Z) maximization under (C1),
(cz2), (c3), (c4), (c5), (c6), (C7), is an equivalent formulation of
the block seriation problem as stated in section 2.2 .The proof is
given in [14].

Note that with this formulation the number of clusters '"p" 1is

of no use.

It was shown in [14] that F(Z) can be developed in the following way:

n m n m
F(z = -a. . 1-a. . 5
(z2) §=1 §=1(aalj (1 alj))zlj + §:1 ?zf( alj) (5)
With the following notations
n m
£(2) - §:1 §:1(aalj—ﬁ(1—aij)) zij (6)
n m
C DD Y 3(1“81.) (7)
i=1 3=1 J
F(Z) can be rewritten:
F(Z) " £(z) + C. (8)

Because C does not depend on Zij’ the matrices Z that maximize f(2)
also maximize F(Z)

Simplifications of f(Z) criterions.

a and (3 are constants of the models. They balance the influence of

positive and negative agreements betwenn A and Z. The case a=3=1/2 was
first proposed in [6]. Let us now consider the function

m
g(z,a,{3) =L ¥ (@a,.-3(1-a..)) z,. (9)
=1



When o+{3=0 then to find Z that maximizes g(Z,o,{3) at o and 3
fixed is equivalent to find 2 that maximizes g(Z,a'=ot/a+{3,(3'=3/ca+{3).
Note that a'+3'=1 ,0a'<1 and 0<R'=<1.

When a+3<0 to find Z that maximizes g(Z,«,{3) at o and (3 fixed is
equivalent to find Z that maximizes g(Z,o'=—a/o+3,{3'=—3/c+{3). Note
that oa'+3'=-1 ;0= a'=<1 and 0=-3'<1.

So, by only choosing f(Z) criteria where

o+3=£ ;

0<ocex< 1

0< 3e=< 1

e e (-1,+1)
we do not limit the general formulation of the seriation or quasi
seriation problem.

f(Z) criterion can then be rewritten:

£(2) = (aij—ﬁ) zijwith 0<3<1 and € € {-1,+1} (10)

0
=M B

u.[v]g

=1 =1

When £=-1 the matrix Z which maximizes (10) will concentrate zeroes
values of A inside diagonal blocks and ones outside diagonal blocks.
Because we are attempting to concentrate ones in diagonal blocks we
are to choose only f(Z) criterions with £=1 and 3<{0,1]. The developed
below heuristics are easily tractable for the case £=-1.

f(Z) criterion can then be rewritten:

n
£(2) = z (aij—(?) 245 with 0<=3=1 (11)
i:

1 j=1

.MM B

When 3=0 the matrix Z defined by zij=1 for each row and each column is

a trivial solution of the previous blocks seriation problems.

Interpretation of B.

aij is said in a diagonal block if zij: 1. The number of one values of

Z is the number of generic terms of A that are inside the diagonal
blocks. Let S be this number. S can be interpreted as the size of the
diagonal blocks. Let Nd1 be the number of ones values of A that are
inside the diagonal blocks. Let NdO be the number of zeroes values of
A that are inside the diagonal blocks.

S = Nd1 + NdO because A is a binary matrix.

Theorem 1:

When f(z)= 0 ,then ﬁgl = /3. (12)



Proof of theorem 1:

n m n m n m

f(z) -2 £ (a;; A z.=@ L a.z.) pBEZ I =,
i=1 j=1 L A i=1 j= "

n m

X X a,.z.. - Ndi;

i=1 =1 9 I

n m

T ) z.. - S.

i=1 j= - I

So ,

f(2)=Nd1-{3S

As f(2) is positive ; Nd1/SZ {3.o

{3 can then be interpreted as the minimum concentration of one
values inside diagonal blocks.

Theorem 2:

*
An optimal solution Z of the quasi seriation problem
verifies:

Proof of theorem 2

Let axy be a generic term of matrix A which satisfies axy:1.

Let Zg be the matrix of n rows and m columns defined by:

.:1 i .: ‘:'
zij if i=x and j=y;
z,., =0 otherwise.

1)

f(zq) =a - =1820. (14)

Zg is a feasible solution of the quasi seriation problem and f(zq)
is positive. "

An thimal solution Z of the quasi seriation problem verifies

f(z )YZ f(Z2) for each feasible solution Z .

So, )
fz 1Z f£(2q). (15)
(14) and (15) yield to f(z )z 0. (w]

Theorem 1 and 2 yield the result that the concentration of one
values inside diagonal blocks of A defined by the optimal solution of
a quasi seriation problem is greater than (3.

Theorem 3 shows that it is sometimes possible to draw a conclusion
about the m;nimum concentration inside diagonal blocks without
computing f(zZ ).

Theorem 3:

Let us suppose matrix A to have at least one "1" value per row and per



column. Let Z* be an optimal solution of the seriation problem. We
define Sup(m,n) as the greatest of the two values m, n and Inf(m,n) as
the lowest of the two values m and n.

Then, £(z°) 2 (1-3)Sup(m,n) — Inf(m,n). (16)

When in addition {3 satisfies -

Inf (m,n)
f=1- Sup(m,n) (7

»*
then, f(z )z 0 (18)

and the concentration of one inside diagonal blocks of A will be
greater than 3.

Example of use of theorem 3.

A is a binary matrix with 1000 rows and 100 columns. We want to
solve the block seriation problem under the constraint that the
concentration of ones inside diagonal blocks is greater than 1/2. Give
a range of (3 which satisfies the concentration constraint.

Using (17) we find that if {3 is lower than 0.9 the concentration inside
the diagonal blocks of the maximum will be greater than (3. So if we

choose (3 in [0.5, 0.9] we are sure that concentration is greater than

1/2.

Proof of theorem 3

1.We will first prove theorem 3 in the case nZm.

We are to find a feasible solution Z1 to the seriation problem

and show that (16) and (17) are verified for Z1.

As matrix A is supposed to have at least one "1" value per row and
per column, we can, for each row 1i=1,..,n, define a column 3J(i)

which verifies a.., .. =1
13 (1)
The matrix Zz defined as follows,
. s <
z 4 ie 1 / i<m }(19)
zij 0 V (i,7)e(Ixd) / ixj and i<m
zij(i): 1 Viel / i>m }(20)
z. . 0 otherwise
1]

is a feasible solution of the seriation problem.

Let us now compute f(z1).

" m
£(z,) =X (a,.-R) =z,.
! 1=4 j=4 ) tJ
m m n m
"L X (@ -Plzior I & (a;,-Blz;
=1 j)=4% L=m+4 =1

10



noia, . s a., — 3 Viel/i<m (see {19))
] Pl ;

m
R Viel/ ism (see (20))
" : Lo

i because a.....=1 V¥ i=1,..,n.
ij (1)

m n
A L (ay=F) + L «ay 45y
=1 =m+41
m m 12}
- z a.. - E o E (1—(?)
L=4 1t 1=1 L=m+4
m
- (}: aii) - fm + (n-m)(1~3)
=1
m
= (Z} aii) + (1-3)n - m
i=4
m
- ( aii) + (1-3)Sup(m,n) - Inf(m,n).
=4
m
As A is a binary matrix ¥ a, Z 0 and,
i=1
1A Z (1-(3)Sup(m,n) - Inf(m,n)

|
That proves (16) in the case nzZm.
The quantity (1-/3)Sup(m,n) - Inf(m,n) is positive when

Inf(m,n)

L) -
f ! Sup(m,n)

e
So, if 3 verifies(16), f(Z1) is positive. As f(Z2 ) is greater than

A
f(z,) we can conclude that f(Z ) is positive. We have proved theorem

1
3 for n=m.

.We will now prove theorem in the case n=m.
As matrix A is supposed to have at least one "1" value per row and

per column, we can, for each column 3j=1,..,m, define a row 1(j)
which verifies a;

(3)3 -
The matrix 22 defined as follows,
Tz, =1 VvV jeJ i<n
%39 J / J }(21)
zij =0 V (i,j)e(@xJ)/ i=] and j<n
I Vv i j
zl(j)J 1 ie I/ j>n }(22)
z = 0 otherwise.

. 1]
is a feasible solution to the seriation problem.

Let us now compute f(Zz).



.3 L
() E B (ay ny
j=1 L=1(aij—rg) Zij+ Jz=h+1 i.z=1(aij_’@) le
As,
™
%Ll(aij—ﬁ) zij - ajj—B for j=<n (see(21))
and
n
R - - ]
FL1[-11 i3 zij ai(j) {3 for j>n (see(22))
1_(?/
i m
'r"'::"" - ?:fajj_ﬁ) + ?:;Ej:{?)
ha! n
= (L a..) -+ (m-n).(1-3)
j=1 )3 t=1
n
= (¥ a..) {(3.n +(m-n).(1+3)
j=1 JJ
- (X a..) + (1-B).m -n
ij=4 )]
- (X a..) + (1-3).Sup(m,n) — Inf(m,n).
j=1 JJ
1™
(Y a..) is greater than or equal to zero. So,
j=1
f(Zz) Z(1-3).Sup(m,n) - Inf(m,n). (23)

That proves (16) in the case n<m.
Now, if (3 verifies (17) using (23) we get
f(ZZ)ZO. (24)

As f(Z*)Zf(Z ) one get (18) using (24) for the case n<m. o

2
Quality measures of the result.

Let Nal and NaO be the number of "1" and "0" values of matrix A. Let
Fmax be the maximum value of F(Z) (see(5)) when the seriation is
"perfect" (i.e diagonal blocks of A contain only ones and non diagonal
blocks contain only zeroes).

Fmax = o..Nal + /3.Na0 . (25)

Note that Fmax is independent of matrix Z generic terms. For o and {3
given, Fmax depends on the two values Nal and NaO of A. As Natl plus
Na0 is equal to the product m.n, Fmax can be considered as dependent
on two of the three values Na1,Na0O,m.n.



One has defined [14] the ratio B:

B(2)= F(2Z)/Fmax (26)
as a quality measure of the result, and B(Z) verifies

0 = B(2) =1 (27)
* x * )
We are to show that when Z maximizes F(Z ) then B(Z ) 1is always
greater than a given value depending only on the number of rows

and columns of matrix A.

Using (18) B(Z) can be rewritten thus
£(z) , C

B(2) Fmax Fmax (28)
Computing C (see (7)1 gives
C = 3Na0 = 0 (29)
(25) to (28) and (16) give:
1> B(Z*) > |I-u:_§;gél.:1_;£;jg.:1 v 3 gﬁgx (30)
When in addition, (3 verifies (17) then (18) and (25) to (29) give
x
B(z)> 13 Dot (31)

(31) is also verified for an optimal solution of the quasi seriation
problem .

Given 3=0=0.5, n=m=100 Na1=1000 let us compute the scale of B(Z*).
Fmax=0.5x10 000, (see (25)1
C=0.5x9000, (see (29)'

R R o R e R | I I 0.5x100-100

Fmax 0.5x10000
(30) gives

*
12 B(Z ) 2 - 0.01+ 0.9 = 0.89.

-0.01,

As we are using f(Z) instead of F(Z) as fonction to maximize, we
define a new measure of quality of the result:

f(z)
fmax
where fmax is the maximum value of f(Z) when the seriation is perfect.

b(2)=

(32)

fmax = (1-3) Nat (33)

*
When Z is an optimum of the quasi seriation problem, we deduce an

x
interval of b(Z ) using (16):

(1-8).Su(m,n)-Inf(m,n)
(1-3)Nal =< b(z) £ 1. (34)

11
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When (3 verifies (17) then

0 =b(z) = : (35)

3.2 Case of real data.

Matrix A is now composed of real data varying between Nmin and
Nmax. The aim is to solve problem examples 1, 2, 3.

The problem is to find Z maximizing the criterion Fr(Z) under the
constraints (C1) to (C7) defined in 3.1 where:

Fr(z) . .Z..+ (A(Nmin+Nmax-a..)(1-z..)) (36)
1] 1] 1] 13

2l o =]

m
Y (xa
=1 j=1

with a+3=1 and 0=/3=1

Fr(Z) can be split into two terms in the following way:

n m n m
Fr(z)= Y ¥ (a.. - (3(Nmin+Nmax) : zi. + 3 ﬁ(Nmax+Nmin—ai.)
i=15=1 %7 I o191 J
n m
fr(z)= F %:‘; aij — 3 (Nmin+Nmax) ) zij (37)
n m
Cr - T ) ﬁ(Nmax+Nmin—ai.) (38)
g = 3
Fr(z) = fr(z)+ Cr (39)
Where Z is defined as in 3.1. Only fr(zZ) depends on Z. Let us compute

Frmax the greatest value of Fr(Z) without the constraints (C1) to (C6).
Let frmax be the greatest value of fr(zZ) without the constraints (C1)
to (C6).

The matrix Zmax defined as follows:

{ zmaxij=1 V(i,j)e(Ixd) / aij>B(Nmin+Nmax);

zmaxij=0 otherwise.

verifies fr(zmax)=frmax.

Using (39) we deduce that
Fr(Zmax)=fr(Zmax) + Cr=Fmax.

The corresponding value of previous defined B(Z) ratio is

Br(z) - % (40)

It is possible to define a br(Z) which correspond to b(Z):

12



fr(z)

br(z) frmax

(41)

The previous linear model defines an ideal A matrix as a matrix
which it is possible, by permutations of rows and columns, to point out
a clustering of rows and columns verifying that:
generic terms of A greater than 3(Nmax+Nmin) are concentrated in
diagonal blocks

- generic terms of A lower than (3(Nmax+Nmin) are outside diagonal
blocks.

To solve example problem 3 with the presented formulation one must
choose {2 in such a way that

limit = (3 (Nmax+Nmin).

13

for

15



4. THE QUASI-SERIATION ALGORITHMS.

4.1 Notations

Given a feasible triplet (X,Y,p) of Dg:

1.

CR _(3)= X v a,. —-(3(Nmax+Nmin) ) for r=1,..,p
r 5 1ij
1eX
r
RD-:;: v iaxnj ﬂif CEC M GRAR TS 2 -
ﬂ.--:ﬁ-2i1— ) ( ai. —3(Nmax+Nmin) )
' X+ (5) J
r(j) , the lowest inteeer which satisfies
Cthp(j) = Max CRr(j)
r:O/‘-/p
2., For i = 1,2,..,n we consider
RC (1)= X ‘a,., —3(Nmax+Nmin) ) for s=1,..,p
S ; ij
JjEeY
S
E Tl A B T & - S o i I S
[ -0 15
i ¥ ( a,.. —(3(Nmax+Nmin) ) ;
- jey + (i) 7
0
s(i) . the lowest integer which satisfies
Csd)(l) - Max RCS(l) .
s=0,..,p
4.2 Two basic ingredients of the quasi-seriation algorithms.
4.2.1 Quasi-seriation rows assignment procedure.
. , (o] (o] (o] .
A feasible solution (X ,Y ,p ) is assumed to be known.
o o o (o] (o] o . .
X ={ X}""Xpo] and Y { Y1,..,Ypo }, This procedure build then
a feasible triplet of Dg , (X,Y,p) , which verifies

For j = 1,2,..,m we consider

a O

fr(x,v,p)zfr(x°,v",p°).

(42)

(43)
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1. Assign Y,p,Y the following values:

0

(o]
1.1 p=p
1.2Y:Y0 |: Y =

End of process 1.
2. For each row i=1,._,n do

2.1 Compute s(i) and RCs( (i) using (43)

i)
2.2 1If RCSd)(l) * 0 and s(i) > 0, assign row i to XS

2.3 If RC_ ., (i) = 0 , assign row i to X
sy

(b(i) > 0 and s(i) = 0,

2.4.1 Increase p from unity.
2.4.2 Assign row i to Xp

(1)°

0

2.4 If RC
S

0

the set YO and assign them to Yp

End of 2.4
End of process 2.

0/
guasi-seriation problem.
3. If (X,Y,p) is not an admissible solution,

3.1 For s=1,..,p, if XS= O , assign columns of YS to YO

and do Y = 9.
s

3.2 Compute the number of non empty sets of X and assign p to
this number.
3.3 Number the non empty sets of X and Y from 1 to p.
End of 3.
At this point the triplet (X,Y,p) is an admissible solution of the
quasi-seriation problem.
4. End of the procedure.

At tge %ndoof the procedure fr(X,Y,p) is greater or equal to
fr(x ,Yy ,p ).

proof:

1.Let us first consider the triplet (X,Y,p) at the end of process

2. We see that the triplet (X,Y,p) is one of the triglets which 1lead
: , . 1 )

to the greatest value of the criterion knowing (X ,Y ,p ). fr(X,Y,p)
s o o
is then greater thanor equal to fr(X ,Y ,p ).

2.We shall now demonstrate that process 3. does not decrease the
criterion. Using (1) we can write:

15

2.4.3 Cancel the columns of the set Y. .+(i) that belong to

At this point we have clustered I and J in p subsets. Y is a partition
of J-Y,., but some of the subsets of X may be empty. In the last case

the triplet (X,Y,p) 1is not an admissible solution to the

17



p
fr(X,Y,p)=% T ( aij_ {3(Nmax+Nmin) )
1=1 (i,3)= ( Xk>x Yk )
When xS - @ the set of pairs { (i,]j)s (sz YS)] is empty. As process

3. only modifies the pairs (XS:G,YS) the criterion will not be

modified by process 3. !

4_.2.2 Quasi-seriation columns assignment procedure.

X and p are assumed to be known. X is assumed to be a partition of
I-X .

0
This procedure contructs then, a feasible triplet (X,Y,p) of Dg. The
process is the same as for the row assignment procedure, just
replacing X by Y, RC by CR, s by r,row by column and column by row.

1. Initialise X,p,X with the following values:

(o] 0’
1.1 p=p ;
1.2x =x° : x:xg

End of process 1.
2. For each column j=1,..,m do

2.1 Compute r(j) and CRr j>(j) using (42)

(

2.2 If Can)(j) > 0 and r(j) » 0, assign column j to Yr(j)'
2.3 If Can>(j) < 0 , assign column j to Y

2.4 If Can)(j) >» 0 and r(j) = 0,

0

2.4.1 Increase p from unity.
2.4.2 Assign column j to Yp
2.4.3

Cancel the rows that belongto XO+(j) from the set XO

and assign them to X

End of 2.4
End of process 2.

At this point we have clustered I and J in p subsets. X 1Is a partition
of J—YO, but some of the subsets of X may be empty. In this last case

the triplet (X,Y¥,p) 1is not an admissible solution of the
quasi-seriation problem.

3. If (X,Y,p) is not an admissible solution,

3.1 For r=1,..,p. if Y; O , assign columns of Xr to XO

and do X = O.
r

3.2 Compute the number of non empty sets of X and set p to
this number.

3.3 Number the non-empty sets of X and Y from 1 to p.

End of 3.

At this point the triplet (X,Y,p) is an admissible solution of the

16
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quasi-seriation problem.
4. End of the procedure.

At the0 eg@ of the procedure fr(X,Y,p) 1is greater or equal to
fr(x ,¥Y ,p ).

Remark.

The row and column assignment procedure builc}3 a feasible triplet
(X,Y,p) when initialled with (X =0,Y =0,p =0) which 1is not
a feasible solution.

4 .2.3 A basic quasi-seriation algorithm.

We define a qualitative wvariable '"assign" which can take the
values "row" or '"column'. We also define the integer "stop" which takes

one of the values 0,1, 2,3.

It is assumed that (Xo,Yo,po), and the value of assign are known.

1.Do stop=0.

2_.If assign = row,
2.1 Compute (X,Y,p) using the rows assignment procedure,

2.2 Do assign = column and increase stop from unity.

3.If assign = column,
3.1 Compute (X,Y,p) with the columns assignment

| procedure,
3.2 Do assign = row and increase stop from unity.

4 _Test

4.1 If fr(X,Y,p) > fr(xolyolpo)l do (XO/YOIPO):(XIYIP)
| and go to 1. o o o
4.2 1f fr(x,¥,p) = fr(X ,Y ,p ),

4.2.1 If stop=3 go to 5
4.2.2 If stop<3 go to 2
5.End of process.

4.3 How to get equivalent solutions.

There may be several optimal solutions to the quasi seriation
problem. In this subsection we present ingredients to find some
equivalent solutions knowing an optimal triplet (X ,Y ,p ).

Two triplets (X,Y,p) and (X',Y',p') are said equivalent if
fr(Xx,Y,p =fr(x',Y',p").

Let (XO,YO,po) be an optimal triplet.
Ingredient 1.

For each row iexo,we consider & (i) the set of integers St(i) which

verify (44)

17



. L

RC (1) = Max RC (1)
Sz(l) s:O,..,po s
*RCS (i)(i) > 0 - (44)
£
s[(i) > 0.

We force the elements of J(i) to satisfy :
sl(i)<s£+1(i) for ¢=1,..,card(¥(i)) when card(#£(i))=2 (45)

As (Xo,Yo,po) is an optimal triplet the integer s(i) (see (43)) is
equal to s1(i) and card(s(1i))=1.

We assign row i to any subset X{ €=2,..,card(5(i)). We obtain then a
new triplet (x=x°,v°,p") which verifies:

fr(x,v°,p0)=fr(x°,¥°,p°).
If (X,Yo,po) is not a feasible solution, we use process 3. of the
rows assignment procedure to build a feasible triplet. Remember that
process 3. of the row assignment procedure does not modify the value

of the criterion.

We have shown how to build an equivalent solution by considering
several equiva%eng ag@ignments of a row.
We define n (X ,Y ,p ) as the number of equivalent triplets different

from (Xo,Yo,po) which can be obtained by the use of ingredient 1.
Then:
n_(x7,¥,p%)=( 1 jcard(£(i)) )-1. (46)
r Al o
ieX

Ingredient 2.

For each column jeYo , we consider the set R(j) of integers rz(j)

which verify (47)

r -
. c .
Rcrz(i)(]) r:OMax po Rr(J)
<CRr£ (i)(j) > 0 L (47)
r,(3) > 0.

We force the elements of R(j) to satisfy :

rlz(j)<r£+1(j) for €=1,..,card(R(j)) if card(R(j))=2
o o o, . . . , . .
As (X ,Y ,p ) is an optimal triplet the integer r(j) (see (42)) is

equal to r1(j) and r1(j)21.
We assign column j to any subset Yt £=2,..,card(R(Jj)). We obtain then
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a new triplet (X,YxYo,po) which verifies:

fr(xo,Y,po):fr(Xo,Yo,po)-

If (XO,Y,pO) is not a feasible solution, we use process 3. of the
column assignment procedure to build a feasible triplet. Remember
that process 3. of the column assignment procedure do not modify the
value of the criterion.

We have shown how to build an equivalent solution by considering
several equivalent assignments of a column.
We define n (X ,Y ,p ) as the number of equivalent different from

(XO,YO,pO) that can be obtained by the use of the previous process.
Then,

(o] o o .
n (x ,Y ,p )=(7] card(R(j)) ) -1. (48)
c jeYo
Let nw(Xo,Yo,po) be the number of triplet different from (Xo,Yo,po)
obtained by the whole previous process (1. and 2.)

o o o

o o o o o .o
nw(X .Y ,p )=nr(x ,Y ,p )+nc(x Y ,p )

We could apply the whole previous process to each of the nw(XO,Yo,po)

solutions equivalent to (Xo,Yo,po) and so on until no new equivalent
solution is found.

In practice we observe that this ingredient is very efficient for
binary matrices and criteria with (3=1/2.

4.4 A refined quasi-seriation algorithm for binary matrices

The following algorithm is efficient for finding an absolute
optimum of the quasi seriation problem when (3=1/2 and when A is a
binary matrix. It efficiency is due to the use of equivalent solution
ingregients presented in section 4.3. In section 4.3 we assumed that
(X ,Y ,p ) was an optimal triplet. Ingredients 1 and 2 can be applied
to each triplet issued from the basic quasi seriation algorithm even
if it is a limited optimum.

The algorithm, o o
We suppose (X ,Y ,p ) to be a feasible solution and the value of the
gqualitative variable "assign" (see section 4.3)

1.Compute a local or absolute maximum (X*,Y*,p*) with the
Ibasic quasi seriation procedure.0 o x % %

2.If a new equivalent triplet (X ,Y ,p ) of (X ,Y ,p ) ~can
|be found using ingredient 1, (see 4.3) go to 4
else go to 3. o o o + % %

3.If a new equivalent triplet (X ,Y ,p ) of (X ,Y¥ ,p ) can
Ibe found using ingredient 2, (see 4.3)go to 4
else go to 8.

4.1f assign = row do assign = column
else do assign = row;

5.Compute the basic quasi seriation procedure initialled

19



with (Xo,Yo,po)
The quasi-seriation procedure produces a triplet (X,Y,p)
6.1f fr(X,Y,p) > fr (x°,¥°,p°) do (x, v ,p)=(X,¥,p) and go
|to 2. o o o
7.1f fr(X,Y,p) - fr (X ,Y ,p ) go to 2.
8.End.
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5. BLOCK SERIATION ALGORITHMS.
5.1 The basic seriation procedure

It is assumed to know (Xo,Yo,po)eDb. Remember that Db is the set

of feasible triplets of the block seriation problem.

As in section 4.2.3 we define a qualitative variable '"assign'" which
can take the values "row" or "column".

We also define the integer "IT" which takes one of the two wvalues
0,1.

The algorithm:

1. Do IT=0.
2. If assign =row,

[e] o
2.1 DO Y=Y ; p:p .

2.2 Assign each row i=1,..,n to XS .(see 4.1)

(i)
At this point we have defined (X,Y,p). Y is a partition of J
in p clusters; but some subsets of X may be empty.

2.3 Do assign = column and go to 4.

3. If assign=column, o

3.1 Do X=Y ; p=p

3.2 Assign each column j=1,..n to Yr (see 4.1)

(3)
At this point we have defined (X,Y,p). X is a partition of I
in p clusters, but some subsets of Y may be empty.

3.3 Do Assign = row and go to 4.

o _ 0 ©
4. If (X,Y,ple Db and fr(X,Y,p) > fr(x ,Y ,p ), do

(o] o o
(X7,Y ,p )=(X,Y,p) and go to 1. o o
5. If (X,Y,p)e Dand fr(X,¥,p) = fr(xX’,¥ ,p ),

5.1 1f IT = 0, do IT =1 ; (XO,YO,pO)z(X,Y,p) and go to 2.
5.2 If IT = 1, go to End. o o o
6. If (X, Y,p)s Db and fr(X,Y,p) < fr(x ,Y ,p ), do

I (X,Y,p)=(Xo,Yo,p0) and go to End.
7. If (X,Y,p) & D,

7.1 If assign =LOW,

7.1.1 Set p to the number of non empty subsets 8f Y
7.1.2 Number the non empty sets of Y from 1 to p

At this point X is a partition of I in p subsets and Y
i1s a partition of J in p subsets, and p #p.

7.1.3 Do Y =Y and go to 2.

7.2 1If assign = column,

7.2.1 Set p to the number of non empty subsets og X
7.2.2 Number the non empty sets of X from 1 to p

At this point Y is a partition of J In subsets and X
I1s a partition of I in p subsets, and p *p.

7.2.3 Do X =X and go to 3.

8. End.

Remarks:

With this algorithm pSpo. So, if there is no optimal triplet
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* * * *
(X ,Y ,p ) verifying p >p0 then it is sure the algorithm will not find
an optimal solution. In the following sect%on we present an algorithm
for which p may be greater or lower than p

5.2 A seriation algorithm based on quasi-seriation.

Quasi-seriation heuristics presented in section 4. can be used as
seriation algorithm if the optimum of the guasi seriation problem
verifigs gerjation constraints.

Let (¥a,Ya,pa) be the optimum of the quasi seriation problem and
(Xe,Y¥s,p=) the optimup of ,the seriation problem for the same
critgrign.* Then, fr(Xa,Ya,pa) 1is greater than or equal to
fr(Xs,Ys,ps).

These two remarks lead wus to initialise the basic seriation
algorithm with the quasi seriation algorithm.

The algorithm.

1. Compute an initial triplet (Xo,Yo,pP) with the quasi seriation
|procedure.
o o o

2. If (X ,Y ,p ) € D, then go to End.

2'.If A is a binary matrix and {3=1/2 and (Xo,Yo,po)eDb .
2'.1 Try to0 build an admissible equivalent triplet of

(X ,Y ,p Jusing ingredients of section 4.3.
2'.2 If an admissible equivalent triplet is found go to End.

3. If (xX0,Y°0,p0) = D,

3.1 If XE:%D and Ygxﬁ ,do assign=row and go to 4.
3.2 If XE:@ and Ygzﬁ ,do assign=column and go to 4.
3.3 1f x°*0 and Y=o ,
o
3.3.1 Do p=p ; o
3.3.2 For each row i=1,..,n , if ie XO’ increase p f rom

unity and assign row i to Xp.

3.3.3 Do (Xo,Yo,po) :(X,Yo,p) and do assign=column

4. Compute the basic seriation procedure.

5. End.
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6 .COMPUTING PERFORMANCES.
6.1 Computing time complexity.

The seriation algorithms involve about the same computing time
complexity as that of F.Marcotorchino and are lower than H. Garcia and
als, because of the use of Marcotorchino's formulation.

Tests were conducted on an Olivetti M280 micro-computer. Programs
were written in Turbo Pascal 4.0. Matrices 1in several sizes were
created randomly. Each row and column has a minimum of one "1'" wvalue.
Global "1" values are at 10% . Tests were done on about one thousand
matrices.

We verified that the computing time of one 1loop increased
linearly with the product m.n . The average number of 1loops was 10.
Recently we treated an industrial case with more than 20 000 rows and
34 columns in less than 4 minutes.

6.2 Comparison of block seriation algorithms

Let us now compare the presented algorithms with two similar ones
(A) presented in [6] and (B) presented in [14].

With algorithm (A) the user gives the number of families and the
algorithm gives a solution with the same number of families.
Mathematically, if one want to use algorithm (A) to solve the model we
presented in this paper one must run the algorithm at 1least 1Inf(m,n)
times. In addition, algorithm (A) do not always compute a feasible
solution (some pairs (szﬁ,Ykzﬂ) or (XHtQ,Yk:O) may exist in the given

solution).

With algorithm (B) it is useless to give the number of clusters.
The algorithm do not always lead to a feasible seriation solution
because it cannot decrease the number of families. The number of
initial families must be lower than the optimal one.

Algorithms we presented in this paper always lead to
a feasible solution. The number of families may increase and decrease
during the algorithm.

We note (C) the seriation algorithm using the basic quasi seriation
algorithm and (D) the one using the refined quasi seriation
algorithm.The matrix example is taken from reference [3]. Chosen
criterion is /3=1/2. The result is given for 18 trials, the number of
families of the initial partition was one for the first trial, two for
the second trial, three for the third one ,etc...
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Initial matrix is:

111111111

26

123456789012345678

ville | 111110000000000000

métropole 2 011111000000000000

cité 3 101010000000000000

capitale 4 011111000000000000

agglomérat 5 101010111100000000

centre 6 111111000000000000

village 7 000000111111111000

localité 8 000010111111000000

bourgade 9 000000101100000000

bourg 10 000000101111010000

trou 11 000000100111100100

patelin 12 000000100111100110

bled 13 000000100011100000

hameau 14 000000110000010000

commune 15 000010101100001001

coin 16 000000010011100100

pays 17 001000001111101010

municipalit 18 100000000000001001
Algorithms (n) (B) (C) (D)
number of feasible solution 3.0 2.0 18.0 18.0
best seriation criterion value 19.5 23.5 28.0 28.0
worst seriation criterion value -64.0 23.5 22.0 28.0

Table 1: Comparison of four block-seriation algorithms

Discussion:

- the number of obtained seriation of (C) and (D) are very high
compared to (A) and (B). Initial solutions were chosen randomly and
were the same for each algorithm.

- (C) found 22 as «criterion value once. The others values were
distributed the following way: 1 time 26.00

3 times 27.50
4 times 28.00 which 1is the best
solution for this matrix.

— (D) for this matrix the ingredient of equivalent solution was very
efficient.

- The quasi seriation loop never gave a seriation as result. Starting

with all the rows and columns unclassified (XO:Y0=O), the algorithm

(D) finds the optimum quasi seriation solution each time, despite
the 1line and column numbering and the first assignment. The
ingredient of equivalent solutions was helpful in obtaining this
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result.
The quasi seriation loop 1is another method for solving certain

particular cases of quadri-decomposition models. [4]

We made trials on numerous matrices and found out that results
obtained in previous example seem to be general except that algorithm
(B) resulted in a seriation more often than (A) algorithm.

For binary matrices chosen randomly we often found more than 106
equivalent solutions only by using the basic quasi seriation
algorithm. For industrial cases with several thousand rows, with no
more than 10% of ones values we often found several hundred equivalent
solutions with the basic quasi seriation algorithm even when br(z)
ratio was greater than 0.80. Using the equivalent solution ingredient
the number of equivalent solutions generally collapses.

7.EXAMPLE OF USES IN PRODUCTION MANAGEMENT.

Section 3 and section 4 algorithms can be used as a method of
classification for factory objects such as products,
process—-plannings, product price estimates etc.. The following pages
describe some examples of 1its application in solving certain
manufacturing unit formation problems.

7.1 Analysis of the binary machine-parts incidence matrix. [16]

Matrix A[aij] is a binary element. Rows are parts, and columns

pools of machines. A pool is a group of machines performing the same
task(s). Element aij is equal to 1 when a pool of machines Jj belongs
to part i's process planning.

The number of "1" in such a matrix in a range of 0.15mn to 0.35mn. (mn
is the number of rows multiplied by the various number of columns of
A[aij]).

The real problem is more complex than the linear model developped in
[6]. That's why several trials are necessary.

Some rules obtained Izimsns by Lia:r

A good seriable matrix is a matrix in which the optimal solution 1is
composed of groups with a high density of "1" inside diagonal blocks
and less than 10% of "1" outside, whatever the (3 value.

Usually the number of families decreases with (3.

P

e - =
- I-I.
L

P A

so-iivingy Froitly size constraints by hierarchical ..«

In a production management problem matrix A size is greater than
10" and the number of "1" is about 20%. For (3=1/2 the number of
families optimizing f(Z) may be more than 50. The natural number of
families obtained by solving section 2 and 3 block seriation models
gives a lot of information on data typology to the cell designer; but
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the result is not always satisfactory in reality. For instance, the
size of some cells (families of pools) may not be great enough for
economic reasons.

One way to obtain a solution with fewer families is to decrease (3
value as suggested by experience rules. Figure 5 shows the obtained
hierarchy for matrix of figure 6. Figure 7 represents the number of
family variations with (3. Decreasing {3 is of no help in obtaining
solutions between 2 and 5 families.

The natural number of families that optimizes the criterion 1is too
large for (3 » 0,6 and not large enough for (3 < 0,6.

Another way to obtain solutions with several numbers of families
is to compute a hierarchy of partitions. This is possible using the
section 5 algorithm. Figures 8 to 11 describe the process in this
academic example where the initial matrix is represented by figure 6.
After the block seriation algorithm, the natural solution is obtained
in 11 families (figure 8). This binary matrix is summed up on figure
9; each number represents the number of "1" values of a block in the
reorganized A matrix. Table (figure 9) can be interpreted as an A
matrix described in example 3 (introduction). By applying the
seriation algorithm to this matrix, the 11 families are grouped into
larger ones in order to minimize non zero values outside the new
blocks . Figure 11 is the binary representation of the figure 10
result. So now figure 10 is the 1initial matrix for the next
aggregation level and so on.. The whole hierarchy is given in figure
12.

A third way to obtain solutions with several numbers of families
is to compute the equivalent solutions if they exist.

If the constraint of keeping previously level families included
in the new larger one (hierarchy of partitions) does not exist, the
different level results can eventually be optimized by the basic
seriation procedure (in which the number of families cannot increase
starting with the reorganized binary matrix. This last method is
useful but a good initial partition is necessary. This 1is obtained
through the hierarchy of partitions. If one starts with randomly
processed partitions, the obtained solution is often given in one
family or the criterion value is poor.

Figure 13 sums up the results for the three aggregation methaods.
7.2 Analysis of the part—loads matrix.

Some authors prefer to study the cell formation problem by
analyzing the part load matrix. Load is the time a machine is working.
Data is given in positive values with about 20% of non zeroes.

The objective function is fr(z). Minimum value is given by solving
limit > [3(Nmax+Nmin) (see section 3.2) 1limit is the 1lower value
expected in diagonal blocks through the objective function.

We compared the solution obtained by the proposed heuristic to
solutions obtained by J.A Ventura and alls in [19]. Matrix treated in
[19] are most of proposed matrices in the production research
literature in the last twenty years. J.A Ventura and als algorithm 1is
compared to the two algorithms of Kumar and als [{11] and proves that
their algorithm is far superior to Kumar's algorithm. Our algorithm
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reveals each time a better or the same solution as those presented in
[(19].

For S1 and S2 (table2) there are five values greater than limit outside
the diagonal blocks.For S3 and S4 there is only one value greater than
limit outside diagonal blocks.

7.3 Analysis of the traffic matrix.

Some papers deal with a symmetrical matrix which in generic terms
is a measure of the traffic between machines. For instance aij could be

the number of parts moving between machine i and machine j. The set of
rows is identical to the set of columns.The problem consists in a block
seriation problem with the additional constraint that the partitions of
rows and columns are the same. This additional constraint is costless
to implement using previous presented algorithms. One need only define
the set of rows in the same variable as the set of columns. The
presented algorithm then becomes equivalent to the heuristic presented
in [13] as proved in [8]. In [5] one can find a comparison between this
algorithm and algorithms written in order to solve this specific case.

8 .CONCLUSION

The presented block seriation method is helpful in analysing
industrial data. The presented heuristics solve the block seriation
problem even in the case of symmetrical matrices, they always produce
a feasible solution to the seriation problem and sometimes, are able
to propose several maximum if they exist. We pointed out the linkage
between the proposed function to maximize and the concentration of
given values of generic terms inside the diagonal blocks allowing new
approaches in the practical identification of the manufacturing cells
[19]. They are currently implemented on manufacturing cell design
system S.A.F.I.R [7] and on group technology data analysis systems
G.T.S
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Figure 1:matrix A
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Figure 2: Matrix Z defines generic terms of A
which belong to a diagonal block.
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Figure 3: Matrix Z permuted in order to
point out diagonal blocks full
with ones and non diagonal blocks
full with zeroes. (Yo=0)
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Figure 4: Matrix A permuted like Z in figure 3.
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Figure 6: Initial matrix A
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Figure 8:

Solution of matrix A for B=0.5
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11 16 1 I
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Figure 10: Application of the seriation algorithm
to matrix of figure 9
1 2 3 3 4 5 6 6 7 8 9 No. column
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8 9 1: 1 2
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Figure 12: Hierarchic classification of matrix A with the seriation algorithm
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Figure 13: Comparison of three aggregation methods
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Type of

seriation - fr(z) br(z) solution limit
demanded

quasi ser 0.1 537.0 0.60 S1 10
seriation 0.1 535.0 0.60 S2 10
quasi ser 0.5 159.0 0.32 S3 50
seriation 0.5 -208.0 -0.42 S4 50
Table 2: Obtained solutions for figure matrix of

figure {4 initialized with Xo=Yo=@.

Xo={2,10,12 *
S1

Yo={}
xo={} ; Xa={ 1

yo={} ; Y1={ 2

. Xa={

1711

}

Xo={} ; X2={ 4,11

X5 = { 2,8 1
Yo={} ; Ya={ 1

Xo={ 1,2,3,7,8,9,10,12
S3
Yo={ &, 2, 5.0,"

/9 }

2

1 X2={ 3,5,6,9,13

1,7

v

1 X2={ 3,5,6,9,13

L

T vya={ 3,4,7

KL

DoYa={ 1

a4,

}

}

v

;D Xe2={ 3,5,6,9,13

"y

0

P Xe=

- ya-=

P Xa={ 4,11 ) ;. mac o Hog

Ya={ 1,5} ; Ya={ 6 }

T Xa={ 4,11

; Ya={ 1,5

{ 5,6,13

{ 4}

Xa={ 1,12 }

4

Ye={ 3}

]

!

4

7

Xea={ 2,8,10 1}

Y4={ 6 }

Xa={ 7,10 -

Ys={ 6,7 }
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