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This paper, written in 1992, summarizes and regroups in one paper several cross clustering 

algorithms that are presented in my PhD memoire in French and that are referred to or presented 

partially in several of my papers. They are also implemented in several recent applications (2010) for 

manufacturing flows analysis and used in other context like inventive problem solving (2009). It is 

also used to compare its performance towards metaheuristics including the functions of these 

algorithms. 
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SUMMARY 

The first aim of t hi s  pap er i s  to present heur i st i cs used to solve the 
generali zed blocks seriation models as developed by Marcotorchino i n  
[1] . The second ai m i s  t o  show how t hey can be used to solve several 
problems in t he area of Group Technology in manufacturing . 

KEY WORDS: 
Opti mal clustering 
Manufacturing cells 
Block ser i ation 

1. INTRODUCTION 

Clustering algorithms 
Group technology 

A rough statement of the blocks seriat ion clustering problem 
would be the following: " We are a direct simultaneous partitioning o f  
an non negat i ve value matri x  wit h  n rows and ID columns in order to 
obtain a high densi t y  of the largest values in t he di agonal blocks" . 

TO clar i fy t he assertion " largest values" let us give some examples. 

Example 1 :  

Matrix A is a binary matrix. The goal i s  to obtain, by permut ing 
the rows and columns of t hi s  matri x ,  a matrix B in the ones are 
concentrated in t he di agonal blocks. One observes that the set of rows 
on one side and the set of columns on the other side are clusters 
solving the block seri at ion problem as stated previously. For thi s  
reason, the clustering problem must be stated in more det ail. Some 
authors predefine t he number of clust ers ([6] ; [16] ) and add size 
constraints to the clusters ( [19J; [12 J;[1] ; [1 7] ) .  In ot her block 
ser i ation pro blems some rows or columns of the matrix are left 
unclassified ([18] ; [2 ] ; [ 8] ) .  J.M Frot h  [6] and F.Marcotorchino [14] 
are looking for the best relational match to an ideal block ser i ation 
matrix.  For ot hers t he number of clusters does not matter and t he 
den si t y  of ones inside diagonal blocks defines the number of cluster s 
[ 1 5] . 

Example 2: 

Matrix A i s  now composed of non negati ve values. The blocks 
ser i ation problem can be summar i zed as clustering t he rows and columns 
of A in order to obtain a matrix B whose non zero values are 
concentrated in diagonal blocks.J.R Kumar , A. Kusiak and A. Vanelli 
[11J li mit clust er size to a given range, as do G. Harhalaki s, R. 
Nagi , and J.M Froth [9] . In this paper we define a model based on a 
relational analysi s approach which generali zes F. Marcotorchino's 
block seri at ion model for binary matri ces. 

Example 3: [7] [12 ] 

The mat r i x  i s  still composed of non negative values, but t he 
number of zeroes does not matter. Let Nmax be the maximum value of the 
mat r i x  elements and Nmin the mini mum one. The data we should like to 
group in the di agonal blocks can , for example, be t hose belonging to 
the interval [limit . .. Nmax] where li mit belongs to ]Nmin,  Nmax] . 
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In the further developed models , the number of clust ers i s  an 
unknown quantity and the constraints on the partition are defined by 
the minimum density of values insi de the di agonal blocks. However, 
presented heuriti cs can be used to solve blocks ser i ation problems 
which include constraints on cluster number or cluster size [ 1 5] . 

The examples previously mentioned are mainly drawn from t he field 
of production management . The list i s  not exhaust i ve and one could 
give more t han a hundred references in t hi s  one fi eld. In [1 4] one can 
find numerous r eferences from a large range of scientific fi elds, 
which deal with the block ser i ation problem wit hout constraints on the 
number of clusters. 

We present t wo formulations of the block ser i at ion clustering 
problem : a general maximization formulation, and an equi valent binar y 
linear programming formulation. Each of these formulations is helpful 
to analysi s of the block ser i ation problem. We also study t he quasi 
seri at ion problem and present i t s  application to solve the ser i at ion 
problem. Mathemati cally there may be more t han one maxi mum to a 
maxi rni zation problem. We presentl an heurist i c  which facilitates 
di scovery of the equi valent solutions if they exist. Finally, we show 
how to apply previous r esults in production management. 

2. GENERAL MAXIMIZATION FORMULATION. 

2. 1 The quasi seriation problem. 

Gi ven A[a . . ] lJ a matrix  of non negative 

columns. 
Let I be t he set of rows of matri x  A. 
Let J be t he set of columns of matrix 

Nmax i s  t he integer which verifi es : 
Nmax�Max (a. . )  lJ 

< i. I j) E IxJ 

Nmin i s  t he int eger which ver i fi es: 
Nmin�Min (a . .  ) lJ 

(i. , j) E IxJ 

integer values with n rows 

A. 

The problem consists in max i mi zing the function defined by: 

p 
fr(x,Y,p ) �E 

1 � 1 

where: 
- p i s  t he number of clust ers of both parti tions we sought. 
- X�( x1,x2' . . ,X

p
} i s  a partition of the set I -X

O 
in p clusters. 

- Xo i s  the set of non classified rows. 

2 

and m 

( 1 ) 
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- Y={ Y
1

' Y
2

' .. , Y
p

} i s  a partition of t he set J-Y
O 

in p clusters. 

- Y
O 

i s  t he set of non classified columns. 

Let Dq be t he set of feasible soluti ons of the quasi seri ation 
problem. 

A triplet (X, Y, p )  is sai d a feasible solution of t he quasi 
seri ation problem i f  the following constraints are verified: 

1. X i s  a partition of 

2. Y i s  a partit ion of 

Remarks 

I-X
O 

J-Y o 

in p clusters. 

in p clusters. 

- Constraints (2) and (3) force the integer p t o  ver i fy :  
1�p�Inf(m, n) where Inf(m , n )  is the lowest of t he two values m 
n 

- p i s  g i ve n  by the pair (X, Y ) . 

* * * 

(2 ) 

(3 ) 

and 

A triplet (X , Y  , p  ) i s  sai d an opt imal solution or an optimal triplet 
of t he quasi ser i at i on problem if it satisfies: 

* * * 
fr(X , Y  , p  ) � fr(X , Y, p )  V(X , Y , p )  E Dq 

2.2 The block seriation problem. 

The block seriation p roblem can be stated 
whose set of feasible solutions D

b 
is 

verifies: 

as a quasi seri ati on problem 
the subset of Dq which 

D
b

=( (X , Y, p ) E Dq ! X
O

=0 and Y
O

=0) .(0 is the empty set )  

2.3 The concept of diagonal blocks. 

For a given triplet (X, Y , p )  we define p sets �I for 1=1, .. , p  as 

follows 

The triplet (X, Y, p )  defines the generic terms of t he p diagonal 

blocks of the permuted matrix as the sets �I for 1=1, . .  , p  

One can note t hat the concept of diagonal blocks depends only on t he 
initial matrix and on the pair (X,Y) . (The number of clusters p is 
e nt i rely defined by (X, Y) ) .  

3. THE LINEAR INTEGER MODELS 

3 
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3.1 Case of binary data [ 13]. 

F. Marcotorchino puts forth the generalized relational 
seri ation for a given binary matr i x  A[a . .  ] defined as 

model o f  blocks 
in section 2 

(Nmax=1,Nmin=O) . 
1J . 

Let Z [z .. ] be a binary matr i x  with n rows and ID columns defined by: 
1J 

i f  a .. belongs to a diagonal block. 
1J 

o therwise . 

The problem i s  to find Z matrix that maximizes the cri terion F(Z) 
where : 

n m 
F(Z ) 1: 1: ()(a . .  z .. + (5(1-a .. ) (1-z .. ) 

i=1 j=1 
1J 1J 1J 1J 

subject to the constraints: 

z .. + Z
ij' 

+ 
1J 

2i 1 j' + 2i'j 
+ 

Z ,  , ' + z .. + 
1 J 1J 

Z, . I + 2i' j , 
+ 

1J 

,., 
1: z . . 2: 1 ViEI 
;,. =1 lJ 

z
i I j , 

z .. 
1J 

z .  
1j 

2i' j 

z .. = { O,1} V( i, j) ElxJ 
1J 

- z. , . :$ 2 V (i, i ' ) Elx I ;  V (j , j , ) EJXJ 
1 J 

- z, . 1 :$ 2 V(i, i' ) EI XI ;V(j, j' ) EJ XJ 
1J 

- 2i'j' 
:$ 2 V(i,i' ) ElXI;V(j,j' ) EJ XJ 

- z . .  :$ 2 V (i, i ' ) ElxI; V (j , j , ) EJXJ 
1J 

4 

(4 ) 

(C 1 ) 

(C2 ) 

(C3) 

(C4) 

(CS) 

(C6 ) 

(C7) 
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The constraints (C1), (C2 ), (C3 ), (C4) oblige generic terms of 
Z diagonal blocks t o  contain only "j" values and non diagonal 
t o  contain only "0" values. 

matrix 
blocks 

F(Z) maximization under (C1), (C2), (C3 ), (C4), (C7), const raints is 
an equivalent formulation of the quas i seriation problem for Nmax=1 
and Nmin=O as s t ated in section 2. 1. The proof is given in [14J. 
Figures 1,2,3,4 illustrate the correspondences between diagonal blocks 
of matrix A and Z and the triplet (X, Y, p) . 

Adding (CS) and (C6) called "ass ignment constraints", forces all rows 
and columns to be class ified (X =y = 0) . The number of row families is 

o 0 

equal t o  the number of column families . F(Z) maximization under (C1) , 
(C2), (C3 ), (C4), (CS), (C6), (C7), is an equivalent formulat ion of 
the block seriation problem as stat ed in section 2. 2 . The proof is 
gi ven in [1 4 J . 
Note that with this formulat ion the number of clusters " p" is 
of no use. 

It was shown in [14J t hat F(Z) can be developed in the following way: 

F(Z) 
n m n ID 

r: r: (Ola . .  -I> ( 1-a . . » z. . + r: r: I> ( 1 -a .. ) 
i=1 j =1 1) 1) 1) i=1 j=1 

1) 

With the following notations 

f(Z) 

C 

n 
r: 
i =1 

n m 

m 
r: (Ola . -I> ( 1-a .. ) ) 
j=1 1) 1) 

r: r: I> ( 1-a .. ) 
i = 1 j =1 

1) 

F(Z) can be rewritten: 

F(Z) f(Z) + C. 

z . .  
1) 

Because C does not depend on 

als o maximize F(Z) 

z, ., the matrices Z 
1) 

Simplifications of f (z) criterions. 

that maximize 

(S) 

(6 ) 

( 7 ) 

(8 ) 

f (Z) 

ot and I> are const ants of the models . They balance t he influence of 
positive and negative agreements betwenn A and Z. The cas e 0l=1>=1/2 was 
first proposed in [6J. Let us now consider the function 

g(Z,a, (» 
n 

=r: 
i=1 

m 
r: (ota .. -1>(1 -a . . » 
j = 1 1) 1) 

5 

z . .  
1) 

(9 ) 
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When 0<+(5;;':0 then to find Z that maX1m1zes g(Z, o<, (5 )  at 0< and (5 
fixed is equivalent t o  find Z that maximizes g (Z , o< ' =o</o<+(5 , (5 ' =(5/o<+(5) .  
Note t hat 0<'+(5'=1 , 0:<>0<':<>1 and 0:<>(5':<>1. 

When 0<+(5<0 t o  find Z that maximizes g(Z,o<, (5 )  at 0< and (5 fixed i s  
equivalent t o  find Z t hat maX1m1zes g(Z, ot'=-ot/ o<+(5, (5'=-(5/ o<+(5 ) .  Note 
tha t o< ' +(5' =-1 ; o:<>-{)( ':<> 1 and 0:<>-(5 ' :<>  1. 

So, by only choosing feZ) criteria where 

{���;� 1
; 

0:<> (5s:<> 1 
s E { -1, +1) 

we do not limit the general formulation of the seriation or quasi 
se,riation problem. 

feZ ) criterion can t hen be rewritten: 

feZ) = 

n m 
sE E (a, ,-(5) z,' wi th 0:<>(5:s: 1 and s E { -1, + 1 } 

i=1 j= 1 
1J 1J 

( 1 ° ) 

When s=-1 the matrix Z which maximizes (10) will concentrate zeroes 
values of A inside diagonal blocks and ones outside diagonal blocks. 
Because we are attempting t o  concentrate ones in diagonal blocks we 
are to choose only feZ) criterions with s=1 and (5E[0, 1]. The developed 
below heuri st i cs are easily tractable for the case s=-1 . 

feZ) criterion can then be rewritten: 

feZ) 
n m 

7=1 �= 1 
(a

ij
-(5) Zi j  

with 0:5(5:51 ( 11 ) 

When (5=0 t he matrix Z defined by z, ,=1 for each row and each column is 
1J 

a t rivial solut ion of the previous blocks seriation problems.  

Interpretation of B. 

a" is said in a diagonal block if z = 1. The number of one values of 
1J 1J 

Z is the number of generic terms of A that are insi de the diagonal 
blocks. Let S be thi s  number. S can be interpreted as the size of t he 
diagonal blocks. Let Nd1 be the number of ones values of A that are 
i nside the di agonal blocks. Let NdO be the number of zeroes values of 
A that are inside the diagonal blocks. 
S = Nd1 + NdO because A is a binary matrix. 

Theorem 1 :  

When f(Z ) �  0 , then 
N�1 � (5. 

6 

( 12  ) 
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Proof of theorem 1: 

feZ) 

n 
E 

i� 1 

n 
E 
i �1 

m 
E 

n m 
E E (a" -(5) z, , 
i �1 j �  1 

1J 1J 

a, z, Nd1 ; 
j �1 

1J 1j 

m 
E z, 
j �  

1j 
S. 

So , 
f(Z)=Nd1-jSS 

n m 

:;: Cl: E a,. z . .  ) 
i�1 j � 1 1J 1J 

As feZ) is  p os i tive ; Nd1/S� 1'.0 

n m 
jS(E E 

i �1  j � 

I' can then be interpreted as the minimum concentration of one 
values inside diagonal blocks. 

Theorem 2 :  

* 
An optimal s olution Z of the quasi seri ation problem 

verifies: 

Proof of theorem 2 

Let 

Let 

a be a generic term 
xy 

Zq be the matrix of n 

{ z" �1 if i�x and j �y; 
1J 

Z , ' �O otherwis e. 
1J 

* 
f eZ )2: o .  

of matri x A which satisfies a �1. 
xy 

rows and m columns defined by: 

( 1 3 ) 

f(Zq) 

Zq i s  a feas i ble s olution 

� a - I' � 1-1' � O. 
xy 

of the quasi seriati on problem and 

( 1 4 )  

f (Zq) 
is pos iti ve. 

* 
An �ptimal s olution Z of the quasi seriation problem veri fies 
fez )2: feZ) for e ach feasible solution Z 
So, * J(Z )2: f (Zq) . 
(14) and (1 5 )  yield to feZ )� o .  o 

( 1 5 ) 

Theorem 1 and 2 yield the result that the concentration of one 
values ins ide diagonal blocks of A defined by the optimal solution of 
a quasi s eriation problem is greater than 1'. 
Theorem 3 shows that i t  is sometimes poss ible to draw a conclu s i on 
about the m1nimum concentration insi de diagonal blocks without 
computing feZ ). 

Theorem 3 :  

Let us suppose matrix A to have at least one " 111 value per row and per 

7 
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.. column. Let Z be an optimal solution of the seriation problem. We 
define Sup(m,n) as the greatest of the two values rn, n and Inf(m,n) as 
the lowest of the two values m and n . 

.. 
Then} f(Z ) 2: (1-(?)Sup(m,n) - Inf(m,n). 

When in addition F satisfies 

.. 
then, f(Z ) 2: 0 

F oS 1- Inf(m,n) 
Sup(m,n) 

(16) 

(17) 

( 1 8 ) 

and the concentration of one inside diagonal blocks of A will be 
greater than F. 

Example of use of theorem 3. 

A is a binary matrix with 1000 rows and 100 columns. We 
solve the block seriation problem under the constraint 
concentration of ones inside diagonal blocks is greater than 
a range of F which satisfies the concentration constraint. 

want to 
that the 
1/2. Give 

Using (17) we find that if F is lower than 0 .9 the concentration inside 
the diagonal blocks of the maximum will be greater than F. SO if we 
choose F in [0.5, 0.9] we are sure that concentration is greater than 
1/2. 

Proof of theorem 3 

1 .We will first prove theorem 3 in the case n2:m. 
We are to find a feasible solution Z1 to the seriation problem 
and show that (16) and (17) are verified for Z1' 

As matrix A is 
per column, we 
which verifies 

supposed 
can, for 

to have at least one " 1 11 value per row 
each row i�1/' .,n, define a column 

aij(i) � 
1 . 

The matrix Z defined as follows, 
z . .  '<I i;2; I / i:$m 

II 
Z . .  0 '<I 

lJ 
(i,j )E(IxJ) / i;rj and iSm 

Zij (i) � '<I i� I / i>m 

Z .. 0 otherwise 
lJ 

is a feasible solution of the seriation problem. 

Let us now compute f(Z1) '  
,., 

f (Z 1 ) I: 
\..=:1 

m 

I: 
\"=1 

m 

I: (a, ,-F) z ,  , 
j �� lJ lJ 

m 
'I: (a, , -I' )  z ,  , ) + 

. lJ lJ 
J=:l 

n 

E 
i..=m+:1 

8 

m 

'I: (a, , -(?) z, ,) 
' lJ lJ 

J=:1 

}< 19) 

}(20 ) 

and 
j (i) 
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m 
a . . - (5 

II 
ViEI/iSm (see (19)) 

m 
ViEI/ i)m (see (20)) 

because aij(i)=1 V i=1, .. ,n. 

f(Z1) becomes, 

= 

m n 

E (a .. -(5) + E <a .. (. )-(5) 
�=1 11 �=m+1 1J 1 
m 
E a .. 
;"=:1 II 

m 
(E aii) 

;"=:1 m 
(E 

;'=1. 
aii) 

m 

+ 

m n 

< 1-(5) 
i...=-t i..=m+:1 

(5m + (n-m) (1-(5) 

(1-(5)n - m 

(E aii) + (1-(5) Sup(m,n) - Inf(m,n). 
i..=:1 m 

As A is a binary matrix E a .. 2: 0 and, II 1.=:1 

2: (1-(5) Sup(m,n) - Inf(m,n) 

That proves (16) in the case n�m. 
The quantity (1-(5) Sup(m,n) - Inf(m,n) is positive when 

1- Inf(m,n) 
Sup(m,n) 

.. 
So, if (5 verifies(16), f(Z1) is positive. As feZ ) is greater than 

* 
f(Z1) we can conclude that feZ ) is positive. We have proved theorem 
3 for n�m. 

2.We will now prove theorem in the case nSm. 

AS matrix A is supposed to have at least one I! 1 11 value per 
per column, we can, for each column 
which verifies ai(j)j = 1. 
The matrix Z2 defined as follows, 

z .  . V j E J/ jSn 
JJ 

Z . .  o lJ 
zi(j)j

= 

z .. = 0 lJ 

V (i ,j) E(IxJ)/ 
V iE I / 
othe r wise. 

i"'j 

j)n 

j =1, . .  ,ffi1 

and j Sn 

is a feasible solution to the seriation problem. 

Let us now compute f(Z2)' 

9 

define a 
row 

row 
and 

i (j ) 
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f(Z2) 

As, '" 

'" 
E 
i..=t. 
m 

E 
j=:1 '" 
E 
j=:1 

m 

r=�aij-(5) 
'" 

f=< 
(aij-(5) 

'" 

f=< 
(aij-(5) 

z .  lj 

z .  lj 
m '" 

z. .+ E f=< 
(aij-(5) lJ j=n+1 

E (a . .  -(n z . .  
i..=1 1J 1J a . .  -(3 for jSn (see(21)) J J  

and 
'" 

z . . 
lJ 

ai(j) - (3 for j>n (see(22)) 

1-(3, 
m 

E (a .. -(5) + E (1-(3) 
j=1 JJ j=n+1 

'" '" 
:;;: CL: a . . ) 

j =< JJ 
'" 

=CE a. ,) 
j=< JJ 
'" 

E (3 + (m-n). (1-(5) 
i..=:1 

(3.n +(m-n).(1-(3) 

(E a . .  ) + (1-(5). m -n 
j=< JJ 
n 

(E a .. ) + (1-(5) . Sup(m,n) - Inf(m,n). 
j=< J J  

(r=<
ajj) is greater than or equal to zero. So, 

f(Z2) �(1-(3) . Sup(m,n) - Inf(m,n) . 
That proves (16) in the case nsm. 
Now, if (3 verifies (17) using (23) we get 

f(Z2)�0. 
* 

z .  lj 

As f(Z )�f(Z2) one get (18) using (24) for the case nSm. 0 

Quality measures of the result. 

(23 ) 

(24 ) 

Let Na1 and NaO be the number of "1" and "0" values of matrix A. Let 
Fmax be the maximum value of F(Z) (see(5)) when the seriation is 
"perfect" (i.e diagonal blocks of A contain only ones and non diagonal 
blocks contain only zeroes) . 

Fmax = �.Na1 + (3.NaO 

Note that Fmax is independent of matrix Z generic terms. For 
given, Fmax depends on the two values Na1 and NaO of A. As 
NaO is equal to the product m.n , Fmax can be considered as 
on two of the three values Na1,NaO,m .n. 

10 

(25) 

� and (3 
Na1 plus 
dependent 
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One has defined [14J the ratio B: 

B(Z)� F(Z)/Fmax 
as a quality measure of the result, and B(Z) verifies 

O:SB(Z):S1 
* 

We are to show that when Z maximizes 
greater than a given value depending 
and columns of matrix A. 

Using (18) B(Z) can be rewritten thus 
feZ) + B(Z) Frnax 

Computing C (see (7» gives 

* 
F(Z ) then 
only on the 

C 
Fmax 

C (5NaO "= 0 

(25) to (28) and (16) give: 

* 
120: B(Z ) "= (1-B). Sup(m,n)-Inf(m,n) + Fmax 

* 
B(Z ) is always 

number of rows 

(5 NaO 
Fmax 

When in addition, (5 verifies (17) then (18) and (25) to (29) give 

(26 ) 

(27 ) 

(28 ) 

(29 ) 

(30) 

B(Z
*

)"= (5 NaO . (31) Frnax 
(31) is also verified for an optimal solution of the quasi seriation 
problem 

Example 

Given (5�a�0.5, n�m�100 Na1�1000 
Fmax�0.5x10 000, (see (25» 

* 
let us compute the scale of B(Z ). 

C�0.5x9000, (see (29» 
(1-B).Sup(m,n)-Inf(m,n) 0. 5x100-100 -0. 01, Fmax 
(30) gives 

* 

0.5x10000 

1"= B(Z ) "= - 0.01+ 0. 9 � 0. 89. 

AS we are using feZ) instead of F(Z) as fonction to maximize, we 
define a new measure of quality of the result: 

b(Z)� fez) (32) fmax 
where fmax is the maximum value of feZ) when the seriation is perfect. 

* 
fmax � (1-(5) Na1 (33) 

When Z is an optimum of the quasi seriation problem, we deduce an 
* 

interval of b(Z ) using (16): 

(1-B).Su(m,n)-Inf(m,n) <_ b(Z) :S 1. (1-(5)Na1 

1 1 

(34) 

13



When � verifies (17) then 

* 
o ::s b(Z ) ::s 

3.2 Case of real data. 

Matrix A is now composed of real data varying between Nmin and 
Nmax . The aim is to solve problem examples 1, 2 ,  3 .  

The problem is to find Z maximizing the criterion Fr(Z) under the 
constraints (C1) to (C7) defined in 3.1 where: 

n m 

(35 ) 

Fr(Z) E E (Ola .. z .. + �(Nmin+Nmax-a . .  ) (1-z .. ) )  (36 ) 
i=1 j=1 

1J 1J 1J 1J 

with Ol+�= 1 and O::S �::S 1 

Fr(Z) can be split into two terms in the following way: 

n m n m 
Fr ( Z ) = E E (a.. - � (Nmin + Nmax ) 

i=1j=1 
1J 

z .. + E E �(Nmax+Nmin-a .. ) 
1J 

i=1j=1 
1J 

fr(Z ) = 

Cr 

n m 

n 

a .. - �(Nmin +Nmax ) ) z . .  
1J 1J 

m 
E �(Nmax+Nmin-a . .  ) 
j =1 

1J 

Fr(Z) = fr(Z)+ Cr 

(37 ) 

(38 ) 

(39) 

Where Z is defined as in 3 . 1. Only fr(Z) depends on Z. Let us compute 
Frmax the greatest value of Fr(Z) without the constraints (C1)  to (C6 ) .  
Let frmax be the greatest value o f  fr(Z) without the constraints (C1) 
to (C6 ) . 

The matrix Zmax defined as follows: 

{ zmax
ij

=1 V(i,j) E(IxJ) / a
ij

> �(Nmin+Nmax ) ;  

zmax . .  =0 o therwise. 
1J 

verifies fr(Zmax ) =frmax. 

Using (39 ) we deduce that 
Fr(Zmax ) =f r (Zmax ) + Cr=Fmax. 

The corresponding value of previous defined B(Z) ratio is 
Fr(Z) 

Br(Z) 
Fmax 

It is possible to define a br(Z) which correspond to b(Z) : 

12 
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br(Z) 
fr(Z) 
frmax 

( 41 ) 

The previous linear model defines an ideal A matrix as a matrix for 
which it is possible, by permutations of rows and columns, to point out 
a clustering of rows and columns verifying that: 

generic terms of A greater than p(Nmax+Nmin) are concentrated in 
diagonal blocks 

- generic terms of A lower than p(Nmax+Nmin) are outside diagonal 
blocks. 

To solve example problem 3 with the presented formulation one must 
choose P in such a way that 

limit = p(Nmax+Nmin). 

1 3  
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4. THE QUASI-SERIATION ALGORITHMS. 

4.1 Notations 

Given a feasible triplet (X,Y,p) of Dq: 

1 .  For j :::: 1 ,2, .. ,m we consider 

CR (j) = E 
r 

iEX 
r 

a" -(5 (Nmax+Nmin) ) for r=1, .. , p lJ 

E ( a, ' 
iEX

O
+(j) lJ 

-(5(Nmax+Nmin) ) 

r(j) the lowest integer which satisfies 

CR ,(j) = 
r<J) 

Max CR (j) 
r 

r::::O I '  ., P 

2. For i :::: 1 ,2, " /n we consider 

RC (i) = E 
s 

jEY 
s 

a, , -(5 (Nmax+Nmin) ) for s=1 , .. ,p lJ 

s(i) 

RC , ( i ) 
S{l} 

E ( a, ' -(5(Nmax+Nmin) ) ; 
jEYO+ (i) 

lJ 

the lowest integer which satisfies 

Max RC (i) 
s 

8=0, .. ,p 

4.2 Two basic ingredients of the quasi-seriation algorithms. 

4.2.1 Quasi-seriation rows assignment procedure. 

f 'bl ' ( 
0 0 0

) 
, 

A eaSl e solutlon X ,Y ,p 18 assumed to be known. 
o 0 0 0 0 0 

X =( X
1 

, .. ,X
p

o) and Y ( Y1
, .. ,Y

p
o ), This procedure build then 

a feasible triplet of Dq , (X,Y,p) which verifies 

fr(X,y,p) �fr(X
O

,y
O

,p
o

) .  

14 

(42) 

(43) 
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L 

2. 

Assign Y,p,Y
O 

the following values: 

End 

For 

1 . 1 
° 

p�p 
° 0 

1 .2 Y � Y Y
O�Y

o 
of process L 

each row i=1 I • _ I n do 

2.1 Compute s(i) and RC . (i) using (43) 
sa> 

2.2 If RC
s(i,

(i) 0 and s(i) ) 0 ,  assign row i to X
S(i)' 

2.3 If RC . (i) :5 0 , assign row i to XO' S<l) 
2 . 4 If RC . (i) ) 0 and s ( i) � 0, 

S<D 
2.4.1 Increase p from unity. 
2. 4.2 Assign row i to X . 

P 
2.4.3 Cancel the columns of the set Y

O
+(i) that belong to 

the set Y
O 

and assign them to Y
p 

End of 2.4 
End of process 2. 

At this poin t we have clus tered I and J in p subsets. Y is a partition 

of J-Y
O

' bu t some of the subsets of 

the triplet (X,Y,p) is not an 
quasi-seriation problem. 

X may be empty. In the last 

admissible solu tion 

3. If (X, Y,p) is not an admissible solution, 

3.1 For s�1, .. ,p, if X � 0 , assign columns of Y to Y
O s s 

and do Y � 0. 
s 

to 

case 

the 

3.2 Compute the number of non empty sets of X and assign p to 
this number. 

3.3 Number the non empty sets of X and Y from 1 to p. 
End of 3. 

At this point the triplet (X, Y,p) is an admissible solution of the 
quasi-seriation problem. 
4. End of the procedure. 

At the end of the procedure fr(X,Y,p) is greater or equal to 
0 0 0  

fr(X ,Y ,p ). 

proof: 

1.Let us first consider the triplet (X,Y,p) at the end of process 
2. We see that the triplet (X,Y,p) is one of the triglets which lead 
to the greatest value of the criterion knowing (X

O
,y ,p

o
). fr(X,Y,p) 

0 0 0  
is then greater thanor equal to fr(X ,Y ,p ). 

2.We shall now demonstrate that process 3. does not decrease the 
criterion. Using (1) we can write: 
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p 
fr(x,Y,p)�E E ( a, ,- (5<Nmax+Nmin) ) 

lJ 

When X 
s 

3 .  only 

1 � 1  (i,j) E ( Xk 
x Y

k 
) 

o the set of pairs { (i, j)E (X x Y ) )  is empty. As 
s s 

modifies the pairs (X �0,Y ) the criterion will 
s s 

modified by process 3 .  D 

4.2.2 Quasi-seriation columns assignment procedure. 

process 

not be 

X and p are assumed t o  be known. X is assumed t o  be a partition of 
I-X

O
' 

This procedure contructs then, a feasible 
process is the same as for the r ow 
replacing X by Y, RC by CR, s by r,row by 

triplet (X,Y,p) of Dq. The 
assignment procedure, just 
column and column by row. 

1. Initialise X,p,X
O

' with the following values: 
o 

1 . 1 p�p 
o 

1. 2 X � X 

End of process 1. 

2. For each column j�1, . . ,m do 

2. 1 Compute r(j) and CR , (j) using (42) 
r <  J> 

2 . 2  If CR ,(j ) > o and r (j )  r<]) 
2 . 3 If CR ,(j ) :s; 0 , assign 

r<J> 
2. 4 If CR ,(j ) > 0 and r(j ) 

r<]> 

2.4. 1 Increase p from 
2.4. 2 Assign column j 

> 0, assign 

column j to 

� 0, 

unity. 
t o  Y . 

P 

column 

Y
O' 

j to Y 
r (j ) 

. 

2 . 4. 3  Cancel the r ows that belongto X
O

+(j ) from the set Xo 
and assign them to X . 

P 
End of 2. 4 

End of process 2. 

A t  this point we have clus tered I and J in p subsets. X is a partition 
of J-Y

O
' but some of the subsets of X may be empty. In this last case 

the triple t (X,Y,p) is not an admissible solu tion of the 
quasi-seriation problem. 

3. If (X, Y, p) is not an admissible solution, 

3 .1 For r�1, . .  ,p, if y� 0 , assign columns of X
r 

t o  Xo 
and do X � 0. 

r 
3 . 2 Compute the number of non empty sets of X and set p t o  

this number. 
3 . 3  Number the non-empty sets of X and Y from 1 t o  p. 

End of 3. 

A t  this point the triplet (X,Y,p) is an admissible solution of the 
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I quaSi-seriation problem. 
4. End of the procedure. 

At the end o f  the procedure fr(X,Y,p) is greater or equal to ° ° ° 
fr(X ,Y ,p ). 

Remark. 

The row and col umn assignment procedure buil d a 
(X,Y,p ) when initiall ed with (X o

=0,yo =0,po
=0 ) 

a feasibl e solution. 

feasibl e trip l et 
which is not 

4 . 2. 3  A basic quasi-seriation algorithm. 

We define a qualitative variabl e "assign" which can take the 
values "row" o r  " column! ! .  We al so define the integer "stop" which takes 
one o f  the values 0,1 ,2,3. 

0 0 0  
It is assumed that (X ,Y ,p ), and the value of assign are known. 

1.Do 

2.If 

I 
3.If 

stop�O. 

assign :::: row, 

2. 1 Compute (X,Y,p ) using the rows assignment procedure, 
2.2 Do assign = column and increase stop from unity. 

assign :::: column, 

3.1 Compute (X,Y,p) with the columns assignment 
I procedure, 

3 . 2  Do assign = row and increase stop from unity. 
4.Test 

° ° ° 
4. 1 I f  fr(X,Y,p ) > fr(X , Y  ,p ), do 

I and go to 1. 
° ° ° 

4. 2 If fr(X,Y,p ) fr(X ,Y ,p ), 

I 4. 2. 1 I f  stop=3 go to 5 
4.2.2 If stop<3 go to 2 

5.End of process. 

4. 3 How to get equivalent solutions. 

0 0 0  
(X ,Y ,p )=(X,Y,p ) 

There may be several optimal solutions to the quasi 
problem. In this subsection we present ingredients to 
equivalent solutions knowing an optimal triplet (XO,y

O
,p

o
). 

Two tripl ets (X,Y,p ) and (X' ,y' ,p') are said equivalent if 
fr(X,Y,p)=fr(X',Y',p'). 

seriation 
find some 

° ° ° 
Let (X ,Y ,p ) be an optimal tripl et. 

Ingredient 1. 

FOr each row iExo ,we consider Y(i) the set of integers sl(i) 

verify (44) 
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RC 
(

.
) 

(i) 
S

.t 1 

RC 
(

.
) 

(i) > 
S

.t 1 

s
.t

(i) > O. 

Max RC (i) ° S 8:::0 I '  . ,  P 
o 

We force the el ements of JP(i) to satisfy : 
s 

.t
(i) < s

.t+ 1 
(i) for .t=1, . .  , card(JP(i) ) when card(JP( i )  ) 2::2 

(44) 

(45) 

As (XO,yO,p o ) is an optimal triplet the integer s(i) (see (43 ) ) is 
equal to sl (i) and card(JP(i) )2::1. 

We assign row i to any subset X
.t .t=2, . .  ,card(JP(i ) ) .  We obtain then a 

new trip l et (X�XO
,y

O,p
o

) which verifies: 

o 0 0 0 0  
fr(X,Y ,p ) =fr(X ,Y ,p ) .  

If (X , y
O

,po) is not a feasibl e solution, we use process 3 .  of the 
rows assignment procedure to build a feasible triplet. Remember that 
process 3 .  of the row assignment procedure does not modify the value 
of the criterion. 

We have shown how to buil d an equivalent solution by considering 
several equivalent assignments of a row. 
We define n (X

O
, y

O
, p

o
) as the number of equivalent triplets different r 

° ° ° 
from (X ,Y ,p ) which can be obtained by the use of ingredient 1. 
Then: 

Ingredient 2.  

0 0 0  . 
n (X ,Y , p  ) = (n card (JP (1) ) ) -1 . 

r 
iEXO 

(46 ) 

For each column jEYO , we consider the set �(j) of integers r
.t
(j ) 

which verify (47) 

RC 
(

.
) 

(j ) 
r

.t 
1 

CR 
(.

)
(j ) > rl 1 

r
.t

(j) > O. 

Max CR (j ) ° r 
r:::;O, . .  ,p 

o 

We force the elements of �(j ) to satisfy 

r
.t

(j ) <rl+l(j ) for l=l, . .  ,card(�(j ) )  if card(�(j ) ) 2::2 

(47) 

As (XO,yO,p
o

) is an optimal triplet the integer r(j ) (see (42 ) ) is 
equal to r

l 
(j ) and r

l
(j ) 2::1 .  

We assign column j to any subset Yl 1=2, .. , card(�(j ) ) .  We obtain then 
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a new tr iplet (X,y�yO,p
o

) which verifies : 

o 0 0 0 0  
fr(X , Y,p ) =fr(X ,Y ,p ) .  

If (XO,y,p o ) is not a feasible solution, we use process 3. of the 
column ass ignment procedure to build a feasible triplet. Remember 
that process 3. o f  the column ass ignment procedure do not modify the 
value of the criterion. 

We have shown how to build an equivalent solution by cons idering 
several equivalent assignments of a column. 
We define n (XO, yO,p

o
) as the number of equivalent different from 

c 
0 0 0  

(X ,Y ,p ) t hat can be obtained by the use of the previous pro cess. 
Then, 

0 0 0  
n (X ,Y ,p )=( n card(J« j ) )  ) -1. 

c J'EYO 
° ° ° 

Let n (X ,Y ,p ) be t he number of triplet different from 
w 

obtained by the whole previous process (1. and 2. ) 
0 0 0  0 0 0  0 0 0  

n (X ,Y ,p ) =n (X ,Y ,p ) +n (X ,Y ,p ) 
w r c 

We could apply the whole previous process to each of the 

solut ions equivalent to (X
O

,y
O

,p
o

) and so on until no new 
solution is found. 

(48) 

° ° ° 
(X ,Y ,p ) 

0 0 0  
n (X , Y  ,p ) 

w 
equivalent 

In practice we observe that this ingredient is very efficient for 
binary matrices and criteria with �=1/ 2. 

4. 4 A refined quasi-seriation algorithm for binary matrices 

The following algorithm is efficient for finding an absolute 
optimum of the quasi s eriation problem when �=1/ 2 and when A is a 
binary matrix. I t  efficiency is due to the use of equivalent solut ion 
inaredients presented in section 4.3. In section 4. 3 we assumed that '" 0 ° 
(X ,Y ,p ) was an opt imal triplet. Ingredients 1 and 2 can be applied 
to each triplet issued from the basic quas i seriation algorithm even 
if it is a limited opt imum. 

The algori thm. 
° ° ° 

We suppose (X , Y  ,p ) to be a feas ible solution and the value of the 
qualitative variable lIassignl! (see sect ion 4. 3 )  

* * * 
1.Compute a local or absolute maximum (X , Y  ,p ) with 

I basic quasi seriation procedure. * * * 
2.If a new equivalent triplet (XO,yO,po ) of (X ,Y ,p ) 

I be found u sing ingredi ent 1,(s ee 4.3) go to 4 
else go to 3. 

3.If a new equivalent tripl et (X
O

,y
O

,p
o

) o f  
I be found using ingredient 2,(s ee 4. 3 ) go 

else go to 8. 
4.1f ass ign � row 

else 

do ass ign � column 
do ass ign = row; 

* * * 
(X ,y ,p ) 

to 4 

t he 

can 

can 

5. Compute the basic quas i seriat ion procedure i ni t ialled 
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0 0 0  

IWith (X ,Y , p  ) 
The quasi-seriation procedure produces a triplet (X,Y,p) 

6.If fr(X, Y, p) 

Ito 2. 
7.If fr(X, Y , p) 

8.End. 

o 0 0 * * * 
> fr (X , Y  , p  ) do (X ,Y ,p )=(X,Y,p) and go 

0 0 0  
f r  (X ,Y ,p ) go to 2. 
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5. BLOCK SERIATION ALGORITHMS. 

5.1 The basic seriation procedure 

0 0 0  
It i s  assumed to know (X ,Y ,p )ED

b
. Remember that D

b 
is the s et 

of feasi ble tri plets of the block s eri ation problem. 
As i n  section 4.2.3 we define a qualitative variable " as s i gn" which 
can take the values " row" or "colurnnll. 
We also define the i nteger "IT" which takes one of the two values 
0, 1 . 

The algori thm: 

1. Do IT�O. 

2. If assign �row, 
o 0 

2.1 Do Y�Y ; p�p . 

2. 2 Assign each row i�1, .. ,n to X
S(i )

.(see 4.1) 

At this point we have defined (X,Y,p). Y is a partition of J 
in p clusters; but some subsets of X may be empty. 
2.3 Do assign � column and go to 4. 

3. If assign�column, 
° a 

3. 1 Do X�Y ; p� P 

4. 

3. 2 Ass ign each column j�1, . . n to Y
r(j) 

(see 4.1) 

At this point we have defined (X,Y,p). X is a partition of I 
in p clusters, but some subsets of Y may be empty. 
3.3 Do Assign � row and go to 4. 
If (X,Y,p) E D

b 
and fr(X,Y,p) > o ° ° 

fr(X ,Y ,p ) ,  l o a  a 
(X ,Y ,p )�(X,Y,p) and go to 1 .  a a ° 

5. If (X,Y,p) E D
b

and fr(X,Y,p) � fr(X ,Y ,p ) ,  

6. 

a a a 

I 5.1 If IT = 0 ,  do IT �1 ; (X ,Y ,p )�(X,Y,p) and go to 2. 
5. 2 I f  IT � 1, go to End. 

a a a 
If ( X, Y ,p) E D

b 
and fr(X, Y,p) < fr(X , Y ,p ), do 

I (X,y,p)�(X
o

,y
a

,p
a

) and go to End. 
7. If (X,Y,p) � D

b
' 

7.' If assign =row, 
a 

7.1.1 Set p to the number of non empty subs ets o f  Y 
° 

7.1.2 Number the non empty s ets of Y from 1 to p 
At this point X is a partition of I in p subsets and 
is a partition of J in p

O
subsets, and p

a
�p. 

° 
7.1.3 Do Y �Y and go to 2. 

7.2 If assign � column, 
a 

8. End. 

7.2. 1 Set p to the number of non empty subs ets of X 
a 

7.2.2 Number the non empty sets of X from 1 to p . 
At this point Y is a partition of J in € subsets and 
is a partition of I in p

a
subsets, and p �p. 

o 
7.2.3 Do X �X and go to 3. 

Remarks: 

Y 

X 

do 

With this algori thm pSp
o

. So, if there i s  no optimal triplet 
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* * * * 0 
(X ,Y ,p ) verifying p >p then it is sure the algorithm will not find 
an optimal solution. In the following section we present an algorithm 

. ° 
for whlch p may be greater or lower than p . 

5. 2 A seriation algorithm based on quasi-seriation. 

Quasi-seriation heuristics presented in section 4. can be used 
seriation algor ithm if the optimum of the quasi seriation problem 
verifi�s �er�at ion constraints . 

as 

and Let (#q,¥q,pq) be the optimum of 
(Xe,Ye,ps) the opt imuljl IIf *the 
crit �rilln.* Then, fr(Xq,Yq,pq) is 
fr (Xe f Ye f ps) . 

the quasi 
seriation 

greater 

seriation problem 
problem for the 

than or equal 
s ame 

t o  

These two remarks lead us t o  initialise the basic seriation 
algorithm with the quasi seriation algorithm. 

The algori thm. 

1_ Compute an initial triplet (X
O

, y
O

, p
o

) with the quasi seriation 
I proce dure. 

0 0 0  
2_ If (X , Y  , p  ) E D

b
' then go to End_ 

° ° ° 
2'_If A is a binary matrix and r�I/2 and (X ,Y , p  !ED

b 
2'.1 Try to build an admissible equivalent triplet of 

° ° ° 
(X , Y  , p  !using ingredients of section 4.3. 

2'.2 If an admissible equivalent triplet is found go to End_ 

0 0 0  
3_ If (X , Y  , p  ) E D

b 
o ° 

3.1 If X
O

"'O and Y
O

�O ,do assign�row and go t o  4_ 
° ° 

3.2 If X
O

�O and Y
O

"'O ,do assign=column and go to  4_ 

3.3 If x
o

",O and yO",O 
° 

3.3. 1 Do p=p ; 
3.3.2 For each row i�1f' " n  I if iE increase 

unity and ass ign row i to X . 
P 

3.3.3 
0 0 0  0 

Do (X ,Y ,p ) =(X,Y ,p) and do assign=column 

4_ Compute the basic seriation procedure. 

I 
5 _ End_ 
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6.COMPUTING PERFORMANCES. 

6. 1 Computing time complexity. 

The s eriation algorithms involve about the s ame computing time 
complexity as that of F.Marcotorchino and are lower than H. Garcia and 
a1s1 becaus e of the use of Marcotorchino's formulation. 

Tests were conducted on an Olivetti M280 micro-computer. Programs 
were written in Turbo Pascal 4 .0. Matrices in several s izes were 
created randomly. Each row and column has a minimum of one " 111 value. 
Global "1" values are at 10 % . Tests were done on about one thousand 
matrices. 

We verified that the computing time of one 
linearly with the product m.n . The average number of 
Recently we treated an industrial case with more than 
34 columns in less than 4 minutes . 

6. 2 Comparison of block seriation algorithms 

loop 
loops 

2 0  0 0 0  

increased 
was 10. 

rows and 

Let us now compare the presented algorithms with two s imilar ones 
(A) presented in [6] and (E) presented in [14] . 

With algorithm (A) the user gives the number of families and the 
algorithm gives a solution with the s ame number of families. 
Mathematically, if one want to use algorithm (A) to solve the model we 
presented in this paper one must run the algorithm at leas t Inf(m , n )  
times. In addition, algorithm (A) do not always compute a feasible 
solution (some p airs (Xk=0'Yk�0) or (Xk�0'Y

k
=0) may exist in the g iven 

solution ) . 
With algorithm (8) it is useless to give the number of 

The algorithm do not always lead to a feasible seriation 
because it canno t  decrease the number of families . The 
initial families must be lower than the optimal one. 

clusters . 
solution 

number of 

Algorithms we presented in this paper always lead 
a feasible solution. The number of families may increase and 

to 
decrease 

during the algorithm. 

We note (C) the s eriation algorithm using the basic quasi seriation 
algorithm and (D) the one using the refined quasi seriation 
algorithm.The m atrix example is taken from reference [3] . Chosen 
criterion is r=1/2 .  The result is given for 18 trials, the number of 
families of the initial partition was one for the first trial, two for 
the s econd trial, three for the third one ,etc . .. 

2 3  
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Initial m at rix is: 

111111111 
123456789012345678 

ville 111110000000000000 
metropole 2 011111000000000000 
cite 3 101010000000000000 
capitale 4 011111000000000000 
agglomerat 5 101010111100000000 
centre 6 111111000000000000 
village 7 000000111111111000 
localit e  8 000010111111000000 
bourgade 9 000000101100000000 
bourg 10 000000101111 010000 
trou 11 000000100111100100 
patelin 12 000000100111100110 
bled 13 000000100011100000 
harneau 14 000000110000010000 
commune 15 000010101100001001 
coin 16 000000010011100100 
pays 17 001000001111101010 
municipal it 18 100000000000001001 

Algorithms (A) (B) (C) (D) 
number of feasible solution 3.0 2.0 18.0 18.0 
best seriation criterion value 19. 5 23. 5 28. 0 28. 0 
worst seriation criterion value -64. 0 23. 5 22. 0 28. 0 

Table 1 : Comparison of four block-seriation algorithms 

Discussion :  

- the number of obtained seriation of (C) and (D) are very high 
compared to (A) and (B) . I nitial solutions were chosen randomly and 
were the same for each algorithm. 

- (C) found 22 as criterion value once. The others values were 
distributed the following way: time 26.00 

3 times 27. 5 0  
4 times 28. 00 which i s  the best 

solution for this matrix. 

- (D) for this mat rix the ingredient of equivalent solution was very 
ef ficient. 

- The quasi seriation loop never gave a seriation as result. 
with all the rows and columns unclassif ied (X

O
=Y

O
=0), the 

Start ing 
algorithm 

(D) finds the opt imum quasi seriation solution each 
the line and column numbering and the first 
ingredient of equivalent solutions was helpful in 
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t ime, despite 
assignment. The 

obtaining this 
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result. 
The quasi seriation loop is another method f or s olving certain 
particular cases of quadri-decomposition models. [ 4 ] 

We made trials on numerous matrices and f ound out that 
obtained in previous example seem to be general except that 
(E) resulted in a s eriation more of ten than (A) algorithm. 

results 
algorithm 

For binary matrices chosen r andomly we of ten f ound more than 10
6 

equivalent solutions only by using the basic quasi s eriation 
algorithm. For industrial cases with several thousand rows, with no 
more than 10% of ones values we often f ound several hundred equivalent 
s olutions with the basic quasi seriation algorithm even when br(Z) 
ratio was greater than 0. 80. Using the equivalent solution ingredient 
the number of equivalent s olutions generally collapses. 

7.EXAMPLE OF USES IN PRODUCTION MANAGEMENT. 

Section 3 and section 4 algorithms can be used as a method of 
classification f or f actory objects such as products f 

process -plannings ,  product price estimates etc . .  The 
describe some examples of its application in 
manuf acturing unit f ormation problems. 

f ollowing pages 
solving certain 

7.1 Analysis of the binary machine-parts incidence matrix. [16] 

Matrix A[a . .  ] is a binary element. Rows are parts, and columns 1J 
pools of machines. A pool is a group of machines perf orming 
task(s ) .  Element aij is equal to 1 when a pool of machines 
to part i's process planning. 

the s ame 
j belongs 

The number of "1" in such a matrix in a range of 0. 15mn to 0.3Smn. 
is the number of rows multiplied by the various number of columns 
A[a

ij
] )· 

The real problem is more complex than the linear model developped 
[6] .  That's why several trials are necessary. 

Some rules obtained through experience. 

(mn 
of 

in 

A good seriable matrix is a matrix in which the optimal s olution is 
composed of groups with a high density of "1" inside diagonal blocks 
and less than 10% of "1" outside, whatever the (5 value. 
Usually the number of f amilies decreases with �. 

Verif ying f amily size constraints Qy hierarchical aggregation. 

In a production management problem matrix A size is greater than 
10

5 
and the number of "1" is about 20%. For �=1/2 the number of 

f amilies optimizing f (Z) may be more than 50. The natural number of 
f amilies obtained by solving section 2 and 3 block seriation models 
gives a lot of inf ormation on data typology to the cell designer; but 
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the result is not always satisfactory in reality. 
size of some cells (families o f  pools) may not be 
economic reasons. 

For instance, 
great enough 

the 
for 

One way to o btain a solution with fewer families is to decrease � 
value as suggested by experience rules. Figure 5 shows the obtained 
hierarchy for matrix of figure 6. Figure 7 represents the number of 
family variations with �. Decreasing � is of no help in o btaining 
solutions between 2 and 5 families. 
The natural number of families that optimizes the criterion is too 
large for � ) 0 , 6  and not large enough for � < 0 , 6. 

Another way to obtain solutions with several numbers of families 
is to compute a hierarchy of partitions. This is possible using the 
section 5 algorithm. Figures 8 to 11 describe the process in this 
academic example where the initial matrix is represented by figure 6. 
After the block seriation algorithm, the natural solution is o btained 
in 11 families (figure 8) . This binary matrix is summed up on figure 
9; each number represents the number of "1" values of a block in the 
reorganized A matrix. Table (figure 9) can be interpreted as an A 
matrix described in example 3 (introduction ) .  By applying the 
seriation algorithm to this matrix, the 11 families are grouped into 
larger ones in order to minimize non zero values outside the new 
blocks . Figure 11 is the binary representation of the figure 10 
result. So now figure 10 is the initial matrix for the next 
aggregation level and so on .. The whole hierarchy is given in figure 
1 2. 

A third way to obtain solutions with several numbers of families 
is to compute the equivalent solutions if they exist. 

I f  the constraint of keeping previously level families included 
in the new larger one (hierarchy of partitions) does not exist, the 
different level results can eventually be optimized by the basic 
seriation procedure (in which the number of families cannot increase 
starting with the reorganized binary matrix. This last method is 
useful but a good initial partition is necessary. This is o btained 
through the hierarchy of partitions. If one starts with r andomly 
processed partitions, the o btained solution is often given in one 
family or the criterion value is poor. 

Figure 1 3  sums up the results for the three aggregation methods. 

7.2 Analysis of the part-loads matrix. 

Some authors prefer to study the cell formation problem by 
analyzing the part load matrix. Load is the time a machine is working. 
Data is given in positive values with about 20% of non zeroes. 
The o bjective function is fr(Z ) . Minimum value is given by 
limit ) �(Nmax+Nmin) (see section 3.2) limit is the lower 
expected in diagonal blocks through the objective function. 

solving 
value 

We compared the solution obtained by the proposed heuristic to 
solutions obtained by J.A Ventura and ails in [19]. Matr ix treated in 
[19] ar e most of proposed matrices in the production r esearch 
literature in the last twenty years. J.A Ventura and als algorithm is 
compared to the two algorithms of Kumar and als [11] and proves that 
their algorithm is far superior to Kumar's algorithm. Our algorithm 
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reveals each t im e  a better or the s ame solut ion as those presented in 
[ 1 9 ]  . 

For S1 and S2 (table2) t here are five values greater t han limit outside 
the diagonal blocks.For S3 and S4 t here is only one value greater t han 
limit outside diagonal blocks. 

7.3 Analysis of the traffic matrix. 

Some papers deal with a s ymmetrical matrix which in generic t erms 
is a measure of t he t raffic between machines. For instance a .. could be lJ 
the number of parts moving between machine i and machine j. The set o f  
rows is identical t o  the set of columns . The problem cons ists in a block 
s eriation problem with the additional constraint t hat the partitions o f  
rows and columns are t he s ame. This additional constraint is costless 
to implement using previous presented algorithms . One need only define 
the s et of rows in t he s ame variable as the set of columns. The 
presented algorithm t hen becomes equivalent to the heuristic presented 
in [13] as proved in [8] . In [5 ] one can find a comparison between this 
algorithm and algorit hms written in order to solve this specific case. 

8.CONCLUSION 

The presented block seriation metho d is helpful in analysing 
industrial data. The presented heurist ics solve the block s eriation 
problem even in t he case of symmetrical matrices, they always produce 
a feasible solut ion to the seriat ion problem and sometimes, are able 
to propose s everal m aximum if t hey exist.  We pointed out t he linkage 
between the proposed function to maximize and the concentration of 
given values of generic terms inside the diagonal blocks allowing new 
approaches in t he pract ical ident ification of the manufacturing cells 
[1 9 ] . They are currently implemented on manufacturing cell design 
s ys t em S . A.F. I . R  [7] and on group techno logy data analys is s ystems 
G . T.S . 

27 

29



References. 

[1] E. Barnes 
11 An algorithm for partionning the nodes of a graph 
Journal of Algorithms and DiscreteMethods, Vo13, 
541-550 1982. 

1I,SIAM 
No4,pp 

[2] Ch. Bedecarrax 
" Quadri-decomposition en analyse relationnelle et applications a la 
seriation" 
IBM Paris Scientific Center Technical Report F117 1987. 

[3] Ch. Bedecarrax 
11 Quadri-decornposi tion: rnodele general. " 
IBM Paris Scientific Center Technical Report F132 1988. 

[4] Ch. Bedecarrax , I. Warnesson 
" Relational analysis and dictionaries 11 

Applied Stochastic Models and Data Analysis vol5 p131-151 1989. 

[5] P. Beziat ; P. Massote 
"Plant layout optimization tool using group technology. " 
Colloque International sur les methodes de bloc seriation et 
applications " Strasbourg 3-4-5 avril 1990 Recueil des conferences. 
ENSAIS 24, bd de la victoire 67084 Strasbourg Cedex France 

[6] H. Garcia ; J.M. Proth 
" Group Technology in Production Management the Short Horizon 
Planning Leve11l 
Journal of Applied Stochastic Models and Data 
Analysis,Vo11,N°1,pp. 25-34, J. Wiley(1985) 

[7] R. De Guio 
" Contribution a 1 'organisation d'ateliers en ilots de fabrication". 
These de doctorat. Universite Louis Pasteur Strasbourg janvier 1990. 
Chapitre IV 

[8] R. De Guio; B. Mutel 
" Algorithrnes et criteres de seriation d'une rnatrice non syrnetrique. 
Application a la formation d'ilots de fabrications" 
Colloque International sur les methodes de bloc seriation 
et applications " Strasbourg 3-4-5 avril 1990 Recueil des 
conferences. 
ENSAIS 24, bd de la victoire 67084 Strasbourg Cedex France 

[9] G. Harhalakis, Nagi R, and J.M Proth 

[ 1 0 ] 

" An efficient heuristic in manufacturing cell formation for 
group technology applications" 
International Journal of Production Research,Vol 
28,No1,pp185-188 1990 

J.R King, 
" Machine-component grouping 
International Journal of 
213-231, 1980 

using Roe algorithm" 
Production Research,Vol 18,pp 

[11] K.R Kumar,A. Kusiak, A. Vannelli 

28 

30



" Grouping of parts and components in f lexible manufacturing 
systems. " 
European Journal of Operational Research , 2 4,pp . 387-3 97 

[ 12 ]  A.  Kusiak and W.S Chow 
" Efficient Solving of the Group Technology Problem" 
J ournal of M anufacturing Systems, Vo16, No 2 4 ,  1987 

[13] F. Marcotorchino 
U Agregation des s irni l arites en classification aut omatique. !I 
These d ' Et at .  Uni versit e  de Paris VI (1981)  

[14] F .  Marcotorchino 
" A uni f i ed approach of the Block-Seriation ProblemsH 
Journal of Applied Stochastic Models and Data Analysis 
Vol 3 ,  N° 2 ,  J. Wiley (1987) . 

[15] H. Messetfa 
" Parti onnement d'un graphe en classes f ixees." 
Colloque International s ur les methodes de bloc s eriation 
et applications " Strasbourg 3 -4-5 avril 1 990 Recueil des 
conf erences. 
ENSAIS 2 4 ,  bd de la victoire 67084 Strasbourg Cede x France 

[16] B .  Mutel, R. De Guio 
" Recogniti on 
constraints" 
C. I. R. P.  annals 

of cellullar manuf actur i ng under management 

vol 38/1 August 1 989. 

[17] L.E Stanfel 
11 A succes s i ve approximations method f or 
manufacturing problem n .  

a cellular 

INRIA annual meeting report ,pp 523-536 1987. 

[ 18 ]  A. Vanelli, and K .  Ravi Kumar 

[ 1 9 ]  

"A method f or finding minimal bottle-neck cells f or grouping 
part- machine families !l 
Internat ional Journal of Product ion Res earch , Vol 
2 4 , No2 ,pp387-400,1986. 

J . A. Ventura, F. Frank Chen , and Chih-Lang Wu 
" Grouping parts and t ools in flexible 
producti on planning!! 
International Journal of Product i on 
2 8 , No. 6, pp. 10 39-1056 

29 

manufactur i ng 

Research ,  1990, 

s ystems 

Vol. 

31



J 

I 
i\j 1 23 45 

1 1 01 01 
2 1 001 0 
3 011 00 
4 01 01 1 

I 5 1 0000 
6 1 0001 
7 00001 
8 0011 1 
9 11 000 

1 0  0 1 1 1  0 

F igure 1 : matrix A 

i\j 1 2345 
1 001 01 
2 0001 0 
3 01 000 
4 00010 
5 1 0000 
6 001 01 
7 00000 
8 00101 
9 01 000 

10 0001 0 

Figure 2 :  Matrix Z def i nes generic terms of A 
which belong to a diagonal block. 
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i \ j 3 5  4 2 1 
7 

1 
6 

8 

2 
4 

1 0  
3 
9 

5 

00 0 0 0 
r--1 1 0 0 0 

1 1 0 0 0 
1 1 0 0 0 
0 0  1 0 0 
0 0  1 0 0 
00 1 0 0 

00 0 1 0 
00 0 1 0 

0 0  0 O �  
Y1 Y2Y3Y4 

} xo 

Figure 3 :  Matrix Z permuted in order to 
point out diagonal blocks full 
with ones and non diagonal blocks 
full with zeroes . ( Yo=0 ) 

Y1 Y2Y3 Y4 
i \ j  3 5  4 2 1 
7 }Xo 0 1  0 0 0 

,....-
1 1  0 0 1 
0 1  0 0 1 
1 1 1 0 0 � }X< 

0 0  1 0 1 
0 1  1 1 0 
1 0  1 1 0 

J }X2 

1 0 0 1 0 
0 0  0 1 1 

o �  
� }X3 

0 0  0 5 }X4 

Figure 4 :  Matrix A permuted l ike Z in f i gure 3 .  

2 
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Figure 5 

Number of intra-block 

Number of families 

2 3 6 1 9  20 4 1 8  5 1 2  7 1 0  8 1 7  9 1 3  1 1  1 4  1 5  1 6  
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F igure 6 :  Initial matrix A 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  No . column fami l i es 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2  

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5  No . columns 
0 1 1 1 1 1 1  

0 2 1 1 1  1 1 

0 3 1 1 1 

0 4 1 1 

0 5 1 1 1 1 

0 6 1 1 

0 7 1 1 1 

0 8 1 1 1 

0 9 1 1 1 1 

0 1 0  1 1 

0 1 1 1 1 1 : 

0 1 2  1 1 1 

0 1 3  1 1 : 

0 1 4  1 1 1 1 1 

0 1 5  1 1 

0 1 6  1 1 

0 1 7 1 1 1 1 1 1 1 1 1 : 

0 1 8  1 1 1 1 

0 1 9  1 1 1 1  1 

0 2 0  1 1 
- - - - - - - - - - ----- - - - - - - - ----------
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Figure 7 

Number of families 

1 1 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . ..................... . . . . . . . . . . .  . 

9 

6 

1 

o 0 ;  1 0 . 2  0 . 3  0 . 4  0 . 5  

Beta 
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Figure 8 :  Solution of matrix A for 5 = 0 . 5 

1 1  1 

1 1 1 1 1  2 2 2 2 2 3 4 4  5 6 6  7 7 7  8 9 9  0 0  1 N° column fami lies 

1 2 2 :  1 2 : 1 : 1 : 1 :  1 :  1 1 : 2 : 2 2 : 1 1 :  

1 5 2 1 2 : 6 7 8 8 0 : 6 : 2 4 : 9 : 9 3 : 4 1 7 : 4 : 3 5 : 0 5 : 3  No . columns 

1 1 1 1 1 1 1 : 

2 2 : 1 1 1 1 1 :  : 

3 3 

3 6 

3 1 9  

3 2 0  

4 4 

4 1 8  

5 5 

5 1 2  

6 7 

6 1 0  

7 8 

7 1 7  

8 9 

8 1 3  

9 1 1  

1 1 

1 0  1 4  1 

1 0 1 5  

1 1  1 6  

1 : 1 

1 

1 

: 1 · 

: 1 

: 1 : 1 

: 1 · : 1 : · 

: : 1 1 : : 

: : 1 : : : 1 

: 1 . 

: 1 1 : 

1 : 1 1 : : : 1 :  

1 : 

: 1 

1 : 

: 1 

1 : 

1 : :  1 : 1 : 1 ·  . 

1 · · : : 1 1 : 1 : :  

: : 1 : 

: 1 1 1 :  : 

: 1 : 1 : :  : 1 1 1 : 1 : 1 :  : 1 : 

: : 1 :  1 : 1 : 

1 . . 

: : 1 : : 

: 1 :  1 :  

: 1 : :  1 1  : 

: 1 1 :  : 

1 · · : 1 1 :  : 

: 1 : 
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0 

1 

0 1 5 

0 2 

0 3 2 

0 4 1 

0 5 

0 6 1 

0 7 

0 8 1 

0 9 

0 1 0  1 

0 1 1 1 

Figure 9 :  Grouping o f  one in blocks for 
the solut ion of figure 8 

0 0 0 0 0 0 0 0 0 

1 

2 3 4 5 6 7 8 9 0 

5 

2 4 2 1 1 1 

1 3 1 

3 1 2 1 

1 3 1 

1 1 1 6 1 

1 1 2 1 

1 1 2 

1 1 1 4 

0 No . col umn families 

1 

1 : No . columns 

1 : 

1 : 
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1 1 

1 1 1  

2 2 

2 5 

3 3 

4 4 

5 6 

6 7 

7 8 

8 9 

9 1 0  

Figure 1 0 :  App l i cati on o f  the seri ation algorithm 
to matrix of f igure 9 

1 

1 : 

5 : 

1 : 

1 : 

2 : 

1 : 

1 : 

1 : 

1 : 

2 

2 :  

5 : 

3 : 

2 :  

1 : 

1 : 

1 : 

1 : 

1 : 

3 3 4 

3 5 : 4 :  

2 : 1 : 

4 2 : 

3 : 

1 1 : 

1 : 

5 6 6 7 8 

1 : 

6 : 7 1 : 8 : 9 : 

1 : 

1 

1 : 1 : 

1 

3 : 1 

6 1 : 1 : 1 : 

1 : 1 2 : 1 : 

1 2 : 

1 

9 No . column 
fami l ies 

1 

0 :  No . columns 

1 : 

4 :  
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F igure 1 1 :  Binary representation of the f igure 1 0  matrix 

1 1 1 1 1  2 2 2 2 2  33 44 55 6 6 6 6  7 88 9 9  No . column families 

1 2 2 :  1 2 : 1 1 : 1 :  1 :  1 1 : 2 : 2 2 : 1 1  

1 5 2 1 2 : 6 7 8 8 0 : 6 9 : 2 4 : 9 3 : 3 4 1 7 : 4 : 3 5 : 0 5 No . columns 

1 1 1 1 1 1 1 :  

1 1 6  1 : : 1 

2 2 

2 5 

2 1 2  

: 1 1 1 1 1 : 

1 : 1 1 : 1 : 

3 3 

3 6 

3 1 9  

3 2 0  

4 4 

4 1 8  

5 7 

5 1 0  

6 8 

6 1 7  

7 9 

7 1 3  

8 1 1  

1 1 

9 1 4  1 

9 1 5  

1 : 1 

1 : 

: 1 

1 : 

: 1 

1 : 1 :  1 1 ·  . 

1 

: 1 

: 1 : 1 : 

1 : 1 1 : : 1 

: 1 1 : 

1 : 

: 1 1  : 

: 1 :  : 1 

: 1 1  : 1 . . 

: 1 : 

: 1 1 1 : : 

: 1  : 1 : : 1 1 1 1 : 1 : 1 :  

: 1 :  1 : 1 : 
: 1 :  1 :  

1 : 

1 : : 1 : :  1 1 : 

: 1 : : 1 1 : 

1 · · : 1 1 : 

40



Figure 1 2 :  Hierarchic classification of matrix A with the seriation algorithm 

number of ones inside diagonal blocks 

number of families 

� 1 -- ------- - -------------- --- - - - - ---------------------------r------... ----r--'"II--

J 66 - -------------------------- ,.-------IiIt---...,...-----, --------- �---- .-----

1 

3 

52 - ------------lr----lilt----r ----------�-.... _._-�------ �------- �----, . ----- - 5 

4S 
_ ____________ �----------------r---4II--r .------------ � -----� �----- �-------- �---- . ----- - 8 

41 _ _ ___________ � ----------------4 -4 ----- .-----------. ....... ---- �----- � -------� .----- . ----- -- 9 

37 

75 

I I 
t-- It- I I I I - �  ---"""'1 "T1 --l,r-4",-11 1 Ir-e-..-I--

1 , 5, 1 2, 21 , 22 6, 7, 8, 1 8, 20 1 6  1 9  2, 14 4, 1 1 , 1 7 3 24 23, 25 9, 1 3  1 0, 1 5  

COLUMNS 

number of families 
number of ones inside diagonal blocks 

.------..... -----.----,-------------

66 -- ------------ -- - ---------------r-------4it----,---"""'f 

52 -------------------r--.... ----.------ ----.---... -,-

- 1 1  

1 

3 

5 

45 
--------- - 8 

41 - - --------- ---------r-O""'I-
37 --- -----,--.e-.,-

3, 6, 1 9, 20 2 5, 1 2  1 1 6  4, 1 8  8, 1 7  9, 13 1 1  

ROWS 

--------- -- 9 

7, 1 0  1 4, 1 5  

1 1  
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Figure 13: Comparison of three aggregation methods 

o beta decreasing 

1 0 0 

9 0  

8 0  

7 0  

6 0  

5 0  

4 0  

3 0  

2 0  

1 0 

o 

% intra blocks " 1 "  

1 2 3 

h i e rarchical 

a g g regation 

4 5 6 

Obliged seriaton algorithm starting 

with hierarchical aggregation results 

7 8 9 1 0  1 1 

number of families 
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i \j 2 3 4 5 6 7 
1 7 16 7 0 5 0 0 
2 0 0 2 0 0 10 2 
3 0 0 0 29 0 0 19 
4 76 10 0 0 48 5 0 
5 0 0 0 76 0 0 43 
6 5 0 1 4  71 0 10 0 
7 14 24 29 0 10 0 0 
8 1 4  0 0 0 0 24 0 
9 3 0 0 38 0 . 0  7 
0 8 0 29 0 0 10 0 

8 6  1 0  0 0 0 0 0 
2 0 8 0 0 5 0 0 
3 5 0 8 6  100 0 33 0 

Figure 1 4: Machine parts loads matrix. 
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Type o f  
s e r iation 
dem anded 

qu asi s e r  

s e r iation 

quas i ser 

seriat ion 

o . 1 

o . 1 

0. 5 

0. 5 

f r  (Z ) 

5 37. 0 

5 35 . 0  

159 . 0 

-208.0 

br(Z) 

0.60 

0.60 

0. 32 

-0.42 

solution limit 

81 

82  

83 

84 

10 

1 0 

5 0  

5 0  

Table 2 :  Obtained solutions for f igure matrix of 
f igure 1 4  initialized with Xo�Yo �0 .  

{ xo� ( 2 ,  1 0, 12 
81 

x,. � { 1,7 X2 � {  3, 5 ,6, 9 , 13 Xa � {  4,1 1 ) 

Yo� ( )  

{ XO� (} 
82 

Yo � ( } 

{ Xo � {  
83 

Yo � {  

x,. � { 1,7, 12 

y,. � { 2 } 

1, 2 ,3, 7,8,9,10,12 

Xo� ( )  ; x,. � ( 
X" � {  2 , 8  ) 
Yo� { }  ; Y" � {  

4, 11 

1 , 5  ) 

X2 � {  3,5 , 6 , 9, 13 

Y2 � ( 3, 4, 7 ) 

Y. � ( 1 ) 

X2 � {  3,5 , 6, 9,13 

Ya � { 1 ,  5 

X3 � { 4 ,  11 

Y3 � ( 1, 5 

X2 � {  5,6, 13 

Y2 � ( 4 ) 

Y" � {  6 

X"� ( 2 , 8, 1 0 ) 

Y-<� { 6 ) 

xa � ( 1, 1 2 ) ;  x .. � { 7, 1 0 

; Y4� ( 3 ) ; Y5= ( 6 , 7 ) 
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