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SUMMARY

 . The second ai m is to sho w how they can be used to solve several problems in the area of Group Techno logy in manufacturing .

INTRODUCTION

Clust ering algorithms Gr oup technology

A rough statement of the blo cks seriat ion clustering problem would be the following: "We are a direct simultaneous partitioning of an non negative value matrix with n rows an d ID column s in order to obtain a high density of the lar gest values in the di agonal blocks" .

TO clarify the assertion "largest values" let us give some examples.

Example 1:

Matrix A is a binary matrix. The goal is to obtain, by permuting the rows and columns of this matrix, a matrix B in the ones are concentrated in the di agonal blocks. One observes that the set of rows on one side an d the set of column s on the other side are clusters so lving the block seriat ion problem as stated previously. For this reason, the cluster ing problem must be stated in more det ail. Some authors predefine the number of clust ers ([6] ; [16] ) and add size constraints to the clusters ([19J; [12 J; [1] ; [ 17]).

In other blo ck seriation problems some rows or columns of the matrix are left un classi fied ([18] ;[ 2];[8]). J.M Froth [6] an d F.Mar cotorchino [14] are looking for the best relational match to an ideal block seriation matrix. For others the number of clusters does not matter and the density of ones inside diagonal blocks defines the number of cluster s [ 1 5] .

Example 2:

Matrix A is now composed of non negative values.

The blocks seriation problem can be summarized as clustering the rows and columns of A in order to obtain a matrix B whose non zero values are concentrated in diagonal blocks.J.R Kumar , A. Kusiak and A. Vanelli [11J li mit clust er size to a given range, as do G.

Harhalaki s, R. Nagi , and J.M Fr oth [9] . In this paper we define a model based on a relational analysi s approach which generali zes F. Mar co torchino's block seriation model for binary matrices.

Example 3: [7] [12 ]

The matrix is still co mposed of non negative values, but the number of zeroes does not mat ter. Let Nmax be the maximum value of the matrix elements and Nmin the minimum one. The data we should like to group in the diagonal blocks can , for example, be those belonging to the interval [limit ... Nmax] wher e li mit belongs to ]Nmin, Nmax] .

In the further developed models , the number of clust ers is an unknown quantity an d the constraints on the partition are defined by the minimum den sity of values inside the di agonal blocks.

However , presented heuritics can be used to solve blocks seriation problems which include constraints on clu ster number or cluster size [1 5] .

The examples previously mentioned are mainly drawn from the field of production management . The list is not exhaustive an d one could give more than a hundr ed references in this one field. In [1 4] one can find numerous references from a large range of scientific fields, which deal with the block seriation problem without constraints on the number of clusters.

We present two formulations of the block seriation clustering problem : a general maximization formulation, and an equivalent binar y linear programming formulation. Each of these formulat ions is helpful to analysi s of the block seriation problem. We also study the quasi ser iation problem and present its app lication to solve the seriation problem. Mathemati cally there may be mo re than one max imum to a maxirnization problem.

We presentl an heuristic which facilitates di scovery of the equi valent solutions if they exist. Finally, we show how to apply previous resu lts in production man agement.

GENERAL MAXIMIZATION FORMULATION.

2. 1 The quasi seriation problem.

Gi ven A[a . . ] lJ a matrix of non negative columns. Let I be the set of rows of matrix A. Let J be the set of columns of matrix Nmax is the integer which verifi es : Nmax�Max (a. .)

lJ < i. I j) E IxJ
Nmin is the integer which verifies: Nmin�Min (a .. ) lJ (i. , j) E IxJ integer values with n rows A.

The problem con sists in maximizing the funct ion defined by: p fr(x,Y,p )� E F. Marcotorchino puts forth the generalized relational seri ation for a given binary matrix A[a .. ] de fined as model of blocks in section 2 (Nmax=1,Nmin=O) .

1J .

Let Z[z .. ] be a binary matrix with n rows an d ID co lumns de fined by: 1J if a .. belongs to a diagon al block.

1J

otherwise .

The problem is to find Z matrix th at maximizes the cri terion F(Z) where :

n m F(Z ) 1: 1: ()(a .. z .. + (5(1-a .. ) (1-z .. ) i=1 j=1 1J 1J 1J 1J
subje ct to the constr aints: z ..

+ Z ij' + 1J 2 i 1 j ' + 2 i'j + Z, , ' + z .. + 1 J 1J Z, . I + 2 i' j , + 1J ,., 1: z . . 2: 1 ViEI ;,. =1 lJ z i I j , z .. 1J z. 1j 2 i' j z .. = {O,1} V(i, j) ElxJ 1J -z. , . :$ 2 V (i, i ' ) ElxI; V (j , j , )E JXJ 1 J -z, . 1 :$ 2 V(i, i' )EI XI ; V(j, j' )E JXJ 1J -2 i'j' :$ 2 V(i,i' )ElXI;V(j,j' )E JXJ -z .. :$ 2 V (i, i ' )ElxI; V (j , j , ) EJXJ 1J 4 (4 ) (C 1 ) (C2 ) (C3) (C4) (CS) (C6 ) (C7)
The constraints (C1), (C2 ), (C3 ), (C4) oblige generic terms of Z diagonal blocks to contain only "j" valu es and non diagonal to contain only "0" values. matrix blocks F(Z) maximization under (C1), (C2), (C3 ), (C4), (C7), constraints is an equivalent formulation of the quas i seriation problem for Nmax=1 and Nmin=O as stated in section 2. 1. The proof is given in [14J. Figures 1,2,3,4 illustrate the correspondences between diagonal blocks of matrix A and Z and the triplet (X, Y, p) . Adding (CS) and (C6) called "ass ignment constraints", forces all rows and columns to be class ified (X =y = 0) . The number of row families is r:

r: I> ( 1-a .. )

i= 1 j =1 1)
F(Z) can be rewritten: 

F(Z) f(Z) + C.
When 0<+(5;;':0 then to find Z that maX1m1zes g(Z, o<, (5) at 0< and

(5 fixed is equivalent to find Z that maximizes g(Z, o<' =o</o<+(5, (5'=(5/o<+(5 ). Note that 0<'+(5'=1 ,0:<>0<':<>1 and 0:<>(5':<>1.

When 0<+(5<0 to find Z that maximizes g(Z,o<, (5) at 0< and (5 fixed is equivalent to find Z that maX1m1zes g(Z, ot'=-ot/ o<+(5,(5'=-(5/o<+(5 ). Note tha to< ' +(5' =-1 ; o:<>-{)( ':<> 1 and 0:<>-(5 ':<> 1.

So, by only choosing feZ) criteria where {���;� 1 ; 0:<> (5s:<> 1 sE{ -1, +1) we do not limit the general formulation of the seriation or quasi se ,r iation problem. feZ ) criterion can then be rewritten: When (5=0 the matrix Z defined by z, ,=1 for each row and each column is 1J a trivial solut ion of the previous blocks seriation problems.

feZ) = n m sE E (a, ,- (5) 
Interpretation of B.
a" is said in a diagonal block if z = 1. The number of one values of 1J 1J Z is the number of generic terms of A that are insi de the diagonal blocks. Let S be this number. S can be interpreted as the size of the diagonal blocks. Let Nd1 be the num ber of ones values of A that are inside the di agonal blocks. Let NdO be the number of zeroes values of A that are inside the diagonal blocks. S = Nd1 + NdO because A is a binary matrix. When f(Z)� 0 ,then N�1 � (5.

( 12 )

Proof of theorem Theorem 1 and 2 yield the result that the concentration of one values in side diagonal blocks of A defined by the optimal solution of a quasi seriation problem is greater than 1'. Theorem 3 shows that it is sometimes poss ible to draw a conclusion about the m1nimum conce ntration ins ide diagon al blocks without computing feZ ). When in addition F satisfies ..

then, f(Z )2: 0

F oS 1- Inf(m,n) Sup(m,n) (16) (17) 
( 1 8 )

and the concentration of one inside diagonal blocks of A will be greater than F.

Example of use of theorem 3.

A is a binary matrix with 1000 rows and 100 columns. We solve the block seriation problem under the constraint concentration of ones inside diagonal blocks is greater than a range of F which satisfies the concentration constraint.

want to that the 1/2. Give Using (17) we find that if F is lower than 0.9 the concentration inside the diagonal blocks of the maximum will be greater than F. SO if we choose F in [0.5, 0.9] we are sure that concentration is greater than

1/2.
Proof of theorem 3

1 .We will first prove theorem 3 in the case n2:m.

We are to find a feasible solution Z 1 to the seriation problem and show that ( 16) and ( 17 

II ViEI/iSm (see (19)) m ViEI/ i)m (see (20)) because a i j (i) =1 V i=1, .. ,n. f(Z 1 ) becomes, = m n E (a .. -(5) + E < a .. ( . ) -(5 ) �=1 11 �=m+1 1J 1 m E a .. ;"=:1 II m ( E a ii ) ;"=:1 m ( E ;'=1. a ii ) m + m n < 1-(5) i... =-t i.. =m+:1 (5m + (n-m) (1-(5) (1-(5)n -m ( E a ii ) + (1-(5) Sup(m,n) -Inf(m,n). i.. =:1 m
As A is a binary matrix E a .. 2: 0 and,

II 1.=:1 2: (1-(5) Sup(m,n) -Inf(m,n) That proves (16) in the case n�m. The quantity (1-(5) Sup(m,n) -Inf(m,n) is positive when 1- Inf(m,n) Sup(m,n) ..

So, if (5 verifies(16), f(Z 1

) is positive. As feZ ) is greater than

* f(Z 1 
) we can conclude that feZ ) is positive. We have proved theorem 3 for n�m.

2 .We will now prove theorem in the case nSm.

AS matrix A is supposed to have at least one I! 1 11 value per per column, we can, for each column which verifies a i(j) j = 1.

The matrix Z 2 defined as follows, z. . As, '"

V j E J/ jSn

'"

E i.. =t. m E j=:1 '" E j=:1 m r= � a i j -(5) '"
f= < (a i j -(

'"

f = < (a ij -(5) z. lj z. lj m '" z . . + E f = < (a ij -(5) lJ j=n+1 E (a .. -(n z .. i.. =1 1 J 1J a .. -(3 for jSn (see(21)) JJ and '" z . . lJ a i(j) -(3 for j >n (see(22)) 1-(3, m E (a .. -(5) + E (1-(3)
j=1 JJ j=n+1

'"

'"

:;;: CL: a . . ) Let frmax be the gr eatest value of fr(Z) without th e constraints (C1) to (C6) .

j =< JJ '" =CE a., ) j = < JJ '" E (3 + (m-n). (1-(5) i..=:1 (3.n +(m-n).(1-(3) (E a .. ) + (1-(5). m -n j= < JJ n (E a .. ) + (1-(5) .Sup(m,n) -Inf(m,n).
The matrix Zmax defined as follows: The previous linear model defines an ideal A matrix as a matrix for which it is possible, by permutations of rows and columns, to point out a clustering of rows and columns verifying that: generic terms of A greater tha n p(Nmax+Nmin) are concentra ted in diagonal blocks -generic terms of A lower than p(Nmax+ Nmin) are outside diagonal blocks.

{ zmax ij =1 V(i,j) E(IxJ) / a ij
To solve example problem 3 with the presented formulation one must choose P in such a way that limit = p(Nmax+Nmin). 

Notations

Given a feasible triplet (X,Y,p) of Dq:

1. For j :::: 1, 2, .. ,m we consider At the end of the procedure fr(X,Y,p) is greater or equal to 000 fr(X ,Y ,p ).

CR (j) = E

proof:

1.Let us first consider the triplet (X,Y,p) at the end of process 2. We see that the triplet (X,Y,p) is one of the triglets which lead to the greatest value of the criterion knowing (X O ,y ,p o ). fr(X,Y,p) 000 is then greater thanor equal to fr(X ,Y ,p ). 2.We shall now demonstrate that process 3. does not decrease the criterion. Using At this point we have clus tered I and J in p subsets. X is a partition of J-Y O ' but some of the subsets of X may be empty. In this last case the triple t (X,Y,p) is not an admissible solu tion of the quasi-seriation problem. Remark.

The row and co lu mn assignment pro cedure buil d a (X,Y,p ) when initial led with (X o =0,y o =0,p o =0 )

a feasibl e solution.

feasibl e triplet which is not

4.2.3 A basic quasi-seriation algorithm.
We define a qu alitative variabl e "assign" which can take the values "row" or "column!!. We al so define the integer "stop" which takes one of the values 0,1 ,2,3. 000 It is assumed that (X ,Y ,p ), and the value of assign are known. 4. 3 How to get equivalent solutions.

(X ,Y ,p )=(X,Y,p )

There may be several optimal solutions to the quasi problem. In this subsection we present ingredients to equivalent solutions knowing an optimal triplet (X O ,y O ,p o ).

Two triplets (X,Y,p ) and (X' ,y ' ,p') are said equ ivalent if fr(X,Y,p)=fr(X',Y',p'). seriation find some

° ° °

Let (X ,Y ,p ) be an optimal tripl et. fr(X ,Y ,p )= fr(X ,Y ,p ).

If (X O ,y,p o ) is not a feasible solution, we use process 3. of the column assignment procedure to build a feasible triplet. Remember that process 3. of the column ass ignment procedure do not modify the value of the criterion.

We have shown how to build an equivalent solution by cons idering several equivalent assignments of a column. We define n (X O ,y O ,p o ) as the number of equivalent different from c 000 (X ,Y ,p ) that can be obtained by the use of the previous process. Then,

000 n (X ,Y ,p )=( n card(J« j)) ) -1. c J'EY O ° ° °
Let n (X ,Y ,p ) be the number of triplet different from w obtained by the whole previous pro cess (1. and 2. ) 000 000 000

n (X ,Y ,p ) =n (X ,Y ,p ) +n (X ,Y ,p ) w r c

We could apply the whole previous process to each of the solut ions equivalent to (X O ,y O ,p o ) and so on until no new solution is found.

(48)

° ° ° (X ,Y ,p ) 000 n (X ,Y ,p ) w equivalent
In practice we observe that this ingredient is ver y efficient for bin ary matrices and criteria with �=1/ 2.

4 A refined quasi-seriation algorithm for binary matrices

The following algorithm is efficient for finding an absolute optimum of the quasi seriation problem when �=1/ 2 an d when A is a bin ary matrix. It efficiency is due to the use of equivalent solut ion inar edients presented in section 4.3. In section 4. 3 we assumed that '" 0 ° (X ,Y ,p ) was an optimal triplet. Ingredients 1 an d 2 can be applied to each triplet issued from the basic quas i seriation algorithm even if it is a limited optimum.

The algori thm. I be found using ingredi ent 1,(s ee 4.3) go to 4

else go to 3. The quasi-seriation procedure produces a triplet (X,Y,p) As in section 4.2.3 we define a qualitative variable "assign" which can take the values "r ow" or "colurnn ll. We also define the integer "IT" which takes one of the two values 0, 1 .

The algori thm: (X ,Y ,p ) verifying p >p then it is sure the algorithm will not find an optimal solution. In the following section we present an algorithm . °

for wh lch p may be greater or lower than p .

2 A seriation algorithm based on quasi-seriation.

Quas i-seriation heuristics pr esented in section 4. can be used seriation algori thm if the opt imum of the quasi seriation problem verifi�s � er � at ion constraints . as and Le t ( # q, ¥ q,pq) be the optimum of (Xe,Ye,ps) the opti mu ljl II f * the crit � ri ll n. * Then, fr(Xq,Yq,pq) is fr (Xe f Ye f ps) . The seriation algorithms in vo lve about the same computing time complexity as that of F.Marco torchino and are lo wer than H. Garcia an d a1s1 becaus e of the use of Marcotorchino's formulation.

Tests were conducted on an Olivetti M280 micro-computer. Programs were written in Turbo Pascal 4.0. Matrices in several sizes were created ran domly. Each row an d co lumn has a minimum of one "1 11 value. Global "1" values are at 10 % . Tests were done on about one thousand matrices.

We verified that the computing tim e of one linearly with the product m.n . The average number of Recently we treated an in dustrial case with more than 34 co lumns in less than 4 minutes . With algorithm (A) the user gives the number of families and the algo rithm gives a solution with the sa me number of families. Mathematically, if one want to use algorithm (A) to solve the model we presented in this paper one must run the algorithm at leas t Inf(m,n) times. In addition, algorithm (A) do not always compute a feasible solution (some pairs

(X k =0'Y k �0) or (X k �0'Y k =0) may ex ist in the given solution ) .
With algorithm (8) it is useless to give the number of The algorithm do not always lead to a feasible seriation becaus e it cannot decrease the number of families . The in itial families must be lower than the optimal one. clusters . solution number of Algorithms we presented in this paper always lead a feasible solution. The number of families may increase an d to decrease during the algo rithm.

We note (C) the seriation algorithm using the basic quasi seriation algorithm and (D) the one using the refined quasi seriation algorithm.The matrix example is taken from reference [3] . Chosen criterion is r=1/ 2. The result is given for 18 trials, the number of families of the initial partition was one for the first trial, two for the second trial, three for the third one ,etc ... -the number of obtained seriation of (C ) and (D) are very high compared to (A) and (B) . Initial solutions were chosen randomly and were the sam e for each algorithm. -(C) found 22 as criterion value once. The others values were distributed the following way: time 26.00 3 times 27. 50 4 times 28. 00 which is the best solution for this matrix.

-(D) for this matrix the ingredient of equ ivalent solution was very ef ficient.

-Th e qu asi seriation loop never gave a seriation as result. with all the rows and columns unclassif ied The quas i seriation loop is an other method for solving certain particular cases of quadri-decomposition models. [4] We made trials on numerous matrices an d found out that obtained in previous example seem to be general except that (E) resulted in a seriation more of ten than (A) algorithm.

results algorithm

For binary matrices chosen randomly we of ten found more than 10 6 equivalent solutions only by using the basic quasi seriation algorithm. For industrial cases with several thou sand rows, with no more than 10% of on es values we often found several hundred equivalent solutions with the basic qu asi seriation alg orithm even when br(Z) ratio was greater than 0. 80. Using the equivalent solu tion ingredient the number of equivalent solutions generally collapses. (mn of in A good seriable matrix is a matrix in which the optimal solution is composed of groups with a high density of "1" inside diagonal blocks an d less than 10% of "1" ou tside, whatever the (5 value.

Usually the number of families decreases with �.

Verif ying family size constraints Qy hierarchical aggregation .

In a production management problem matrix A size is greater than 10 5 an d the number of "1" is abou t 20%. For �=1/2 the number of families optimizing f(Z) may be more than 50. The natural number of families obtained by solving section 2 and 3 block seriation models gives a lot of inf ormation on data typology to the cell designer; but 25 the result is not always satisfactory in reality. size of some cells (families of pools) may not be economic reasons.

For instance, great enough the for One way to obtain a solution with fewer families is to decrease � value as suggested by experience rules. Figure 5 shows the obtained hierarchy for matrix of figure 6. Figure 7 represents the number of family variations with �. Decreasing � is of no help in obtaining solutions between 2 an d 5 families. The natural number of families that optimizes the criterion is too large for � ) 0,6 and not large en ough for � < 0,6.

Another way to obtain solution s with sever al numbers of families is to compute a hierarchy of partitions. This is possible using the section 5 algorithm. Figures 8 to 11 describe the process in this academic example where the initial matrix is represented by figure 6. After the block seriation algorithm, the natural solution is obtained in 11 families (figure 8) . This binary matrix is summ ed up on figure 9; each number repr esents the number of "1" values of a block in the reorganized A matrix. Table (figure 9) can be in terpreted as an A matrix descr ibed in example 3 (introduction ). By applying the seriation algorithm to this matrix, the 11 families are grouped into larger ones in order to minimize non zero values outside the new blocks . Figure 11 is the bin ary representation of the figure 10 result.

So now figure 10 is the initial matrix for the next aggregation level an d so on .. The whole hierarchy is given in figure 12.

A third way to obtain solutions with several numbers of families is to compute the equivalent solutions if they exist.

If the constraint of keeping previously level families included in the new larger on e (hierarchy of partitions) does not exist, the different level results can even tually be optimized by the basic seriation procedure (in which the number of families cannot increase starting with the reorganized binar y matrix. This last method is useful but a good in itial partition is necessary. This is obtained through the hierarchy of partitions.

If one starts with randomly processed par titions, the obtained so lution is often given in one family or the criterion value is poor .

Figure 13 sums up the results for the three aggregation methods.

Analysis of the part-loads matrix.

Some authors prefer to study the cell formation problem by analyzing the part load matrix. Load is the tim e a machine is working. Data is given in positive values with about 20% of non zeroes. The objective function is fr(Z). Minimum value is given by limit ) �(Nmax+Nmin) (see section 3.2) limit is the lower expected in diagonal blocks through the objective function. For S1 an d S2 (table2) there are five values greater than limit outside the diagonal blocks.For S3 an d S4 there is only one value greater than lim it outside diagonal blocks.

Analysis of the traffic matrix.

Some papers deal with a symmetrical matrix which in generic terms is a measure of the traffic between machines. For instance a .. could be lJ the number of parts moving between machine i an d machine j. The set of rows is identical to the set of columns . The problem cons ists in a block seriation problem with the additional const raint that the partitions of rows and columns are the same. This additional constraint is costless to implement using previous presented algorithms . One need only define the set of rows in the same variable as the set of columns. The presented algorithm then becomes equ ivalent to the heuristic presented in [13] as proved in [8] . In [5 ] one can fin d a comparison between this algorithm an d algorit hms written in order to solve this specific case.

8.CONCLUSION

The presented block seriation metho d is helpful in analysing in dustrial data. The presented heuristics solve the block seriation problem even in the case of symmetrical matrices, they always produce a feasible solution to the seriat ion problem an d sometimes, are able to propose several max imum if they exist. We pointed out the linkage bet ween the proposed function to maximize an d the concentration of given values of generic terms inside the diagonal blocks allowing new ap proaches in the pract ical identification of the manufacturing cells No . columns 1 :

1 : .------.... .

-----.----,-------------66 --------------------------------r-------4it----,---" ""'f 

  the number of clust ers of both partitions we sought. -X�( x1,x 2 ' . . ,X p } is a partition of the set I-X O in p clusters. -X o is the set of non classi fied rows. partition of the set J-Y O in p clusters. -Y O is the set of non classified columns. Let Dq be the set of feasible solutio ns of the quasi seriation problem. A triplet (X, Y, p) is sai d a feasible solution of the quasi seri ation problem if the following constraint s are verified: 1. X is a partition of 2. Y is a part ition of force the in teger p to verify: 1�p�Inf(m ,n ) where Inf(m,n) is the lowest of the two values m n -p is given by the pair (X, Y) . X ,Y ,p ) is sai d an op timal solution or an optimal triplet of the quasi seriation problem if it satisfies: The block seriation problem can be stated whose set of feasible solutions D b is verifies: as a quasi seri at ion problem the subset of Dq which D b =( (X , Y, p)E Dq ! X O =0 and Y O =0) .(0 is the empty set) 2.3 The concept of diagonal blocks.

For a given

  triplet (X, Y,p) we define p sets �I for 1=1, .. ,p as follows The triplet (X, Y, p) defines the generic terms of the p diagonal blocks of the permuted matrix as the se ts �I for 1=1, .. ,p One can note that the concept of diagonal blocks depends only on the initial matrix and on the pair (X,Y) . (The number of clusters p is entirely define d by (X, Y) ).

1

 1 Case of binary data [13].

F

  the nu mber of column families . F(Z) maximization under (C1) , (C2), (C3 ), (C4), (CS), (C6), (C7), is an equivalent formulat ion of the block seriation problem as stated in section 2. 2 .The proof is gi ven in [1 4 J . Not e that with this formulation the nu mber of clusters "p" is of no use.It was shown in [14J that F(Z) can be developed in the following way: Ola .. -I> ( 1-a . . » z. . + r: r: I> ( 1 -a ..

  ot and I> are constants of the models . They balance the influence of positive and negative agreements betwenn A and Z. The cas e 0l=1>=1/2 was first proposed in [6J. Let us now consider the function g(Z, a ,( » n =r: i=1 m r: (ota .. -1>(1 -a . . » j = 1

  z,' wi th 0:<>(5:s: 1 and s E {-1, When s=-1 the matrix Z which maximizes (10) will concentrate zeroes values of A inside diagonal blocks and ones ou tside diagonal blocks. Becau se we are attempting to concent rate ones in diagonal blocks we are to choose only feZ) criterions with s=1 and (5E[0, 1]. The developed below heuri stics are easily tractable for the case s=-1 . feZ) criterion can then be rewritten: feZ) n m 7 =1 �= 1 (a ij -(5) Z ij with 0:5(5:51 ( 11 )

Theorem

  

  1: 

*

  An optimal solution Z of the quasi seri ation problem ve rifies: feasible solution� a -I' � 1-1' � O.xy of the qu asi seriati on problem and ( 1 4) f(Zq) is positi ve. * An � ptimal solution Z of the quasi seriation problem veri fies fez )2: feZ) for each feasible solution Z So, * J(Z )2: f (Zq) . (14) an d (1 5) yield to feZ ) � o.

Theorem 3 :

 3 Let us suppose matrix A to hav e at least one "11 1 value per row an d per 7 .. column. Let Z be an optimal solution of the seriation problem. We define Sup(m,n) as the greatest of the two values rn, n and Inf(m,n) as the lowest of the two values m and n . .. Then} f(Z ) 2: (1-(?)Sup(m,n) -Inf(m,n).

  (a, , -I') z, , (a, , -(?) z, ,)

  solution to the seriation problem.Let us now compute f(

  j= < JJ ( r = < a jj ) is greater than or equal to zero. So, f(Z 2 ) �(1-(3) .Sup(m,n) -Inf(m,n) . That proves (16) in the case nsm. Now, if (3 verifies (17) using (23) we get f

  get (18) using (24) for the case nSm. 0 Quality measures of the result. NaO be the number of " 1" and "0" values of matrix A. Let Fmax be the maximum value of F(Z) (see(5)) when the seriation is "perfect" (i.e diagonal blocks of A contain only ones and non diagonal blocks contain only zeroes) . Fmax = �.Na1 + (3.NaO Note that Fmax is independent of matrix Z generic terms. For given, Fmax depends on the two values Na1 and NaO of A. As NaO is equal to the product m.n , Fmax can be considered as on two of the three values Na1,NaO,m .n. defined [14J the ratio B: B(Z)� F(Z)/Fmax as a quality measure of the result, and B(Z) verifies O:SB(Z):S1 * We are to show that when Z maximizes greater than a given value depending and columns of matrix A. Using (18) B(Z) can be rewritten thus feZ) to (28) and (16) give: * 120: B(Z ) "= (1-B). Sup(m,n)-Inf(m,n) in addition, (5 verifies (17) then (18) and (25) to (29) give is also verified for an optimal solution of the quasi seriation problem Example Given (5�a�0.5, n�m�100 Na1�1000 Fmax�0.5x10 000, (see (25» * let us compute the scale of B(Z ). C�0.5x9000, (see (29» (1-B).Sup(m,n)-Inf(m,n) 0. 5x100-100 -0. 01, Fmax (30) gives * 0.5x10000 1"= B(Z ) "= -0.01 + 0. 9 � 0. 89. AS we are using feZ) instead of F(Z) as fonction to maximize, we define a new measure of quality of the result: b(Z)� fez) (32) fmax where fmax is the maximum value of feZ) when the seriation is perfect. * fmax � (1-(5) Na1 (33) When Z is an optimum of the quasi seriation problem, we deduce an * interval of b(Z ) using (16): (1-B).Su(m,n)-Inf(m,n) <_ b(Z) :S 1. (1-(5)N a1 1 1 (34) When � verifies (17) then * o ::s b(Z ) ::s 3.2 Case of real data. Matrix A is now compo sed of real data varying between Nmin and Nmax . The aim is to solve problem examples 1, 2, 3. Th e problem is to find Z maximizing th e criterion Fr(Z) under th e constraints (C1) to (C7) defined in 3.1 where: .. z .. + �(Nmin+Nmax-a .. ) (1-z .. )) (36 ) i=1 j=1 1J 1J 1J 1J with Ol+�= 1 an d O::S �::S 1 Fr(Z) can be split in to two terms in the following way: n m n m Fr ( Z ) = E E (a.. -� (Nmin + Nmax ) i=1j=1 1J z .. + E E �(Nmax+Nmin-a .. ) ere Z is defined as in 3. 1. Only fr(Z) depends on Z. Let us compute Frmax the greatest value of Fr(Z) without th e constraints (C 1) to (C6 ).

  >� (Nmin+Nmax ); zmax .. =0 ot herw ise. 1J verifies fr(Zmax )=frmax. Usin g (39 ) we deduce that Fr(Zmax )= fr(Zmax ) + Cr=Fmax . The corresponding value of previous defined B(Z) ratio is Fr (Z) Br(Z) Fmax It is possible to define a br(Z) which correspond to b(Z) :
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  4. THE QUASI-SERIATION ALGORITHMS.

  the lowest integer which satisfies CR ,(j) = r<J) Max CR (j) r r:::: O I' . , P 2. For i :::: 1,2, "/ n we consider RC (i) = E s jEY s a, , -(5 (Nmax+Nmin) ) for s=1 , .. ,p lJ s(i) RC , ( i ) S{l} E ( a, ' -(5(Nmax+Nmin) ) ; jEY O + (i) lJ the lowest integer which satisfies Max RC (i) s 8=0, .. ,p 4.2 Two basic ingredients of the quasi-seriation algorithms.4.2.1Quasi-seriation rows assignment procedure.

  ,Y p o ), This proced ure build then a feasible triplet of Dq , (X,Y,p) which verifies fr(X,y,p) �fr(each row i=1 I • _ I n do 2.1 Compute s(i) and RC . (i) using (43) sa> 2.2 If RC s(i, (i) 0 and s(i) ) 0, assign row i to X S(i) ' 2.3 If RC . (i) :5 0 , assign row i to X O ' S<l) 2 . 4 If RC . (i) ) 0 and s ( i) � 0, S<D 2.4.1 Increase p from unity. 2. 4.2 Assign row i to X . P 2.4.3 Cancel the columns of the set Y O +(i) that belong to the set Y O and assign them to Y p End of 2.4End of process 2.At this poin t we have clus tered I and J in p subsets. Y is a partition of J-Y O ' bu t some of the subsets of the triplet (X,Y,p) is not an quasi-seria tion problem.X may be empty. In the last admissible solu tion3. If (X, Y,p) is not an admissible solution,3.1 For s�1, .. ,p, if X � 0 , assign columns of Y to Y Compute the number of non empty sets of X and assign p to this number. 3.3 Number the non empty sets of X and Y from 1 to p.End of 3.At this point the triplet (X, Y,p) is an admissible solution of the quasi-seriation problem.4. End of the procedure.

o

  the set of pairs { (i, j)E (X x Y )) is empty. As s s modifies the pairs (X �0,Y ) the criterion will s s modified by process 3. D 4.2.2 Quasi-seriation columns assignment procedure.process not be X and p are assumed to be known. X is assumed to be a partition of I-X O ' This procedure contructs then, a feasible process is the sam e as for the row replacing X by Y, RC by CR, s by r,row by triplet (X,Y,p) of Dq. Th e assignment procedure, ju st column an d column by row.

  � X End of process 1.2.For each column j�1, . . ,m do 2. 1 Compute r(j) and CR ,( j) using (42) r< J > 2.2 If CR ,(j ) > o and r(j) r<]) 2.3 If CR ,(j ) :s; 0 , assign r<J> 2. 4 If CR ,(j ) > 0 and r(j ) Cancel the rows that belongto X O +(j ) from the set X o an d assign them to X . P En d of 2. 4 End of process 2.

  3. If (X, Y, p) is not an admissible solution, 3.1 For r�1, .. ,p, if y� 0 , assign columns of X r to X o and do X � 0. r 3. 2 Compute the number of non empty sets of X and set p to this number. 3.3 Number the non-empt y sets of X an d Y from 1 to p. End of 3. At this point the triplet (X,Y,p) is an admissible solution of the 16 I quaSi-seriation problem.4. End of the procedure. At the end of the procedure fr(X,Y,p ) is greater or equal to ° ° ° fr(X ,Y ,p ).

  :: row, 2. 1 Compute (X,Y,p ) using the rows assignment procedure, 2.2 Do assign = column and increase stop from unity.

  assign :::: column, 3.1 Compute (X,Y,p) with the columns assignment I procedure, 3.2 Do assign = row and increase stop from unity.

1

 1 If fr(X,Y,p ) > fr(X ,Y ,p ), do I and go to 1.

  ,Y ,p )= fr(X ,Y ,p ).If (X ,yO ,p o ) is not a feasibl e solution, we use process 3. of the rows assignment procedure to build a feasible triplet. Remember that process 3. of the row assignment procedure does not modify the value of the criterion.We have shown how to bu il d an equivalent solution by considering several equivalent assignments of a row. We define n (X O ,y O ,p o ) as the number of equivalent triplets different r ° ° ° from (X ,Y ,p ) which can be obtained by the use of ingredient 1

  for l=l, .. ,card(�(j )) if card(�(j ))2an op timal triplet the integer r(j ) (see (42) ) is equal to r l (j ) and r l (j ) 2:: 1.We assign column j to any su bset Y l 1=2, .. ,card(�(j )). We obtain then 18

  We suppose (X ,Y ,p ) to be a feas ible solution and the value of the qualit ative variable lIassignl! (see sect ion 4. 3)

I

  be foun d using ingredient 2,(s ee 4. 3)go else go to 8.

  the basic quas i seriat ion procedure ini tialled 19 I With (X ,Y ,p )

6.

  If fr(X, Y, p) I to 2.

>

  fr (X ,Y ,p ) do (X ,Y ,p )=(X,Y,p) and go 000 fr (X ,Y ,p ) go to 2. 20 5. BLOCK SERIATION ALGORITHMS. 5.1 The basic seriation procedure 000 It is assumed to know (X ,Y ,p )ED b . Remember that D b is the set of feasi ble tri plets of the block seriation problem.

  lead us to in it ialise the basic seriation algorithm with the qu asi seriation algorithm. The algori thm. 1_ Compute an initial triplet (X O ,y O ,p o )with the quasi seriationI procedure. 000 2_ If (X ,Y ,p ) E D b ' then go to End_ ° ° ° 2'_IfA is a binary matrix and r�I/2 and (X ,Y ,p !ED b 2'.1 Try to build an admissible equivalent triplet of ° ° ° (X ,Y ,p !using ingredients of section 4.3. 2'.2 If an admissible equivalent triplet is found go to End_ 000 3_ If (X ,Y ,p ) E D b o ° 3.1 If X O "'O an d Y O �O ,do ass ign�r ow an d go to 4_ ,do ass ign=column an d go to 4_ 3.3 If x o ",O and yO",O ° 3.3. 1 Do p=p ; 3.3.2 For each row i�1f' "n I if iE increase unity an d ass ign row i to X . Do (X ,Y ,p ) =(X,Y ,p) an d do ass ign =co lumn

  us now compare the presented algorithms with two similar ones (A) presented in [6] an d (E) presented in [14] .

  finds the optimum quasi seriation solution each the line and column numbering and the first ingredient of equivalent solutions was helpful in 24 time, despite assignment. The obtaining this result.

  7.EXAMPLE OF USES IN PRODUCTION MANAGEMENT.Section 3 and section 4 algorithms can be used as a method of classif ication fo r factory objects such as products f process-plannings, product price estimates etc .. The describe some examples of its application in manufacturing unit formation problems.following pages solving certain7.1 Analysis of the binary machine-parts incidence matrix.[16]Matrix A[a .. ] is a binary element. Rows are parts, an d columns 1J pools of machines. A pool is a group of machines perf orming task(s ). Element aij is equal to 1 when a pool of machines to part i's process planning.the same j belongsThe number of "1" in such a matrix in a range of 0. 15mn to 0.3Smn. is the number of rows multiplied by the variou s number of columnsA[a ij ]) •The real problem is more complex than the linear model developped [6]. That's why several trials are necessary.Some rules obtained through experience.

  solving valueWe compared the solution obtained by the proposed heuristic to solutions obtained by J.A Ventura an d ails in[19]. Matrix treated in [19]ar e most of proposed matrices in the production research liter ature in the last twenty years. J.A Ventur a and als algorithm is compared to the two algorithms of Kumar and als[11] and proves that their algorithm is far superior to Kumar's alg orithm. Our algor ithm 26 reveals each time a better or the same solut ion as those presented in[ 1 9] .

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 1:matrix A

Figure 9 :

 9 Figure 9: Grouping of one in blocks for the solution of figure 8

Figure 11 :

 11 Figure 11: Binary representation of the figure 10 matrix

Figure 12 : 1 - 1 3 52 -

 121152 Figure 12: Hierarchic classification of matrix A with the seriation algorithm

  Figure 14: Machine parts loads matrix.

  6X"� ( 2,8, 1 0 )Y-<� { 6 ) xa � ( 1, 1 2 ); x .. � { 7, 1 0; Y4� ( 3 ) ; Y5= ( 6, 7 )

  

  

  

  

  

  

  

  

  

  

  

  At this point we have defined (X,Y,p). Y is a partition of J in p clusters; but some subsets of X may be empty. 2.3 Do assign � column and go to 4. Set p to the number of non empty subs ets of Y ° 7.1.2 Number the non empty sets of Y from 1 to p At this point X is a partition of I in p subsets and is a partition of J Number the non empty sets of X from 1 to p . Do X �X an d go to 3.

	* * *		* 0			
	1. Do IT�O.				
	2. If assign �row, o 2.1 Do Y�Y ; p�p . 0			
		2. 2 Assign each row i�1, .. ,n to X S(i )	.(see 4.1)
	3. If assign�column, ° 3. 1 Do X�Y ; p� P a 3. 2 Assign each co lumn j�1, . . n to Y r(j)	(see 4.1)
	4.	If	(X,Y,p) E	D b	and	fr(X,Y,p)	do
	6. 7. If (X,Y,p) � D 5.1 If IT = 0, do IT �1 ; (X ,Y ,p )�(X,Y,p) an d go to 2. a a a I 5. 2 If IT � 1, go to End. a a a If ( X, Y, p) E D b and fr(X, Y,p) fr(X , Y ,p ), do < ) an d go to End. I (X,y,p)�(X o ,y a ,p a b '
		7.' If assign =row, a 7.1.1 in p O subsets, and p a	�p.	Y
	7.2 If assign � column, a 8. End. 7.2. 1 Set p to the number of non empty subs ets of X a 7.2.2 At this point Y is a partition of J in € subsets and is a partition of I in p 7.2.3 Remarks: o subsets, and p �p. a	X
		With this algorithm pSp	o . So , if there is no optimal	triplet
							21

At this point we have defined (X,Y,p). X is a partition of I in p clusters, but some subsets of Y may be empty.

3.3 Do Assign

� row an d go to 4. > o ° ° fr(X ,Y ,p ), l oa a (X ,Y ,p )�(X,Y,p) and go to 1. a a ° 5. If (X,Y,p) E D b and fr(X,Y,p) � fr(X ,Y ,p ), ° 7.1.3 Do Y �Y and go to 2.

Table 1 :

 1 Comparison of four block-seriation algorithms

	Initial matrix is:				
				111111111
				123456789012345678
	ville			111110000000000000
	metropole	2		011111000000000000
	cit e	3		101010000000000000
	capitale	4		011111000000000000
	agglomerat	5		101010111100000000
	centre	6		111111000000000000
	village	7		000000111111111000
	locali te	8		000010111111000000
	bourgade	9		000000101100000000
	bourg	10		000000101111 010000
	trou	11		000000100111100100
	patelin	12		000000100111100110
	bled	13		000000100011100000
	harneau	14		000000110000010000
	commune	15		000010101100001001
	coin	16		000000010011100100
	pays	17		001000001111101010
	municipal it	18		100000000000001001
	Algorithms		(A)	(B)	(C)	(D)
	number of feasible solution		3.0	2.0	18.0	18.0
	best seriation criterion value		19. 5	23. 5	28. 0	28. 0
	worst seriation criterion value	-64. 0	23. 5	22. 0	28. 0
	Discussion:				

Table 2 :

 2 Obtained solutions for figure matrix of fi gure 14 initialized with Xo�Yo�0.

	{ xo� (2, 10, 12 81	x,. � { 1,7	X2 �{ 3, 5,6, 9,13	Xa �{ 4,1 1 )
	82	Yo� () { XO�( }		
		Yo �( } { Xo �{		

An algorithm for partionning the nodes of a graph Journal of Algorithms and DiscreteMethods, Vo13, 541-550 1982.
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[5] P. No . columns : 1 5 : 1 :
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1 : No . column families