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The Harnack inequality for a class of degenerate elliptic operators

We prove a Harnack inequality for distributional solutions to a type of degenerate elliptic PDEs in N dimensions. The differential operators in question are related to the Kolmogorov operator, made up of the Laplacian in the last N -1 variables, a first-order term corresponding to a shear flow in the direction of the first variable, and a bounded measurable potential term. The first-order coefficient is a smooth function of the last N -1 variables and its derivatives up to certain order do not vanish simultaneously at any point, making the operators in question hypoelliptic.

Introduction

We prove a Harnack inequality for distributional solutions to the degenerate elliptic PDE ∆ y u + β(y)u x + γ(x, y)u = 0 (1.1) in cylindrical domains in R N with axes in the direction of the first variable x. Here γ is bounded measurable and β is a smooth function such that the operator

L = N -1 n=1 X 2 n + X 0 := N -1 n=1 (∂ yn ) 2 + β(y)∂ x = ∆ y + β(y)∂ x (1.2)
satisfies Hörmander's hypoellipticity condition. That is, vector fields {X n } N -1 n=0 and their commutators up to certain order span the whole tangent space R N at each (x, y). Moreover, β changes sign so that L is not parabolic, since then the "elliptic" Harnack inequality (1.4) below would not hold in general. These conditions on β are equivalent to hypothesis (1.3) below and our result is then as follows: Remark. We note that ∆ y could be replaced by any x-independent, uniformly elliptic in y operator on D, but for the sake of simplicity we state the theorem with ∆ y instead.

This result is motivated by its application in our work [START_REF] Hamel | Speed-up of combustion fronts in shear flows[END_REF] on large amplitude A → ∞ asymptotics of traveling fronts in the x-direction, and their speeds, for the reaction-advectiondiffusion equation

v t + A α(y) v x = ∆ x,y v + f (v) (1.5)
on R N +1 , with the first order term representing a shear flow in the x-direction and f a nonnegative reaction function vanishing at 0 and 1. The front speeds in question are proved to satisfy lim A→∞ c * (Aα, f )/A = κ(α, f ) for some constant κ(α, f ) ≥ 0, so after substituting the front ansatz v(t, x, y) = u(xc * (Aα, f )t, y) into (1.5) and scaling by A in the x variable, one formally recovers (1.1) in the limit A → ∞, with β(y) := κ(α, f )α(y) and γ(x, y) := -f (u(x, y))/u(x, y).

The study of hypoelliptic operators of the form

L = M n=1 X 2 n + X 0
(where X n are first order differential operators with smooth coefficients), possibly with an additional potential term, has been systematically pursued since Hörmander's fundamental paper [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. Although various regularity and maximum principle results have been obtained soon thereafter (see, e.g., [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF][START_REF] Fefferman | Subelliptic eigenvalue problems[END_REF][START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF][START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF][START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF][START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF]), Harnack inequalities and related heat kernel estimates for such operators have initially been proved only in the case when the tangent space at each point is spanned by the fields {X n } M n=1 and their commutators, sometimes with X 0 either zero or a linear combination of {X n } M n=1 [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF][START_REF] Jerison | The Poincaré inequality for vector fields satisfying Hörmander's condition[END_REF][START_REF] Jerison | Estimates for the heat kernel for a sum of squares of vector fields[END_REF][START_REF] Kusuoka | Applications of the Malliavin calculus III[END_REF][START_REF] Kusuoka | Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator[END_REF]. More recently, Harnack inequalities have been obtained without this assumption for certain special classes of operators, not including (1.1) with general β, γ. Specifically, some operators with constant and linear coefficients, such as the Kolmogorov operator L = ∂ 2 yy + y∂ x -∂ t , were considered in [START_REF] Garofalo | Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type[END_REF][START_REF] Pascucci | On the Harnack inequality for a class of hypoelliptic evolution equations[END_REF], and cases of more general coefficients satisfying somewhat rigid structural assumptions (see hypothesis [H.1] in [START_REF] Pascucci | Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators[END_REF]) were studied in [START_REF] Kogoj | An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations[END_REF][START_REF] Pascucci | Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators[END_REF] and with a potential term in [START_REF] Polidoro | Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term[END_REF]. The domains involved in the obtained inequalities have to

1 For ζ = (ζ 1 , . . . , ζ N -1 ) ∈ N N -1 , we let |ζ| = ζ 1 + • • • + ζ N -1 and D ζ β(y) = ∂ |ζ| β ∂y ζ 1 1 •••∂y ζ N -1 N -1 (y).
depend on the metrics associated to the operators rather than the Euclidian metric, as shows a counter-example to a Harnack inequality in [START_REF] Garofalo | Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type[END_REF]. This is related to the need for the signchanging assumption on β here. We also note that the operators considered in these papers involve the term ∂ t and appropriate "parabolic-type" Harnack inequalities are obtained, but corresponding "elliptic" inequalities follow from these.

It was a mild surprise to us that we were not able to find in the literature a sufficiently general result which would include our case (1.1). It appears that Harnack inequalities and heat kernel estimates become much more involved when the field X 0 is required for Hörmander's condition to be satisfied. One hint in this direction is the fact that the signchanging hypothesis on β is necessary for (1.4) to hold, so hypoellipticity of L is in itself not a sufficient condition.

We therefore believe that our method of proof of Theorem 1.1 in the next section is itself also a valuable contribution to the problem of quantitative estimates for hypoelliptic operators. The proof is based on the Feynman-Kac formula for the stochastic process associated with the operator L, and uses the independence of L, and thus also of the stochastic process, on x. It is not immediately obvious whether this requirement can be lifted and replaced, for instance, by some assumption on the relation of the stochastic processes associated to L and starting from two different points which can be connected by a path with tangent vector X 0 at each point. We leave this as an open problem.
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Proof of Theorem 1.1

Without loss we can assume inf D ′ β < 0 < sup D ′ β and D ′ connected, after possibly enlarging D ′ . We will also assume a = -5,

a ′ = 0, b ′ = 1, b = 6, D = B 3 (0), D ′ = B 1 (0)
, and γ ∞ ≤ 1, with C then only depending on β, because the general case is analogous. We also note that [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF]Theorem 18(c)] and boundedness of u show that u is actually continuous.

We first claim that for each d > 0 there is

C d,β ≥ 1 such that sup [0,1]×A d u ≤ C d,β inf [0,1]×B 1 (0) u, (2.6) 
with

A d := A + d ∪ A - d and A ± d := {y ∈ B 1 (0) ± β(y) > d}.
Clearly it suffices to show this for all small enough d such that A ± d = ∅, which we shall assume. To this end, note that parabolic regularity theory with x as the time variable, applied on

[-1, 5] × {y ∈ B 2 (0) -β(y) > d/2}, yields sup [0,1]×A - d u ≤ C ′ d,β inf [2,5]×A - d u, (2.7) 
where C ′ d,β > 0 depends only on d and β. Similarly, we obtain sup

[3,4]×A + d u ≤ C ′ d,β inf [-1,2]×A + d u, (2.8) 
Next, consider the stochastic process (X x,y t , Y x,y t ) starting at (x, y) ∈ R × B 2 (0) and satisfying the stochastic differential equation (dX x,y t , dY x,y t ) = (β(Y x,y t )dt, √ 2 dB t ), (X x,y 0 , Y x,y 0 ) = (x, y).

Here t is a new time variable and B t is a normalized Brownian motion on R N -1 with B 0 = 0 (defined on a probability space (Ω, B, P)). We then have

(X x,y t , Y x,y t ) = (X 0,y t + x, √ 2B t + y).
(2.9)

for any (x, y) ∈ R × B 2 (0), in particular, Y x,y t is independent from x. For any y ∈ B 2 (0) we also define the stopping time

τ = τ y := inf t > 0 Y x,y t / ∈ B 2 (0) .
If t ∧ τ := min{t, τ }, then by the Feynman-Kac formula, γ ∞ ≤ 1, and the parabolic comparison principle, we have for each t ≥ 0 and (x,

y) ∈ R × B 2 (0), e -t E(u(X x,y t∧τ , Y x,y t∧τ )) ≤ u(x, y) ≤ e t E(u(X x,y t∧τ , Y x,y t∧τ )). (2.10) 
(The Feynman-Kac formula is usually stated for C 2 functions so we provide a proof of (2.10) in Lemma 2.1 below.) Here

E(u(X x,y t∧τ , Y x,y t∧τ )) = Ω u(X x,y t∧τ (ω), Y x,y t∧τ (ω))dP(ω) = R×B 2 (0)
u(x ′ , y ′ )dµ x,y t (x ′ , y ′ ), (2.11) with the probability measure µ x,y t on R × B 2 (0) such that µ x,y t (A) = P((X x,y t∧τ , Y x,y t∧τ ) ∈ A) for Borel sets A ⊆ R × B 2 (0). Notice that µ x,y t is supported on [xβ ∞ t, x + β ∞ t] × B 2 (0) and µ x,y t (R × ∂B 2 (0)) = P(τ y ≤ t). By (2.9), translation in x equally translates the µ x,y t , and the (x-independent) measure on B 2 (0) given by ν y t (A) = µ x,y t (R × A) is just the law of √ 2B t∧τy + y, the Brownian motion on B 2 (0) starting at y, with stopping time τ y , and with time scaled by a factor of two. In particular for each t > 0 there is h t > 0 such that for any y 1 , y 2 ∈ B 1 (0) and any Borel sets

A 1 ⊆ B 1 (0) and A 2 ⊆ B 2 (0), h t ν y 1 t (A 2 ) ≤ ν y 2 t (A 2 ) ≤ h -1 t ν y 1 t (A 2 ) and h t |A 1 | ≤ ν y 1 t (A 1 ) ≤ h -1 t |A 1 |. (2.12)
From this it follows for t : 

= β -1 ∞ that inf [0,1]×B 1 (0) u ≥ C ′′ d,β inf [-1,2]×A + d u ( 
sup [0,1]×B 1 (0) v ≤ C z,β inf [0,1]×B 1 (0) u (2.15)
holds for some C z,β ≥ 1. Indeed, it follows from (2.9), (2.10), (2.11) that for each (x, y) ∈ R × B 2 (0),

e -t R×B 2 (0) u(x ′ , y ′ )dµ x,y;z t (x ′ , y ′ ) ≤ v(x, y) ≤ e t R×B 2 (0) u(x ′ , y ′ )dµ x,y;z t (x ′ , y ′ ),
where µ x,y;z t

(x ′ , y ′ ) = µ x,y t (x ′ , y ′ ) * (χ [-z,z] (x ′ )dx ′ δ 0 (y ′ )).
The above claims about µ x,y t and the definition of ν y t imply that

µ x,y;z t (x ′ , y ′ ) ≤ κ x;z t (x ′ ) × ν y t (y ′ ) ≤ M m=-M µ x+2mz,y;z t (x ′ , y ′ ),
where κ x;z t is the measure on R with κ x;z t (B) = |B∩[x-zβ ∞ t, x+z+ β ∞ t]| for any Borel set B ⊆ R, and M is such that (2M +1)z ≥ 2(z+ β ∞ t), for instance, M := ⌈1/2+ β ∞ t/z⌉. This and the first claim in (2.12) means that

v(x, y 1 ) ≤ e 2t h -2 t M m=-M v(x + 2mz, y 2 ) (2.16)
for any x ∈ R, y 1 , y 2 ∈ B 1 (0) and t > 0. Now we take any x ∈ [0, 1], y 1 ∈ B 1 (0), and y 2 ∈ A d for some fixed d > 0 such that

A ± d = ∅. Pick t := (2 β ∞ ) -1 z and M = 1 to obtain using (2.16), v(x, y 1 ) ≤ e 2t h -2 t 3z -3z u(x + s, y 2 )ds ≤ e 2t h -2 t 2 -1 u(x ′ , y 2 )dx ′ .
Since (2.6) and its shifts in x give for c = -1, 0, 1, sup

[c-1,c]×A d u ≤ C d,β inf {c}×A d u ≤ C d,β sup [c,c+1]×A d u, sup [c-1,c]×A d u ≤ C d,β inf {c-1}×A d u ≤ C d,β sup [c-2,c-1]×A d u,
we obtain (2.6) with [0, 1] and C d,β replaced by [-1, 2] and C 3 d,β . This proves (2.15). Similarly, (2.15) with [-1, 0] and [START_REF] Ben Arous | The Poisson kernel for certain degenerate elliptic operators[END_REF][START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] in place of [0, 1], together with (2.6), yield sup

[-1,2]×B 1 (0) v ≤ C z,β C d,β inf [0,1]×B 1 (0) u.
In a similar way one can also obtain sup

[-1,2]×B 2 (0) v ≤ C z,d,β inf [0,1]×B 2 (0) u.
(2.17)

for some C z,d,β > 0 (recall that B 2 (0) ⊂⊂ D = B 3 (0)).

We will now need to use (1.3) to finish the proof. This assumption makes the differential operator on the left-hand side of (1.1) hypoelliptic in the sense of Hörmander. It follows that for t > 0, the measure µ x,y t is absolutely continuous when restricted to R × B 2 (0) and also to R × ∂B 2 (0) (as an (N -1)-dimensional measure in the latter case), with densities p t (x, y, •, •), q t (x, y, •, •) ≥ 0 such that p t (x, y, x ′ , y ′ ) = p t (0, y, x ′x, y ′ ), q t (x, y, x ′ , y ′ ) = q t (0, y, x ′x, y ′ ), and p t , q t are bounded functions when restricted to y ∈ B 1 (0) (with y ′ ∈ B 2 (0) for p t and y ′ ∈ ∂B 2 (0) for q t ). For p t this follows from the same claim for the corresponding measure µ x,y t on R N given by (2.11) with t in place of t ∧ τ and β smoothly extended to a periodic function on R N -1 (whose density is smooth in all arguments, [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF]Theorem 3]). This is because µ x,y t (A) ≥ µ x,y t (A) for any Borel set A ⊆ R × B 2 (0). For q t this would follow from the same claim for the corresponding escape measure µ x,y τ on R × ∂B 2 (0) given by (2.11) with τ = τ y in place of t ∧ τ . We know of such a result for bounded domains only [1, Corollary 2.11] but since µ x,y t is supported on a bounded cylinder, it applies in our case as well. Specifically, take any a -<β ∞ t and a + > β ∞ t. There is a convex open domain G with a smooth boundary whose intersection with [a -, a + ] × R N -1 is [a -, a + ] × B 2 (0), and the intersection with [(-∞, a -) ∪ (a + , ∞)] × R N -1 are two smooth "slanted" conical caps G ± ⊆ R × B 2 (0) over the (N -1)-dimensional balls {a ± } × B 2 (0) with the two (rounded) tips at points with y ′ coordinates y ′ ± such that ±β(y ′ ± ) > 0 and sufficiently long so that for any (x ′ , y ′ ) ∈ ∂G ± ∩ ∂G, the unit outer normal vector n(x ′ , y ′ ) to ∂G ± at (x ′ , y ′ ) satisfies

|n(x ′ , y ′ ) • (1, 0, • • • , 0)| ≤ 1 2 ( β -1 ∞ + 1) whenever ± β(y ′ ) ≤ 0.
Then G satisfies the hypotheses of [1, Corollary 2.11] (it satisfies the escape condition and all points of ∂G are τ ′ -regular). It follows that the escape measure µ x,y τ has a density q τ (x, y, •, •) which is a continuous function of (x, y, x ′ , y ′ ) ∈ G×∂ * G, where ∂ * G is the set of "good" points of ∂G, that is, all (x ′ , y ′ ) ∈ ∂G except of the two cone tips, where n(x ′ , y ′ ) = (±1, 0, • • • , 0). Thus q τ is bounded on S := {0} ×B 1 (0) ×(a -, a + ) ×∂B 2 (0). Since {X 0,y s } s≤t∧τ almost surely stays in (a -, a + ), we obtain q t ≤ q τ on S and q t = 0 on [{0} × B 1 (0) × R × ∂B 2 (0)] \ S. Finally, q t (x, y, x ′ , y ′ ) = q t (0, y, x ′ -x, y ′ ) shows that q t is bounded on R×B 1 (0)×R×∂B 2 (0). Let d > 0 be such that A ± d = ∅, let z := 1/3, t := β -1 ∞ , and

C t := max{ sup R×B 1 (0)×R×B 2 (0) p t , sup R×B 1 (0)×R×∂B 2 (0) q t } < ∞. Then p t (x, y, x ′ , y ′ ), q t (x, y, x ′ , y ′ ) ≤ C t χ [x-1,x+1] (x ′ ) because the measure µ x,y t is supported on [x -1, x + 1] × B 2 ( 
0), so we obtain from (2.10) and (2.11)

sup [0,1]×B 1 (0) u ≤ C t e t [-1,2]×B 2 (0) u(x ′ , y ′ )dx ′ dy ′ + C t e t [-1,2]×∂B 2 (0) u(x ′ , y ′ )dx ′ dy ′ ≤ 10C t e t sup [-1,2]×B 2 (0) v ≤ 10C t C z,d,β e t inf [0,1]×B 1 (0) u by using [-1, 2] = [-1, -1/3] ∪ [-1/3, 1/3] ∪ [1/3, 1] ∪ [1, 5/3] ∪ [4/3, 2 
] and (2.17). This is (1.4), so the theorem will be proved once we establish (2.10).

Lemma 2.1 If u, β, γ, X x,y t , Y x,y t , τ y are as in the proof of Theorem 1.1 (in particular, γ ∞ ≤ 1), then (2.10) holds for (x, y) ∈ R × B 2 (0).

Proof. Let Z x,y t = t so that dZ x,y t = dt and K := ∆ y + β(y)∂ x + ∂ z is the generator of the process (X x,y t , Y x,y t , Z x,y t ). If we let v(x, y, z) := e z u(x, y), then Kv ≥ 0 on R × B 3 (0) × R in the sense of distributions, that is, We next apply Dynkin's formula [START_REF]Stochastic Differential Equations[END_REF]Theorem 7.4.1] to the smooth function v ε , the process (X x,y t , Y x,y t , Z x,y t ), and stopping time t ∧ τ (with τ = τ y ), to obtain E [v ε (X x,y t∧τ , Y x,y t∧τ , Z x,y t∧τ )] = v ε (x, y, 0) + E t∧τ 0 (Kv ε )(X x,y s , Y x,y s , Z x,y s )ds ≥ v ε (x, y, 0) -2 N +2 εe t+ε u ∞ t.

R×B 3 (0)×R vK * φ dxdydz ≥ 0 for any φ ∈ C ∞ 0 (R × B 3 (0) × R), with K * := ∆ y -β(y)∂ x -∂ z the adjoint of K. For any ε > 0 let δ ε ∈ (0, 1/2 √ N - 
Since v ε → v uniformly on [xβ ∞ t, x + β ∞ t] × B 2 (0) × [0, t] as ε → 0 (by continuity of v) and Z x,y t∧τ ≤ t, it follows that e t E [u(X x,y t∧τ , Y x,y t∧τ )] ≥ E [v(X x,y t∧τ , Y x,y t∧τ , Z x,y t∧τ )] ≥ u(x, y). This is the second inequality in (2.10). The first inequality is obtained in the same way, this time with v(x, y, z) := e -z u(x, y), so that Kv ≤ 0 on R × B 3 (0) × R and (Kv ε )(x, y, z) ≤ 2 N +2 εe -z+ε u ∞ .
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 11113 Let D ⊆ R N -1 be open connected and u : (a, b) × D → [0, ∞) a bounded distributional solution of (1.1) with γ bounded measurable and β satisfying for some r ∈ N, β ∈ C ∞ (D), inf D β < 0 < sup D β, and 0≤|ζ|≤r |D ζ β(y)| > 0 for all y ∈ D. Then for each [a ′ , b ′ ] ⊆ (a, b) and bounded open D ′ with D ′ ⊆ D, there is C > 0, depending only on D, D ′ , β and an upper bound on (a ′a) -1 , (bb ′ ) -1 , b ′a ′ , and γ ∞ , such that sup (a ′ ,b ′ )×D ′ u ≤ C inf (a ′ ,b ′ )×D ′ u. (1.4)
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 111 be such that |β(y)β(y ′ )| ≤ ε 2 whenever y, y ′ ∈ B 5/2 (0) and |yy ′ | ≤ √ N -1 δ ε . Let η : R → [0, 1] be a smooth non-negative function supported in [-1, 1], with η(x ′ )dx ′ = 1 and η ′ ∞ ≤ 2. For ε > 0 define the mollifierη ε (x, y, z) := ε -2 δ 1-N and let v ε := v * η ε and φ ε;x,y,z (x ′ , y ′ , z ′ ) := η ε (xx ′ , yy ′ , zz ′ ). For ε ∈ (0, 1) the smooth function v ε then satisfies on R × B 2 (0) × R (Kv ε )(x, y, z) = R×B 3 (0)×R vK * φ ε;x,y,z dx ′ dy ′ dz ′ + R×B 3 (0)×R v(x ′ , y ′ , z ′ )[β(y ′ )β(y)]φ ε;x,y,z x ′ (x ′ , y ′ , z ′ ) dx ′ dy ′ dz ′ .The first integral is non-negative. The integrand in the second vanishes when |x ′ -x| > ε or |y ′ ny n | > δ ε for some n or |z ′ -z| > ε, and |φ ε;x,y,zx ′ (x ′ , y ′ , z ′ )| ≤ 2ε -3 δ 1-N ε , so we have (Kv ε )(x, y, z) ≥ -2 N +2 εe z+ε u ∞ .