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Abstract

This paper is concerned with the analysis of speed-up of reaction-diffusion-advection
traveling fronts in infinite cylinders with periodic boundary conditions. The advection
is a shear flow with a large amplitude and the reaction is nonnegative, with either
positive or zero ignition temperature. The unique or minimal speeds of the traveling
fronts are proved to be asymptotically linear in the flow amplitude as the latter goes to
infinity, solving an open problem from [4]. The asymptotic growth rate is characterized
explicitly as the unique or minimal speed of traveling fronts for a limiting degenerate
problem, and the convergence of the regular traveling fronts to the degenerate ones is
proved for positive ignition temperatures under an additional Hörmander-type condi-
tion on the flow.

1 Introduction and main results

In this paper we analyze the asymptotic limit of traveling fronts and of their speeds for
reaction-diffusion equations in the presence of strong shear flows. More precisely, we consider
the model

vt + Aα(y) vx = ∆v + f(v), t ∈ R, (x, y) ∈ R× R
N−1 (1.1)

when A ≫ 1. The physical dimension N ≥ 1 is arbitrary. The reaction function f : [0, 1] → R

is assumed to be of class C1,δ([0, 1]) for some δ > 0 and to satisfy

∃ θ ∈ [0, 1) : f = 0 on [0, θ] ∪ {1}, f > 0 on (θ, 1), f is non-increasing near 1. (1.2)

The function α : RN−1 → R is assumed to be of class C1,δ(RN−1) and (1, . . . , 1)-periodic (for
the sake of simplicity; other periods are handled identically) so that α ∈ C1,δ(TN−1). The
coefficient Aα(y) is then the x-component of an incompressible shear flow Aq(x, y) with
amplitude A and flow profile

q(x, y) = (α(y), 0, . . . , 0).

We are interested in the asymptotic strong-flow regime A → +∞.
Equation (1.1) arises in models of flame propagation, especially when 0 < θ < 1, and the

quantity 0 ≤ v ≤ 1 then stands for normalized temperature (see [27]). The real number θ
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is then the ignition temperature, below which the reaction is suppressed. When θ = 0, this
equation also arises in chemical, biological, and ecological models, and v typically stands for
the density of a substance or a species (see [20, 31, 37]).

We will be interested in traveling fronts for (1.1), that is, solutions of the form

v(t, x, y) = u(x− ct, y).

Here the front profile u is (1, . . . , 1)-periodic in y ∈ R
N−1 and c ∈ R is the front speed. These

solutions, which are invariant in the frame moving with speed c along the x-axis, play an
essential role in the study of large-time behavior of the processes modeled by (1.1).

If 0 < θ < 1, then it is known [5, 42] that for each amplitude A ∈ R there exists a unique
speed c = c∗(Aq, f) and a unique (up to shifts in x) profile u : R × T

N−1 → (0, 1), which
connects 0 to 1. That is u is a classical solution of the elliptic equation

{
∆u+ (c− Aα(y)) ux + f(u) = 0 in R× T

N−1,

0 ≡ u(+∞, ·) < u < u(−∞, ·) ≡ 1 in R× T
N−1,

(1.3)

where the above limits 0 and 1 are uniform in T
N−1. Moreover, u is decreasing in x.

On the other hand, if θ = 0, then there is a minimal speed c∗(Aq, f) such that prob-
lem (1.3) has a solution u with speed c if and only if c ≥ c∗(Aq, f). Moreover, for each such
c there is a decreasing-in-x solution, and all solutions are such if f ′(0) > 0 [5].

The question of existence of traveling fronts for shear flows was first considered in [11, 14]
in infinite cylinders with bounded cross sections and Neumann boundary conditions, and
the case with periodic boundary conditions in y can be treated similarly. Since then, a
considerable amount of research has been directed at the problem, in particular, first results
on stability of fronts and long-time convergence of large classes of solutions to them appeared
in [1, 12, 27, 33, 34]. Existence of fronts in the case of general, not necessarily shear, flows
which are periodic in all spatial variables (on periodic domains in R

N) has also been studied.
These pulsating fronts are of the type v(t, z) = U(z · e− ct, z), with z = (x, y), e ∈ R

N a unit
vector, and U periodic in the last N arguments z = (z1, . . . , zN) ∈ R

N , and their existence
was first proved in [5, 41]. We also refer to [17, 21, 26] for variational min-max type formulas
for the unique and minimal propagation speeds of traveling and pulsating fronts, and to [7, 43]
for many further references on propagation phenomena for reaction-diffusion equations.

The main question addressed in this paper is related to the behavior of the traveling
fronts u of (1.3) and the propagation speeds c∗(Aq, f) in strong shear flows, that is as the
amplitude A goes to +∞. We especially aim at quantifying the speed-up induced by the
underlying strong advection. Roughly speaking, in combustion models, a stronger advection
is going to increase the width of the reaction zone, and hence enhance the propagation
speed. It is clear that if α ≤ β, then, for each A ≥ 0, the corresponding unique or minimal
speeds associated with α and β are ordered, that is c∗(Aqα, f) ≤ c∗(Aqβ, f), where qα(x, y) =
(α(y), 0, . . . , 0) and qβ(x, y) = (β(y), 0, . . . , 0), see [7, 14]. However, in general the speeds for
flows Aα(y) and A′ α(y) cannot be compared if A 6= A′. Therefore, the average effect of the
amplitude A and the limiting behavior as A → +∞ are a priori not clear. Nevertheless, the
comparison principle immediately shows

lim sup
A→+∞

c∗(Aq, f)

A
≤ max

TN−1
α (1.4)
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(see [7, 14]). Furthermore, it also follows from [28] that

lim inf
A→+∞

c∗(Aq, f)

A
≥

∫

TN−1

α(y)dy, (1.5)

with equality only if α is constant. (In [28] only mean-zero α were considered, with the
above bound being 0, but the general case follows from c∗(Aq, f) = c∗(A(q − p), f) + Aβ if
p(x, y) = (β, 0, · · · , 0).) That is, the front speed in the presence of a strong shear flow is
between two linear functions of the amplitude of the flow. The main result of this paper shows
that this speed-up is truly asymptotically linear as A → +∞, that is, limA→+∞ c∗(Aq, f)/A
exists. Furthermore, we characterize this limit, in both cases 0 < θ < 1 and θ = 0, in terms
of solutions to a second-order degenerate equation.

We start with the positive ignition temperature case 0 < θ < 1. The existence of the
limit limA→+∞ c∗(Aq, f)/A in this case was stated as an open problem in [4], where it was
proved for KPP reactions (see below).

Theorem 1.1 Assume (1.2) with 0 < θ < 1. Then there exists γ∗(q, f) ≥
∫
TN−1 α(y)dy

(with equality only if α is constant) such that the unique speeds c∗(Aq, f) of the problem (1.3)
satisfy

lim
A→+∞

c∗(Aq, f)

A
= γ∗(q, f). (1.6)

Furthermore, there exists U ∈ L∞(R×T
N−1) such that ∇yU ∈ L2(R×T

N−1)∩L∞(R×T
N−1)

and U is a (distributional) solution of





∆yU + (γ − α(y))Ux + f(U) = 0 in D′(R× T
N−1),

0 ≤ U ≤ 1 a.e. in R× T
N−1,

limx→+∞ U(x, y) ≡ 0 uniformly in T
N−1,

limx→−∞ U(x, y) ≡ 1 uniformly in T
N−1,

(1.7)

with γ = γ∗(q, f), and each sequence An → ∞ has a subsequence along which the functions
UAn

(x, y) = uAn
(Anx, y) (with uAn

the unique solution of (1.3) for A = An, translated in x
so that maxy∈TN−1 uAn

(0, y) = θ) converge a.e. to a solution of (1.7) with γ = γ∗(q, f) and
U non-increasing in x. Finally, if there is r > 0 such that

α ∈ C∞(TN−1) and
∑

1≤|ζ|≤r

|Dζα(y)| > 0 for all y ∈ T
N−1,1 (1.8)

then the pair (γ, U) solving (1.7) is unique up to shifts of U in x, with U ∈ C1,δ(R× T
N−1)

satisfying 0 < U < 1 and Ux < 0 on R× T
N−1.

Remark 1.2 This result continues to hold when the ignition reaction f is only Lipschitz
and α ∈ Cδ(TN−1) for some δ > 0. Indeed, our proof does not use the extra smoothness,
and [46, Theorem 1.6] shows that there still exists a unique solution u to (1.3), which is
decreasing in x due to being the limit of solutions with the same property and due to the
strong maximum principle applied to ux.

1For ζ = (ζ1, . . . , ζN−1) ∈ N
N−1, we let |ζ| = ζ1 + · · ·+ ζN−1 and Dζα(y) = ∂|ζ|α

∂y
ζ1
1

···∂y
ζN−1

N−1

(y).
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Remark 1.3 The condition (1.8) ensures that the differential operator L = ∆y+(γ−α(y))∂x
from (1.7) satisfies Hörmander’s hypoellipticity condition for any γ ∈ R, namely that the
smooth vector fields ∂y1 , . . . , ∂yN−1

, (γ − α(y))∂x and their commutators up to order r + 1
span all of RN at any point (x, y). Because of this, we will be able to apply the results from
[35] to questions of regularity of solutions of (1.7).

Remark 1.4 It remains an open question whether uniqueness of the pair (γ, U) solving (1.7)
as well as 0 < U < 1 and Ux < 0 hold for all non-constant α. Note that any y-independent
not necessarily continuous U , taking values in [0, θ] ∪ {1} and having the prescribed limits,
along with γ = α, is a solution for constant α.

On the other hand, for zero ignition temperature θ = 0 the following conclusion holds.
We define for θ′ ∈ (0, 1/4] the “cut-off” ignition reaction fθ′(u) := f(u)χ(u/θ′), where
χ : R → [0, 1] is a smooth non-decreasing function with χ(v) = 0 if v ≤ 1 and χ(v) = 1 if
v ≥ 2.

Theorem 1.5 Assume (1.2) with θ = 0 and also f ∈ C1,1([0, 1]). Then the limit

γ∗(q, f) := lim
θ′→0

γ∗(q, fθ′)

exists (with γ∗(q, fθ′) from Theorem 1.1) and (1.6) holds for the minimal speeds c∗(Aq, f) of
problem (1.3). Furthermore, for any γ ≥ γ∗(q, f), there exists a solution U of (1.7) such that
∇yU ∈ L2(R× T

N−1) ∩ L∞(R× T
N−1) and U is non-increasing in x. Lastly, if (1.8) holds,

then all solutions U of (1.7) are classical and satisfy γ ≥ γ∗(q, f).

When θ = 0 in (1.2) and the nonlinearity f is of the Kolmogorov-Petrovsky-Piskunov
(KPP) [29] type, that is f(u) ≤ f ′(0)u for all u ∈ [0, 1], then the limit γ∗(q, f) given in
Theorem 1.5 can be expressed as

γ∗(q, f) = max
w∈H1(TN−1)\{0}

‖∇w‖2
L2(TN−1)

≤f ′(0)‖w‖2
L2(TN−1)

∫

TN−1

α(y)w(y)2dy
∫

TN−1

w(y)2dy

(1.9)

(see [4, 25, 45]). Using this, one can conclude [25, 45]

lim
M→+∞

(
lim

A→+∞

c∗(Aq,Mf)

A

)
= max

y∈TN−1
α(y)

and

lim
M→0+

1√
M

(
lim

A→+∞

c∗(Aq,Mf)

A
−
∫

TN−1

α(y)dy

)
=2

√
f ′(0) sup

w∈H1(TN−1)\{0}∫
TN−1 w(y)dy=0

∫

TN−1

α(y)w(y)dy

‖∇w‖L2(TN−1)

.

The first of these limits does not depend on f and so it holds for any f with f ′(0) > 0.
Indeed, then we can find two KPP reactions g, h such that g ≤ f ≤ h, and the claim
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follows from the fact that the limits for g, h are equal and from the well known relation
c∗(Aq, g) ≤ c∗(Aq, f) ≤ c∗(Aq, h) [14].

Similar results hold for more general heterogeneous equations with periodic coefficients
and KPP reactions. We refer to [3, 9, 10, 22, 23, 30, 40] for further results on existence and
qualitative properties of KPP traveling and pulsating fronts and to [2, 4, 8, 16, 18, 36, 45]
for results on the asymptotics of the minimal speeds in strong shear and periodic flows in
the KPP case.

We also note that for cellular flows in two spatial dimensions, the speed-up is known
to be O(A1/4) rather than linear (see [2, 15, 28, 32, 36, 44]), and characterization of those
two-dimensional periodic q for which c∗(Aq, f) is unbounded in A (i.e., speed-up occurs) was
obtained in [36, 44]. In fact, these two-dimensional results hold for general reactions [44].

Remark 1.6 In the case of KPP reactions and shear flows with
∫
TN−1 α(y)dy ≥ 0, it is

also known that c∗(Aq, f) is non-decreasing with respect to A ≥ 0 and c∗(Aq, f)/A is non-
increasing with respect to A ≥ 0, see [4, 7]. However, the monotonicity of the quantities
c∗(Aq, f) and c∗(Aq, f)/A for general non-KPP reactions f when either θ = 0 or 0 < θ < 1,
is still not known. These questions are much more intricate than in the KPP case, due to
the lack of explicit formulas for the propagation speeds. However, Theorems 1.1 and 1.5
show that the limit γ∗(q, f) of the normalized speeds c∗(Aq, f)/A can still be identified as
the unique or minimal speed of fronts for a degenerate elliptic problem.

We thank Tom Kurtz and Daniel Stroock for useful discussions and pointers to references.
FH is indebted to the Alexander von Humboldt Foundation for its support. His work was also
supported by the French Agence Nationale de la Recherche through the project PREFERED.
AZ was supported in part by NSF grants DMS-1113017 and DMS-1056327, and by an Alfred
P. Sloan Research Fellowship. Part of this work was carried out during visits by FH to the
Departments of Mathematics of the Universities of Chicago and Wisconsin and by AZ to
the Faculté des Sciences et Techniques, Aix-Marseille Université, the hospitality of which is
gratefuly acknowledged.

2 Existence of solutions (γ, U) of (1.7) for θ ∈ [0, 1)

In this section, we prove the existence of solutions (γ, U) of (1.7) as claimed in Theorems
1.1 and 1.5. Such solutions are obtained as the A → +∞ limit of the solutions (cA, uA)
of (1.3), after a suitable normalization and a scaling in x. The scaling, given in (2.12) below,
makes the first-order coefficient bounded but it makes the equation degenerate as A → +∞.
The degeneracy of the limiting equation makes the analysis of the properties of the limiting
solutions more complicated than in the usual regular case.

We will assume in this section that
∫

TN−1

α(y)dy = 0, (2.10)

which we can do without loss of generality because if p(x, y) = (β, 0, · · · , 0), then c∗(Aq, f) =
c∗(A(q − p), f) + Aβ and the two uA are identical. Moreover, we will also assume that α is
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not identically 0. Otherwise, c∗(Aq, f) = c∗(0, f) does not depend on A and the existence
results in both theorems are immediate with γ∗(q, f) = 0 and U(x, y) = χ(−∞,0)(x) (for
γ = 0) or U(x, y) = V (x) such that Vx = −f(V )/γ, V (+∞) = 0, and V (−∞) = 1 (for γ > 0
in Theorem 1.5), which obviously exists.

Set

γ∗
A =

c∗(Aq, f)

A
> 0

for each A ≥ 1, where c∗(Aq, f) is the unique (resp. minimal) speed of traveling fronts
for (1.3) when 0 < θ < 1 (resp. θ = 0). Notice first that, because of (1.4) and (1.5), and
since the speeds c∗(Aq, f) are positive and continuous in A (see [7, 14]), it follows that

0 < γ := inf
A≥1

γ∗
A ≤ sup

A≥1
γ∗
A =: γ < +∞. (2.11)

Now, let (cA, uA)A≥1 be a family of solutions of (1.3), and define

γA =
cA
A
.

We will only consider solutions with uA,x < 0 (which is always possible from [5]) and γA
uniformly bounded in A ≥ 1. Notice that by (2.11), the family (γA)A≥1 is automatically
bounded from below by a positive constant, and it is also bounded from above when 0 <
θ < 1. For each A ≥ 1, we set

UA(x, y) = uA(Ax, y) for all (x, y) ∈ R× T
N−1. (2.12)

The functions UA satisfy





∆yUA + A−2UA,xx + (γA − α(y))UA,x + f(UA) = 0 in R× T
N−1,

0 < UA < 1 in R× T
N−1,

UA,x < 0 in R× T
N−1,

UA(+∞, ·) ≡ 0, UA(−∞, ·) ≡ 1 uniformly in T
N−1.

(2.13)

By standard elliptic estimates, each function UA is of class C3,δ(R× T
N−1).

We first derive some uniform integral and pointwise gradient estimates for the func-
tions UA.

Lemma 2.1 For any family (cA, uA)A≥1 of solutions of (1.3) such that uA,x < 0 and
(cA/A)A≥1 is bounded, the functions UA defined by (2.12) satisfy

sup
A≥1

(
‖UA,x‖L1(R×TN−1) + ‖∇yUA‖L2(R×TN−1) + ‖∇yUA‖L∞(R×TN−1)

)
< +∞.

Proof. First, since UA,x < 0 in R × T
N−1 and UA(+∞, ·) = 0, UA(−∞, ·) = 1, it follows

immediately that ‖UA,x‖L1(R×TN−1) = 1. Next integrate (2.13) over (−M,M) × T
N−1 and
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pass to the limit as M → +∞. Since UA,x(±∞, ·) = 0 from standard elliptic estimates,
since α has zero average and since f ≥ 0 in [0, 1], we get that f(UA) ∈ L1(R× T

N−1) and

∫

R×TN−1

f(UA(x, y)) dx dy = γA

for each A ≥ 1. Now multiply (2.13) by UA, integrate over (−M,M)×T
N−1 and pass to the

limit as M → +∞. It follows that
∫

R×TN−1

(
|∇yUA|2 + A−2U2

A,x

)
dx dy =

∫

R×TN−1

f(UA(x, y))UA(x, y) dx dy −
γA
2

≤ γA
2
.

Therefore, the assumption of boundedness of the family (γA)A≥1 yields the boundedness of
the family (‖∇yUA‖L2(R×TN−1))A≥1.

Lastly, since UA ∈ C3(R × T
N−1) and the family (γA)A≥1 is assumed to be bounded, it

then follows from [6] that
sup
A≥1

‖∇yUA‖L∞(R×TN−1) < +∞,

which completes the proof of Lemma 2.1. �

We next prove the claims in the second sentence of Theorem 1.1 when 0 < θ < 1 with
some γ > 0 which is the limit of a subsequence of c∗(Anq, f)/An. The claim as stated will
be established when later we prove (1.6).

Proposition 2.2 Assume 0 < θ < 1. Then any An → +∞ has a subsequence along which
the (unique) solution UAn

of (2.13), normalized as in Theorem 1.1, converges a.e. to U
and γAn

converges to γ, with (γ, U) a solution of (1.7) such that 0 < γ ≤ maxTN−1 α and
∇yU ∈ L2(R× T

N−1) ∩ L∞(R× T
N−1).

Proof. Step 1: general properties of the limit function U . The assumptions of Lemma 2.1
are satisfied since 0 < θ < 1. Because of (1.4) and (2.11), there is a subsequence of An

(which we again call An) and a real number γ such that

0 < γ ≤ max
TN−1

α and γAn
→ γ as n → +∞. (2.14)

On the other hand, 0 < UAn
< 1 in R × T

N−1 and the sequence (UAn
)n∈N is bounded in

W 1,1
loc (R×T

N−1) by Lemma 2.1. Up to extraction of another subsequence, there exists then a
function U ∈ L∞(R×T

N−1) such that UAn
→ U almost everywhere in R×T

N−1 as n → +∞.
Furthermore, 0 ≤ U ≤ 1 and

U(·+ h, ·) ≤ U a.e. in R× T
N−1 (2.15)

for all h ≥ 0. Similarly, ∇yU ∈ L2(R×T
N−1)∩L∞(R×T

N−1) by Lemma 2.1. The equation

∆yU + (γ − α(y))Ux + f(U) = 0 (2.16)
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also holds in the sense of distributions in R × T
N−1, by passing to the limit as n → +∞

in (2.13), with A = An.
Step 2: the limit function U has constant limits as x → ±∞. Take any non-decreasing

sequence (xn)n∈N converging to +∞. The sequences of functions (U±
n )n∈N defined by

U±
n (x, y) = U(x± xn, y) for (x, y) ∈ R× T

N−1

are monotone and bounded in L∞(R×T
N−1). They converge almost everywhere in R×T

N−1

and in Lp((−M,M) × T
N−1), for all M > 0 and 1 ≤ p < +∞, to two functions U±

∞ such
that 0 ≤ U±

∞ ≤ 1 a.e. in R× T
N−1. Furthermore,

U±
∞(x+ h, y) = U±

∞(x, y) a.e. in R× T
N−1 for all h ∈ R,

due to (2.15) and xn → +∞, and ∇yU
±
∞ = 0 since ∇yU ∈ L2(R × T

N−1). In other words,
the functions U±

∞ are constant. Since the equation (2.16) is satisfied by each U±
n and thus

by the limiting (constant) functions U±
∞ in the sense of distributions, one concludes that

f(U±
∞) = 0. (2.17)

By monotonicity in x, the limits U±
∞ do not depend on the sequence (xn)n∈N. Therefore, the

limits U(±∞, ·) exist and are two constants belonging to the set of zeros of f in [0, 1].
Step 3: the limit function U has uniform limits 0 and 1 as x → ±∞. The last thing to

do is to prove that U(+∞, ·) = 0 and U(−∞, ·) = 1 uniformly in y ∈ T
N−1 for some limit

function U . Recall that the functions UAn
are translated in such a way that

max
y∈TN−1

UAn
(0, y) = θ. (2.18)

Hence, for all n ∈ N, 0 < UAn
≤ θ in [0,+∞)× T

N−1 and

∆yUAn
+ A−2

n UAn,xx + (γAn
− α(y))UAn,x = 0 in [0,+∞)× T

N−1. (2.19)

On the other hand, for each λ ∈ R, let µn(λ) denote the principal eigenvalue of the
operator

∆y + A−2
n λ2 − λ (γAn

− α(y))

in T
N−1, that is µn(λ) is associated with positive eigenfunctions of this operator. Since each

function µn is convex and satisfies µn(0) = 0, µ′
n(0) = −γAn

< 0 (because α has zero average
over TN−1) and µn(λ) ∼ A−2

n λ2 as λ → +∞, there is a unique λn > 0 such that µn(λn) = 0.
Let ϕn be an eigenfunction associated with λ = λn, that is

{
∆yϕn + A−2

n λ2
n ϕn − λn (γAn

− α(y))ϕn = 0 in T
N−1,

ϕn > 0 in T
N−1.

Then e−λnxϕn(y) solves (2.19). Up to normalization, one can assume that

min
TN−1

ϕn = θ (2.20)
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and it then follows from the maximum principle in half-cylinders as in [39] (see also [5]) that

UAn
(x, y) ≤ e−λnxϕn(y) for all (x, y) ∈ [0,+∞)× T

N−1.

Furthermore, for each n ∈ N, because of (2.11) and An ≥ 1, there holds

µn(λ) ≤ µ(λ) for all λ ≥ 0,

where µ(λ) denotes the principal eigenvalue of the operator ∆y + λ2 − λ (γ −α(y)) in T
N−1.

As above, there is a unique λ > 0 such that µ(λ) = 0, and µ(λ) < 0 for all λ ∈ (0, λ). As a
consequence, λn ≥ λ > 0 for all n ∈ N, whence

UAn
(x, y) ≤ e−λxϕn(y) for all (x, y) ∈ [0,+∞)× T

N−1. (2.21)

Let yn ∈ T
N−1 be such that ϕn(yn) = θ. Up to extraction of a subsequence, one can

assume that yn → y ∈ T
N−1 as n → +∞. Pick any ε ∈ (0, 2θ) and define

x = −λ−1 ln
( ε

2θ

)
≥ 0.

Because of (2.21), there holds UAn
(x, yn) ≤ ε/2 for all n ∈ N. But since the se-

quence (‖∇yUAn
‖L∞(R×TN−1))n∈N is bounded by Lemma 2.1, and since yn → y as n → +∞,

there are r > 0 and n0 ∈ N such that

UAn
(x, y) ≤ ε for all |y − y| ≤ r and n ≥ n0.

By monotonicity in x, it follows that UAn
(x, y) ≤ ε for all x ≥ x, |y− y| ≤ r and n ≥ n0. By

passing to a limit as n → +∞ as in step 1 (up to extraction of a sequence), the same inequality
holds for the limit function U for almost every (x, y) such that x ≥ x and |y−y| ≤ r. Because
of (2.15) and step 2, the constant limit U(+∞, ·) of U as x → +∞ is then such that

0 ≤ U(+∞, ·) ≤ ε.

Since ε > 0 was arbitrarily small, one concludes that U(+∞, ·) = 0.
Let us now prove that U(−∞, ·) = 1. First, because of (2.18), there is a sequence (y′n)n∈N

in T
N−1 such that UAn

(0, y′n) = θ. Up to extraction of another subsequence, one can assume
that y′n → y ∈ T

N−1 as n → +∞. As in the previous paragraph, given any ε ∈ (0, θ), it
follows from Lemma 2.1 that there are r′ > 0 and n′

0 ∈ N such that

UAn
(0, y) ≥ θ − ε for all |y − y| ≤ r′ and n ≥ n′

0,

whence UAn
(x, y) ≥ θ − ε for all x ≤ 0, |y − y| ≤ r′ and n ≥ n′

0. Thus U(x, y) ≥ θ − ε
for a.e. such (x, y) and the constant function U(−∞, ·) satisfies U(−∞, ·) ≥ θ − ε for all
ε ∈ (0, θ). Therefore, U(−∞, ·) ≥ θ. Because of (1.2) and (2.17), the constant U(−∞, ·) is
either θ or 1.

Assume now that U(−∞, ·) = θ. The monotonicity property (2.15) yields 0 ≤ U ≤ θ a.e.
in R× T

N−1, whence

∆yU + (γ − α(y))Ux = 0 in D′(R× T
N−1). (2.22)
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Let φ : [0, 1] → R be a non-increasing C∞ function such that φ = 1 on [0, 1/3] and φ = 0
on [2/3, 1]. For each k ∈ N, let φk be the function defined in R× T

N−1 by

φk(x, y) =






0 if |x| ≥ k + 1,

1 if |x| ≤ k,

φ(|x| − k) if k < |x| < k + 1.

By testing (2.22) against φk, one gets that

∫

(0,1)×TN−1

(γ−α(y))U(x+k, y)φ′(x) dx dy−
∫

(0,1)×TN−1

(γ−α(y))U(x−k−1, y)φ′(1−x) dx dy = 0.

Since U(+∞, ·) = 0, U(−∞, ·) = θ and the function α has zero average over T
N−1, it fol-

lows from Lebesgue’s dominated convergence theorem, by passing to the limit as k → +∞,
that θ γ = 0. But θ > 0 and γ > 0 by (2.14), a contradiction. So U(−∞, ·) = 1 and the
uniformity of the limit in y (as well as of U(+∞, ·) = 0) follows from Lemma 2.1 and U
being non-increasing in x. The proof of Proposition 2.2 is complete. �

To complete this section, we prove the existence of solutions (γ, U) of (1.7) when θ = 0,
for all

γ ≥ γ∗
∞ = lim inf

A→+∞
γ∗
A.

Notice also that
0 < γ∗

∞ ≤ max
TN−1

α (2.23)

by (1.4) and (2.11).

Proposition 2.3 Assume that θ = 0. Then, for all γ ≥ γ∗
∞, there exists a solution U

of (1.7) such that ∇yU ∈ L2(R× T
N−1) ∩ L∞(R× T

N−1).

Proof. Fix a real number γ ∈ [γ∗
∞,+∞). Since γ∗

A is the minimal speed for the solutions
of (2.13) for each A > 0, there exist sequences (An)n∈N and (γn)n∈N of positive real numbers
such that

An → +∞ and γn → γ as n → +∞,

and γn ≥ γ∗
An

for all n ∈ N. For each n ∈ N, let UAn
be a solution of (2.13) with A = An

and speed γn (so hypotheses of Lemma 2.1 are satisfied). Up to a shift in x, one can assume

∫

(0,1)×TN−1

UAn
(x, y) dx dy =

1

2
. (2.24)

From Lemma 2.1, it follows as in step 1 of the proof of Proposition 2.2 that, up to extraction of
a subsequence, the functions UAn

converge a.e. in R×T
N−1 to a function U ∈ L∞(R×T

N−1)
such that 0 ≤ U ≤ 1 a.e. in R × T

N−1 and ∇yU ∈ L2(R × T
N−1) ∩ L∞(R × T

N−1).
Furthermore, U fulfills (2.15), and (2.16) in D′(R× T

N−1). Lastly, from step 2 of the proof
of Proposition 2.2, the limits U(±∞, ·) exist, are constant, and are zeros of the function f

10



in [0, 1]. By passing to the limit as n → +∞ in (2.24), it follows from Lebesgue’s dominated
convergence theorem that ∫

(0,1)×TN−1

U(x, y) dx dy =
1

2
.

Because of (2.15), one concludes that 0 ≤ U(+∞, ·) ≤ 1/2 ≤ U(−∞, ·) ≤ 1. Since 0 and 1
are the only zeros of f in [0, 1] we have

U(+∞, ·) = 0 and U(−∞, ·) = 1,

which completes the proof of Proposition 2.3. �

3 Proof of Theorem 1.1

This section is devoted to the completion of the proof of Theorem 1.1. The existence of a
pair (γ, U) solving (1.7) has already been proven in the previous section. First, in Subsec-
tion 3.1, we prove its uniqueness, up to shifts in x for U , when the additional hypothesis (1.8)
is satisfied. The proof relies on the regularity theory [35] and a strong maximum principle
[38] for degenerate elliptic and parabolic equations. From this uniqueness property and the
Lipschitz continuity of the unique speeds c∗(Aq, f) with respect to the flow Aq, we deduce
in Subsection 3.2 the existence of limA→+∞ c∗(Aq, f)/A with or without (1.8).

3.1 Uniqueness of solutions of (1.7) given (1.8) and 0 < θ < 1

Let (γ, U) and (γ′, U ′) be two solutions of (1.7). We will prove that γ = γ′, and U = U ′

after a shift in x, under the additional hypothesis (1.8).
First, because of (1.8), it follows from [35, Theorem 18(c)] withXj = ∂yj (j = 1, . . . , N−1)

and X0 = (γ−α(y))∂x (resp. X0 = (γ′−α(y))∂x) that U and U ′ are actually continuous. In
fact, U and U ′ are slightly smoother than f , at least of class C1,δ(R× T

N−1)), by repeated
application of [35, Theorem 18(b)].

Next, [35, Theorem 18(d)] and the fact that f(U) ∈ Lp
loc(R × T

N−1) (and so f(U) is in
the space Sp

0(M) from [35], for any bounded open M ⊆ R× T
N−1) yield U ∈ Sp

2(M) for all
p ∈ (1,∞). This means that ∆yU, (γ − α(y))Ux ∈ Lp

loc(R × T
N−1) for any p ∈ (1,∞), so

(1.7) holds in Lp
loc(R× T

N−1) for p ∈ (1,∞). Thus LU ≤ 0 and LU ′ ≤ 0 in Lp
loc(R× T

N−1),
where

L = ∆y + (γ − α(y))∂x.

We will now show that this means that the strong maximum principle from [38] applies
to −U and −U ′. In order to show they satisfy the hypotheses in [38], we will need to
approximate them by smooth functions. Let η : R → R be a smooth non-negative function
supported in [−1, 1], with

∫ 1

−1
η(ζ)dζ = 1 and ‖η′‖∞ ≤ 10. For ε > 0 and κ ≥ 0 define the

mollifiers

ηε,κ(x, y) :=





ε−1κ1−Nη
(x
ε

)N−1∏

j=1

η
(yj
κ

)
κ > 0,

ε−1η
(x
ε

)
δ0(y) κ = 0,
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where δ0 is the delta function at 0 ∈ R
N−1. Extend U to a periodic-in-y function on R

N and
let

Uε,κ := U ∗ ηε,κ.
We have |Uε,κ

x | ≤ 10ε−1 since |U | ≤ 1. So if ω ∈ C([0,+∞)) with ω(0) = 0 is such that
|α(y)− α(y′)| ≤ ω(κ) whenever |y − y′| ≤

√
N − 1 κ, then for κ > 0 we have

LUε,κ = (LU) ∗ ηε,κ +
∫

RN−1

[α(y − ξ)− α(y)]Uε,0
x (x, y − ξ)κ1−N

N−1∏

j=1

η

(
ξj
κ

)
dξ ≤ 10ε−1ω(κ).

So if we define Ūε,κ := Uε,κ − 5ε−1ω(κ)y21, then LŪε,κ ≤ 0. Since also Ūε,κ ∈ C2(RN) for
κ > 0, the last claim of the first paragraph of [38, Section 6] tells us that −Ūε,κ ∈ H−

L (R
N),

that is, it has the submartingale property relative to L described in that paragraph (with Ūε,κ

independent of the variable t). Finally, since U is continuous, Ūε,κ → Uε,0 as κ → 0 and then
Uε,0 → U as ε → 0, both locally uniformly in R

N . This means that −Uε,0 and then −U have
the same submartingale property, hence −U ∈ H−

L (R
N) (and also −U ∈ H−

L (R × T
N−1)).

Thus the strong maximum principle from [38, Theorem 6.1] applies to −U (and to −U ′),
which we will use in the rest of this section.

We will also need the following.

Lemma 3.1 If (1.8) holds and (γ, U) is a solution of (1.7), then

∫

TN−1

α(y)dy < γ < max
y∈TN−1

α(y). (3.25)

Proof. For a1 < a2 ≤ b1 < b2, let φa1,a2,b1,b2 : R → [0, 1] be a smooth compactly supported
test function, equal to 0 on (−∞, a1] ∪ [b2,+∞), to 1 on [a2, b1], increasing on [a1, a2], and
decreasing on [b1, b2]. Test the PDE (1.7) against φa,a+1,b,b+1 (extended onto R× T

N−1 so it
is independent of y) and take −a, b → +∞ to obtain

∫

TN−1

(γ − α(y))dy =

∫

R×TN−1

f(U(x, y))dxdy > 0

(the last inequality is due to U being continuous). The first inequality in (3.25) now follows.
Next test against φa,a+ε,b,b+1, where a is the smallest real number such that

‖U‖L∞([a,+∞)×TN−1) = θ

(recall that U is continuous). Then take ε → 0 and b → +∞ to obtain

∫

TN−1

(γ − α(y))U(a, y)dy =

∫

[a,+∞)×TN−1

f(U(x, y))dxdy = 0.

Condition (1.8), continuity of U ≥ 0, and U(a, ya) = θ for some ya now yield the second
inequality in (3.25). �
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Now, since f(0) = f(1) = 0 and

min
y∈TN−1

(γ − α(y)) < 0 < max
y∈TN−1

(γ − α(y)), (3.26)

it follows from the maximum principle for degenerate parabolic equations in [38] that U
cannot attain the value 0 (resp. 1) unless being identically equal to 0 (resp. 1) in R×T

N−1.
(Here we apply [38, Theorem 6.1] to the functions V (t, x, y) = V (x, y) = −U(x, y) ≤ 0 and

Ṽ (t, x, y) = e−‖f ′‖∞t(U(x, y) − 1) ≤ 0, and use that (3.26) yields G(t0, x0, y0) = [t0,+∞) ×
R × T

N−1 in that theorem. Note that [38, Theorem 6.1] applies to Ṽ just as it does to V ,

because of its continuity and this time the fact that Ṽt + LṼ ≥ 0 in Lp
loc(R

2 × T
N−1) for

p ∈ (1,∞).) But U(−∞, ·) = 1 and U(+∞, ·) = 0, so we have

0 < U < 1 and 0 < U ′ < 1 on R× T
N−1.

Let us assume here that
γ′ ≤ γ, (3.27)

which we can ensure by possibly swapping U and U ′. We shall now slide U ′ in the x-direction
and compare it with U . We will first prove that U ≤ U ′(· − h, ·) in R × T

N−1 for h large
enough, and then decrease h up to a critical value h∗ so that U and U ′(· − h∗, ·) will touch.
It will follow from the maximum principle in [38] that γ = γ′ and U = U ′(· − h∗, ·).

Lemma 3.2 There exists h0 ∈ R such that

U(x, y) ≤ U ′(x− h, y) for all h ≥ h0 and all (x, y) ∈ R× T
N−1.

Proof. Extend f by 0 on R\[0, 1] (so it is Lipschitz-continuous on R). Let ρ > 0 be such
that f ′ ≤ 0 on [1− ρ, 1] and let M > 0 be such that

U ≤ θ in [M,+∞)× T
N−1 and U ′ ≥ 1− ρ in (−∞,−M ]× T

N−1. (3.28)

We will prove the lemma with h0 = 4M .
Pick any h ≥ h0 and let

ε∗ = min
{
ε ≥ 0

∣∣∣U(x, y)− ε ≤ U ′(x− h, y) for all (x, y) ∈ R× T
N−1

}
. (3.29)

We want to show that ε∗ = 0, so let us assume ε∗ > 0. Then continuity of U and U ′, and
the limits in (1.7), show that the function

V (x, y) = U(x, y)− ε∗ − U ′(x− h, y) ≤ 0

must attain the value 0 at some (x0, y0). Moreover, we have

∆yV (x, y)+ (γ−α(y)) Vx(x, y) = (γ′−γ)U ′
x(x−h, y)+ f(U ′(x−h, y))− f(U(x, y)). (3.30)

Assume for now that, in the sense of distributions,

(γ′ − γ)U ′
x ≥ 0 on R× T

N−1. (3.31)
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If x0 ≥ 2M , let G = (M,+∞) × T
N−1. Since U ≤ θ on G, we have LV ≥ 0 on G (as

a distribution, but then also in Lp
loc(G) because LU, LU ′ ∈ Lp

loc(R × T
N−1)). Then [38,

Theorem 6.1] (which again applies to V because it is continuous and LV ≥ 0 in Lp
loc(G))

together with (3.26) shows V = 0 on G, a contradiction with ε∗ > 0 and the limits in (1.7).
If instead x0 ≤ 2M and (3.31) is assumed, let G = (−∞, 3M)× T

N−1 and define

Ṽ (t, x, y) = e−‖f ′‖∞tV (x, y) ≤ 0. (3.32)

Since U ′(· − h, ·) ≥ 1− ρ on G, we have

f(U ′(x− h, y))− f(U(x, y)) ≥ f(U ′(x− h, y) + ε∗)− f(U(x, y)) ≥ −‖f ′‖∞|V (x, y)|

there. Thus
Ṽt + LṼ ≥ 0 (3.33)

in Lp
loc(R× G) and [38, Theorem 6.1] again shows Ṽ = 0 on R× G, a contradiction.
It follows that ε∗ = 0, so the lemma is proved under the assumption (3.31) (e.g., if

U = U ′, since then γ = γ′). The validity of (3.31) will be obtained at the end of the proof
of the next lemma. �

Next let

h∗ = min
{
h′ ∈ R

∣∣∣U(x, y) ≤ U ′(x− h, y) for all (x, y) ∈ R× T
N−1 and h ≥ h′

}
. (3.34)

If we assume (3.31) (which we shall prove to be true always), then Lemma 3.2 and the limits
in (1.7) show that h∗ is well defined.

Lemma 3.3 We have γ = γ′ and

U(x, y) = U ′(x− h∗, y) for all (x, y) ∈ R× T
N−1.

Proof. Assume again (3.31), so h∗ is well defined, and let

V (x, y) = U(x, y)− U ′(x− h∗, y) ≤ 0.

Then (3.30) and (3.31) show that Ṽ from (3.32) satisfies (3.33) on R
2×T

N−1. If V (x0, y0) = 0

for some (x0, y0), then [38, Theorem 6.1] again implies Ṽ = 0 on R
2 × T

N−1, as was to be
proved.

Let us therefore assume V < 0 on R× T
N−1 and pick η ∈ (0, h∗] such that

U(x, y) < U ′(x− h, y) for all h ∈ [h∗ − η, h∗] and all (x, y) ∈ [−2M, 2M ]× T
N−1.

This can be done because U and U ′ are continuous. For any such h define ε∗ as in (3.29).
It follows that U(x0, y0) − ε∗ − U ′(x0 − h, y0) = 0 for some (x0, y0) with |x0| > 2M . As
in the proof of the last lemma, this, U ≤ θ on (M,+∞) × T

N−1, and U ′(· − h, ·) ≥ 1 − ρ
on (−∞,−M) × T

N−1 imply U(x, y) − ε∗ − U ′(x − h, y) = 0 on one of these two sets. In
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either case we must have ε∗ = 0. This means that h∗ in (3.34) can be decreased by η > 0, a
contradiction with the assumption that it is minimal.

Thus we have proved the lemma assuming (3.31). But (3.31) is satisfied if U = U ′, so
the definition of h∗, the limits in (1.7), and the lemma yield h∗ = 0 in this case and U ′

x ≤ 0.
Therefore (3.31) holds a priori (after assuming (3.27)), so this and the previous lemma also
hold as stated. �

Finally the function Ux ≤ 0 (which is of class Cδ(R× T
N−1), as we have showed earlier)

is by (1.7) a distributional solution of

LUx = −f ′(U(x, y))Ux.

As at the beginning of this subsection, it follows from [35, Theorem 18(d)] that ∆yUx, (γ −
α(y))Uxx ∈ Lp

loc(R×T
N−1) for any p ∈ (1,∞), so the above equation holds in Lp

loc(R×T
N−1)

for any p ∈ (1,∞). Since Ux cannot be identically equal to 0 in R × T
N−1, (3.26) and [38,

Theorem 6.1] imply that Ux < 0 everywhere in R× T
N−1.

3.2 Existence of the limit (1.6) when 0 < θ < 1

The only part of Theorem 1.1 left to prove is the existence of the limit (1.6). If (1.8) holds,
then it follows from the proof of Proposition 2.2 and the uniqueness result in Lemma 3.3
that the bounded family (γ∗

A)A≥1 has only one limiting value as A → +∞. In other words,
the limit

γ∗(q, f) := lim
A→+∞

γ∗
A = lim

A→+∞

c∗(Aq, f)

A
(3.35)

exists. Furthermore, γ∗(q, f) satisfies (3.25) in this case.
Now consider general α, pick any ε > 0, let α satisfying (1.8) be such that α ≤ α ≤ α+ε,

and let
q(x, y) = (α(y), 0, · · · , 0).

Then for any A ∈ R we have

c∗(Aq, f)− Aε ≤ c∗(Aq, f) ≤ c∗(Aq, f)

because the speed of traveling fronts for problem (1.3) is 1-Lipschitz with respect to
the L∞ norm of the flow, see [7, 14]. Since (3.35) shows that c∗(Aq, f)/A converges as
A → +∞, and since ε > 0 was arbitrary, existence of the limit (1.6) follows. Moreover
(3.25) holds for α and γ∗(q, f), so we obtain

∫

TN−1

α(y)dy ≤ γ∗(q, f) ≤ max
y∈TN−1

α(y),

with the first inequality strict unless α is constant by [28]. The proof of Theorem 1.1 is
finished. �
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Remark 3.4 When the flow α satisfies the non-degeneracy condition (1.8), then the solu-
tions (γ, U) of (1.7) are unique, up to shifts in x for U . Without assumption (1.8), this
uniqueness property is not clear in the general case, for which the solution U obtained in
Proposition 2.2 is just a distributional solution which may not be of class C1,δ(R × T

N−1).
Furthermore, the strict inequality γ∗(q, f) < maxTN−1 α, which holds under assumption (1.8),
may not be true in the general case, when α is flat and equal to its maximum on a sufficiently
large region.

Remark 3.5 Since the speed of traveling fronts for problem (1.3) is 1-Lipschitz with respect
to the L∞ norm of the flow, it follows from (1.6) that, if qα(x, y) = (α(y), 0, . . . , 0) and
qβ(x, y) = (β(y), 0, . . . , 0), then

|γ∗(qα, f)− γ∗(qβ, f)| ≤ ‖α− β‖L∞(TN−1).

4 Proof of Theorem 1.5

The existence result was proved in Section 2 with

γ∗(q, f) := γ∗
∞ = lim inf

A→∞
γ∗
A.

It remains to prove (1.6) and that γ∗(q, f) equals the limit in the statement of the theorem
(for general α) and the claims in the last sentence (for α satisfying (1.8)). In fact, it will be
sufficient to assume (1.8) in the rest of the proof because (1.6) as well as the θ′ → 0 limit in
the general case then follow as in Subsection 3.2.

So let us assume (1.8). Recall that fθ′(u) := f(u)χ(u/θ′) for θ′ ∈ (0, 1/4] and let f̃θ′ be
the function which equals fθ′ on [0, 1] and equals 0 on [−θ′, 0). For A ≥ 1 and θ′ ∈ (0, 1/4],
let γ̃∗

A,θ′ (resp. γ
∗
A,θ′) be the unique speed for which there is a (unique up to shifts) solution

ŨA,θ′ (resp. UA,θ′) of (2.13) with f̃θ′ (resp. fθ′) in place of f , but with ŨA,θ′ instead satisfying

−θ′ < ŨA,θ′ < 1 and ŨA,θ′(+∞, ·) ≡ −θ′. As in Theorem 1.1, γ∗(q, f̃θ′) = limA→∞ γ̃∗
A,θ′ exists

and is the unique speed for which there is a (unique up to shifts) solution Ũθ′ of (1.7) with

f̃θ′ in place of f , and with −θ′ < Ũθ′ < 1 and Ũθ′(+∞, ·) ≡ −θ′.
It follows from [5] that γ̃∗

A,θ′ < γ∗
A,θ′ < γ∗

A for all A ≥ 1 and θ′ ∈ (0, 1/4], so

γ∗(q, f̃θ′) ≤ γ∗(q, fθ′) ≤ γ∗(q, f).

Since the maps θ′ 7→ γ̃∗
A,θ′ and θ′ 7→ γ∗

A,θ′ are decreasing on (0, 1/4] by [5], the limits

limθ′→0 γ
∗(q, f̃θ′) and limθ′→0 γ

∗(q, fθ′) exist in R, and

γ̃ := lim
θ′→0

γ∗(q, f̃θ′) ≤ γ := lim
θ′→0

γ∗(q, fθ′) ≤ γ∗(q, f) (= lim inf
A→∞

γ∗
A). (4.36)

To obtain (1.6) and γ∗(q, f) = limA→∞ γ∗
A = limθ′→0 γ

∗(q, fθ′), we thus only need to prove

lim sup
A→∞

γ∗
A ≤ γ̃. (4.37)
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We first note that since front speed is monotone in f and any f is dominated by some
KPP g (i.e., with g(u) ≤ g′(0)u), (1.8) and (1.9) immediately imply

lim sup
A→∞

γ∗
A < max

Tn−1
α. (4.38)

On the other hand, since α is not constant, Theorem 1.1 yields γ∗(q, f̃θ′) >
∫
TN−1 α(y)dy for

any θ′ ∈ (0, 1/4], whence ∫

TN−1

α(y) dy < γ̃. (4.39)

Let us now prove (4.37). With the above notations, Lemma 2.1 and the boundedness
of γ̃∗

A,θ′ (because
∫
TN−1 α(y)dy < γ̃∗

A,θ′ < maxTN−1 α + A−1c∗(0, f) by [5]) imply that the

quantities ‖ŨA,θ′

x ‖L1(R×TN−1) (= 1) and ‖∇yŨ
A,θ′‖L2(R×TN−1) are bounded independently of

A ≥ 1 and θ′ ∈ (0, 1/4]. Furthermore, since supθ′∈(0,1/4] ‖f̃θ′‖C1([−θ′,1]) < +∞, it follows

from [6] that the quantities ‖∇yŨ
A,θ′‖L∞(R×TN−1) are bounded independently of A ≥ 1 and

θ′ ∈ (0, 1/4]. Therefore, from the characterization of Ũθ′ in Theorem 1.1, there holds

sup
θ′∈(0,1/4]

(
‖Ũθ′

x ‖L1(R×TN−1) + ‖∇yŨ
θ′‖L2(R×TN−1) + ‖∇yŨ

θ′‖L∞(R×TN−1)

)
< +∞. (4.40)

Up to shifts, one can assume without loss of generality that maxTN−1 Ũθ′(0, ·) = 1/2 and by

Sobolev embedding one can choose a sequence θn → 0 such that Ũθn(x, y) → Ũ(x, y) ∈ [0, 1]

for almost every (x, y) ∈ R × T
N−1. The function Ũ is a distributional solution of (1.7),

with γ̃ in place of γ, such that Ũ(· + h, ·) ≤ Ũ a.e. in R × T
N−1 for all h ≥ 0 and ∇yŨ ∈

L2(R× T
N−1) ∩ L∞(R× T

N−1). Furthermore, (4.40), Ũθ′

x ≤ 0, and maxTN−1 Ũθ′(0, ·) = 1/2

imply that ±‖Ũ‖L∞((±ε,+∞)×TN−1) ≤ ±1/2 for any ε > 0. The x → ±∞ limits Ũ±(y) of

Ũ are uniform since ∇yŨ ∈ L∞(R × T
N−1) and they must be 0 and 1 because they solve

∆yŨ
± + f(Ũ±) = 0 with f > 0 on (0, 1).

Since f ∈ C1,1, it follows from [35, Theorem 18(c,b)] that Ũ is actually a classical solution
of class C2(R× T

N−1), with uniformly bounded first and second derivatives (this is true for
any solution, proving the first claim in the last sentence of the Theorem). We now let

V := −Ũx ≥ 0 and obtain from (1.7) for Ũ ,

∆yV + (γ̃ − α(y)) Vx = −f ′(Ũ(x, y))V. (4.41)

Observe that (4.36), (4.38), and (4.39) yield

min
y∈TN−1

(
γ̃ − α(y)

)
< 0 < max

y∈TN−1

(
γ̃ − α(y)

)
. (4.42)

Since f ′(Ũ(x, y)) is bounded and Lipschitz, we obtain from [35, Theorem 18(c)] and subse-
quent repeated application of [35, Theorem 18(b)] that for each s > 0 there is Cs > 0 such
that

|Vx(x, y)| ≤ Cs‖V ‖L∞(Bs(x,y)) for all (x, y) ∈ R× T
N−1
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(here Bs(x, y) is the ball of radius s centered at (x, y)). Since V ≥ 0 satisfies (4.41) and
(4.42), the Harnack inequality from [24] holds for V , so there is C ′

s > 0 such that

‖V ‖L∞([x−s,x+s]×TN−1) ≤ C ′
sV (x, y) for all (x, y) ∈ R× T

N−1.

Thus for any fixed s > 0 and C := CsC
′
s > 0,

|Vx(x, y)| ≤ CV (x, y) for all (x, y) ∈ R× T
N−1.

But this means that

∆yŨ + A−2Ũxx + (γ̃ + CA−2 − α(y)) Ũx + f(Ũ) ≤ 0.

On the other hand, as for the function U in Theorem 1.1 under assumption (1.8), [38,

Theorem 6.1] and (4.42) imply that Ũx < 0 everywhere in R× T
N−1. Since

γ∗
A = min

w∈C2(R×TN−1), wx<0, w(−∞,·)=1,w(+∞,·)=0
sup

(x,y)∈R×TN−1

(
∆yw + A−2wxx + f(w)

−wx
+ α(y)

)
,

as follows from the same arguments as the ones used in [21] in the case of infinite cylinders
with bounded cross sections and Neumann boundary conditions, this implies γ∗

A ≤ γ̃+CA−2.
It follows that (4.37) holds, and thus also (1.6) and

γ∗(q, f) = lim
θ′→0

γ∗(q, fθ′) = lim
θ′→0

γ∗(q, f̃θ′).

Finally, assume that U ′ is any solution of (1.7) with γ′ < γ∗(q, f) and let U := Ũθn for

θn as above and small enough so that γ := γ∗(q, f̃θn) > γ′. Then the argument after (3.25)
in Subsection 3.1 applied to U, U ′ and with θ replaced by 0 in (3.28) yields a contradiction
in the same way as before, with (3.30) and (3.31) replaced by

∆yV (x, y) + (γ′ − α(y)) Vx(x, y) = (γ′ − γ)Ux(x− h, y) + f(U ′(x− h, y))− f(U(x, y))

and by (γ′−γ)Ux ≥ 0, and considering the operator L′ from the right-hand side of the above
equation instead of L. (Note that the upper bound in (3.25) holds for γ′ because it holds for
γ and the lower bound in (3.25) follows from the first part of the proof of Lemma 3.1 which
only uses that f ≥6≡ 0 on [0, 1], so (3.26) holds for γ′. Moreover,

lim
x→+∞

U(x, y) ≡ −θn < 0 ≡ lim
x→+∞

U ′(x, y)

actually makes the proof even easier.) Thus we must have γ′ ≥ γ∗(q, f) and the proof of
Theorem 1.5 is finished. �
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C. R. Acad. Sci. Paris Ser. II 328 (2000), 255–262.

[3] M. Bages, P. Martinez, J.-M. Roquejoffre, How travelling waves attract the solutions of

KPP equations, Trans. Amer. Math. Soc., to appear.

[4] H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion

equations, In: Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science
Series C, 569, H. Berestycki and Y. Pomeau eds, Kluwer, Doordrecht, 2003.

[5] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl.
Math. 55 (2002), 949–1032.

[6] H. Berestycki, F. Hamel, Gradient estimates for elliptic regularizations of semilinear

parabolic and degenerate elliptic equations, Comm. Part. Diff. Equations 30 (2005), 139–
156.

[7] H. Berestycki, F. Hamel, Reaction-Diffusion Equations and Propagation Phenomena, Ap-
plied Mathematical Sciences, Springer Verlag, to appear.

[8] H. Berestycki, F. Hamel, N. Nadirashvili, Elliptic eigenvalue problems with large drift and

applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), 451–
480.

[9] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems.

I - Periodic framework, J. Europ. Math. Soc. 7 (2005), 173–213.

[10] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment

model: II - Biological invasions and pulsating traveling fronts, J. Math. Pures Appl. 84
(2005), 1101–1146.

[11] H. Berestycki, B. Larrouturou, P.-L. Lions, Multidimensional traveling-wave solutions of a

flame propagation model, Arch. Ration. Mech. Anal. 111 (1990), 33–49.

[12] H. Berestycki, B. Larrouturou, J.-M. Roquejoffre, Stability of traveling fronts in a curved

flame model, Part I: Linear analysis, Arch. Ration. Mech. Anal. 117 (1992), 97–117.

[13] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol.
Soc. Bras. Mat. 22 (1991), 1–37.

[14] H. Berestycki, L. Nirenberg, Traveling fronts in cylinders, Ann. Inst. H. Poincaré, Anal.
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[45] A. Zlatoš, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement

by flows, Arch. Ration. Mech. Anal. 195 (2010), 441–453.
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