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Abstract—We investigate the problem of type isomorphisms
in a programming language with higher-order references. We
first recall the game-theoretic model of higher-order references
by Abramsky, Honda and McCusker. Solving an open problem
by Laurent, we show that two finitely branching arenas are
isomorphic if and only if they are geometrically the same, up to
renaming of moves (Laurent’s forest isomorphism). We deduce
from this an equational theory characterizing isomorphisms of
types in a finitary language L2 with higher order references.
We show however that Laurent’s conjecture does not hold on in-
finitely branching arenas, yielding a non-trivial type isomorphism
in the extension of L2 with natural numbers.

I. INTRODUCTION

During the development of denotational semantics of pro-

gramming languages, there was a crucial interest in defining

models of computation satisfying particular type equations.

For instance, a model of the untyped λ-calculus can be ob-

tained by isolating a reflexive object (that is, an object D such

that D ≃ DD) in a cartesian closed category. In the 80s, some

people started to consider the dual problem of finding these

equations that must hold in every model of a given language:

they were coined type isomorphisms by Bruce and Longo. In

[8], they exploited a theorem by Dezani [9] giving a syntactic

characterization of invertible terms in the untyped λ-calculus

to prove that that the only isomorphisms of types present in

simply typed λ-calculus with respect to βη equality are those

induced by the equation A → (B → C) ≃ B → (A → C).
Later this was extended to handle such things as products [7],

higher order [8], possibly with unit types [10], or sums [11].

The interest in type isomorphisms grew significantly when

their practical impact was realized. In [23], Rittri proposed to

search functions in software libraries using their type modulo

isomorphism as a key. He also considered the possibilities

offered by matching and unification of types modulo iso-

morphisms [24]. A whole line of research has also been

dedicated to the study of type isomorphisms and their use for

search tools in richer type systems (such as dependent types

[5]), along with studies about the automatic generation of the

corresponding coercions [4]. Such tools were implemented for

several programming languages, let us mention the command

line tool camlsearch written by Vouillon for CamlLight.

It is worth noting that even though these tools are written for

powerful programming languages featuring complex compu-

tational effects such as higher-order references or exceptions,

they rely on the theory of isomorphisms in weaker (purely

functional) languages, such as the second-order λ-calculus

with pairs and unit types for camlsearch. Clearly, all type

isomorphisms in λ-calculus are still valid in the presence of

computational effects (indeed, the operational semantics are

compatible with βη). What is less clear is whether those effects

allow the definition of new isomorphisms. However, it seems

that syntactic methods deriving from Dezani’s theorem on

invertible terms in λ-calculus cannot be extended to complex

computational effects. The base setting itself is completely

different: the dynamics of terms are no longer defined by re-

duction rules but by operational semantics, the natural equality

between terms is no longer convertibility but observational

equivalence, so new methods are required.

In [18], Laurent introduced the idea of applying game

semantics to the study of type isomorphisms (although one

should mention the precursor characterization of isomorphisms

by Berry and Curien [6] in the category of concrete data

structures and sequential algorithms). Exploiting his earlier

work on game semantics for polarized linear logic [17], he

found the theory of isomorphisms for LLP from which he

deduced (by translations) the isomorphisms for the call-by-

name and call-by-value λµ-calculus. The core of his analysis is

the observation that isomorphisms between arenas A and B in

the category Inn [13] of arenas and innocent strategies are in

one-to-one correspondence with forest isomorphisms between

A and B, so in particular two arenas are isomorphic if and

only if their representations as forests are identical up to the

renaming of vertices.

From the point of view of computational effects this looks

promising, since game semantics are known to accommodate

several computational effects such as control operators [15],

ground type [2] or higher-order references [1] or even con-

currency [16] in one single framework. Moreover, Laurent

pointed out in [18] that the main part of his result, namely the

fact that each Inn-isomorphism induces a forest isomorphism,

does not really depend on the innocence hypothesis but

only on the weaker visibility condition. As a consequence,

his method for characterizing isomorphisms still applies to

programming languages such as Idealized Algol whose terms

can be interpreted as visible strategies [2]. Laurent raised

the question whether his result could be proved without the

visibility condition, therefore yielding a characterization of

isomorphisms in a programming language whose terms have

access to higher-order references and hence get interpreted as

non-visible strategies [1].

The contribution of this paper is threefold: (1) We give a

new and synthetic reformulation of Laurent’s tools to approach
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A×B ≃E B ×A

A× (B × C) ≃E (A×B)× C

A× unit ≃E A

bool×A → B ≃E (A → B)× (A → B)

var[A] ≃E (A → unit)× (unit → A)

Figure 1. Isomorphisms in L2

game-theoretically the problem of type isomorphisms, (2) We

prove Laurent’s conjecture in the case of finitely branching

arenas, allowing us to characterize all type isomorphisms in a

finitary (integers-free) programming language L2 with higher-

order references by the theory E presented1 in Figure 1, (3)

We show however a counter-example to the conjecture when

dealing with infinitely branching arenas, and the counter-

example yields a non-trivial type isomorphism between the

types (nat → unit) → (nat → unit) → unit and

(nat → unit) → (unit → unit) → unit in the extension

of L2 with natural numbers. So Laurent’s conjecture, in the

general case, is false.

In Section II we introduce the finitary language L2 strongly

inspired by Abramsky, Honda and McCusker’s language L [1],

along with its standard game semantics. Then we turn to the

problem of isomorphisms of types. In Section III we first give

an analysis of isomorphisms in several subcategories of the

games model, reproving and extending Laurent’s theorem, then

we use it to characterize isomorphisms in L2. We show how

this characterization fails in the presence of natural numbers,

and we give a non-trivial type isomorphism in L.

II. THE LANGUAGE L2 AND ITS GAME SEMANTICS

A. Definition of L2

a) Basic definitions: We introduce here a finitary variant

L2 of the programming language L with higher-order refer-

ences modeled by Abramsky, Honda and McCusker in [1]: it

only differs from L in the fact that the type of natural numbers

has been replaced with a type for booleans, along with all the

associated combinators. The terms and types of L2 are given

by the following grammars.

A ::= unit | bool | A×A | A → A | var[A]

M ::= x | λx.M | M M | 〈M,M〉 | fst M | snd M

| skip | true | false | if M M M

| newA | M := M | !M | mkvar M M

The typing rules for λ-calculus, pairs and booleans are stan-

dard. The rules for references follow.

Γ ⊢ newA : var[A]

Γ ⊢ M : var[A]

Γ ⊢!M : A

1The absence of the equation A → (B → C) ≃ B → (A → C)
mentioned in the introduction may seem strange, but is standard in call-by-
value [18] due to the restriction of the η-rule on values.

Γ ⊢ M : var[A] Γ ⊢ N : A

Γ ⊢ M := N : unit

Γ ⊢ M : A → unit Γ ⊢ N : unit → A

Γ ⊢ mkvar M N : var[A]

This language is equipped with a standard big-step call-

by-value operational semantics. To define it, we temporarily

extend the syntax of terms with identifiers for locations,

denoted by l. Then, values are formed as follows:

V ::= skip | true | false | λx.M | 〈V, V 〉 | l | mkvar V V

The operational semantics of L2 are then given as an

inductively generated relation (L, s)M ⇓ (L′, s′)V , where

s is a partial map from locations in L to values. The rules

for λ-calculus, products and booleans are standard (they do

not affect the store) and we give in Figure 2 the rules for

references. Note that as usual, some store annotations are

omitted to aid readability; the rules can be disambiguated as

explained in [1]. For a closed term M without free locations,

we write M ⇓ to indicate that (∅, ∅)M ⇓ (L, s)V for some

L, s and V . The observational preorder M ≤ N between

terms M and N is then defined as usual, by requiring that

for all contexts C[−] such that C[M ] and C[N ] are closed

and contain no free location, if C[M ] ⇓ then C[N ] ⇓. The

corresponding equivalence relation is denoted by ∼=.

b) Syntactic extensions: In this core language, one can

define all the constructs of a basic imperative programming

language. For instance if C1 has type unit, sequential com-

position C1;C2 is given by:

(λd : unit. C2) C1

This works only because the evaluation of L2 is call-by-value.

Likewise, a variable declaration new x : A in N (where M
has type A) can be obtained by

(λx : var[A]. N) newA

and its initialized variant new x = M in N as expected.

As usual with general references one can define a fixed point

combinator Y by

λf : (A → B) → (A → B).
new y : A → B in

y := λa : A. f !y a;
!y

This can be easily applied to implement a while loop. We

can also use it to build an inhabitant ⊥ to any type A.

c) Bad variables and isomorphisms: The mkvar con-

struct allows to combine arbitrary “write” and “read” methods,

forming terms of type var[A] not behaving as reference cells:

those are called bad variables. We include bad variable in

L2 for two reasons. First, because games models that allow

bad variables are notably simpler than those which do not

[22], for which it is not clear whether our methods apply.

Second, because we expect the problem of isomorphisms

without bad variables to be far more subtle than what we

consider here, because of the observation by O’Hearn that
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M1 ⇓ V1 M2 ⇓ V2

mkvar M1 M2 ⇓ mkvar V1 V2

(l 6∈ L)
(L, s) newA ⇓ (L ∪ {l : A}, s) l

(L, s)M ⇓ (L′, s′)l (L′, s′)N ⇓ (L′′, s′′)V

(L, s)M := N ⇓ (L′′, s′′(l 7→ V ))skip

M ⇓ mkvar V1 V2 N ⇓ V V1(V ) ⇓ skip

M := N ⇓ skip

(L, s)M ⇓ (L′, s′)l s′(l) = V

(L, s)!M ⇓ (L′, s′)V

M ⇓ mkvar V1 V2 V2(skip) ⇓ V

!M ⇓ V

Figure 2. Big-step operational semantics for references in L2.

without bad variables, not only var[X] is not functorial, but it

does not even preserve isomorphisms. However, note that var-

free isomorphisms are the same with or without bad variables.

d) Isomorphisms of types: We are now ready to define

the notion of isomorphism of types in L2.

DEFINITION 1. If A and B are two types of L2, we say that

A and B are isomorphic, denoted by A ≃L2
B, if and only if

there are two terms x : A ⊢ M : B and y : B ⊢ N : A such

that:

(x : A ⊢ (λy.N)M) ∼= idA

(y : B ⊢ (λx.M)N) ∼= idB

where idA = x : A ⊢ x : A.

B. The games model

We now describe the fully abstract games model of L2. Note

that except a few details there is nothing new here, as this is

precisely the model described in [1]. We however include the

definitions (but no proofs) for the sake of self-completeness.

e) Arenas, plays: Our games have two participants:

Player (P) and Opponent (O). Valid plays between O and

P are generated by directed graphs called arenas, which

are the abstract representation of types. An arena is a tuple

A = 〈MA, λA, IA,⊢A〉 where

• MA is a set of moves,

• λA : MA → {O,P} × {Q,A} is a labeling function

which indicates whether a move is by Opponent or Player,

and whether it is a Question or Answer. We write

{O,P} × {Q,A} = {OQ,OA,PQ,PA}

λA = 〈λOP
A , λAQ

A 〉

The function λA denotes λA with the O/P part reversed.

A move a ∈ MA is a O-move (resp. P -move) if λA(a) =
O (resp. λA(a) = P ).

• IA ⊆ λA
−1({OQ}) is a set of initial moves

• ⊢A⊆ M2
A is a relation called enabling, which satisfies

that if a ⊢A b, then λOP
A (a) 6= λOP

A (b), and if λQA
A (b) =

A then λQA
A (a) = Q.

We require two additional conditions on arenas: they should

be complete (for each question m ∈ MA, there should be an

answer n ∈ MA such that m ⊢A n) and finitely branching

(for all a ∈ MA, the set {m ∈ MA | a ⊢A m} is finite).

We consider the usual arrow construction A ⇒ B on arenas,

as well as products Πi∈IAi and lifted sums Σi∈IAi of finite

families of arenas. Their definitions can be found, for example,

in [1]. It is obvious that they preserve the fact of being

complete and finitely branching. The 0-ary product (the empty

arena) is denoted by 1, and will be a terminal object in our

category.

If A is an arena, a justified sequence over A is a sequence

of moves in MA together with justification pointers: for each

non-initial move b, there is a pointer to an earlier move a
such that a ⊢A b. In this case, we say that a justifies b.
The transitive closure of the justification relation is called

hereditary justification.

f) Notations: The relation ⊑ will denote the prefix or-

dering on justified sequences. By s ⊑P t, we mean that s
is a P -ending prefix of t. If s is a sequence, then |s| will

denote its length. We also define the prefix functions ip and

jp by ip(ǫ) = ǫ and ip(sa) = s, and jp(si) = ǫ if i is initial,

jp(s1as2b) = s1a if b is justified by a.

A justified sequence s over A is a legal play if it is:

• Alternating: If s′ab ⊑ s, then λOP
A (a) 6= λOP

A (b).
• Well-bracketed: a question q is answered by a later

answer a if q justifies a. A justified sequence s is

well-bracketed if each answer is justified by the last

unanswered question, that is, the pending question.

The set of all legal plays on A is denoted by LA. We will

also be interested in the set L′
A of well-bracketed but not

necessarily alternating plays on A, called pre-legal plays.

g) Strategies, composition: A strategy σ on an arena A
(denoted σ : A) is a non-empty set of P -ending legal plays

on A satisfying prefix-closure, i.e. that for all sab ∈ σ, we

have s ∈ σ and determinism, i.e. that if sab, sac ∈ σ, then

b = c. As usual, strategies form a category which has arenas

as objects, and strategies σ : A ⇒ B as morphisms from

A to B. If σ : A ⇒ B and τ : B ⇒ C are strategies,

their composition σ; τ : A ⇒ C is defined as usual by first

defining the set of interactions u ∈ I(A,B,C) of plays

u ∈ L(A⇒B)⇒C such that u↾A,B ∈ LA⇒B , u↾B,C ∈ LB⇒C

and u↾A,C ∈ LA⇒C (where s↾A,B is the usual restriction oper-

ation essentially taking the subsequence of s in MA and MB ,

along with the possible natural reassignment of justification

pointers). The parallel interaction of σ and τ is then the set

σ||τ = {u ∈ I(A,B,C) | u↾A,B ∈ σ ∧ u↾B,C ∈ τ}, and the

composition of σ and τ is obtained by the hiding operation,

i.e. σ; τ = {u↾A,C | u ∈ σ||τ}. It is known (e.g. [19])

that composition is associative. It admits copycat strategies

as identities: idA = {s ∈ LA1⇒A2
| ∀s′ ⊑P s, s′↾A1

= s′↾A2
}.

If s ∈ LA, the current thread of s, denoted ⌈s⌉, is the

subsequence of s consisting of all moves hereditarily justified

by the same initial move as the last move of s. All strategies we

are interested in will be single-threaded, i.e. they only depend

on the current thread. Formally, σ : A is single-threaded if
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• For all sab ∈ σ, b points in ⌈sa⌉,

• For all sab, t ∈ σ such that ta ∈ LA and ⌈sa⌉ = ⌈ta⌉,

we have tab ∈ σ.

It is straightforward to prove that single-threaded strategies

are stable under composition and that idA is single-threaded.

Hence, there is a category Gam of arenas and single-threaded

strategies. The category Gam will be the base setting for our

analysis. Given arenas A and B, the arena A × B defines a

cartesian product of A and B and the construction A ⇒ B
extends to a right adjoint A × − ⊣ A ⇒ −, hence Gam is

cartesian closed and is a model of simply typed λ-calculus. It

also has weak coproducts, given by the lifted sum [1].

h) Views, classes of strategies: In this paper, we are

mainly interested in the properties of single-threaded strate-

gies. However, to give a complete account of the context it

seems necessary to mention several classes of strategies of

interest in this setting. The most important one is certainly

the class of innocent strategies, both for historical reasons and

because it is at the core of the frequent definability results –

and thus of the full abstraction results – in game semantics.

Their definition requires the notion of P -view, defined as usual

by induction on plays as follows.

psiq = i if i ∈ IA
psaq = psq if λOP

A (a) = P
ps1as2bq = ps1qab if λOP

A (b) = O and a justifies b

A strategy σ : A is then said to be visible if it always points

inside its P -view, that is, for all sab ∈ σ the justifier of b
appears in psaq. The strategy σ is innocent if it is visible, and

if its behaviour only depends on the information contained in

its P -view. More formally, whenever sab, t ∈ σ such that

ta ∈ LA and psaq = ptaq, we must also have tab ∈ σ.

Both visibility and innocence are stable under composition

[13], [2], thus let us denote by Vis the category of arenas

and visible single-threaded strategies and by Inn the category

of arenas and innocent strategies. Both categories inherit the

cartesian closed structure of Gam, but strategies in Inn

are actually nothing but abstract representation of (η-long β-

normal) λ-terms and form a fully complete model of simply-

typed λ-calculus. Strategies in Vis have more freedom, they

correspond in fact to programs with first-order store [2].

C. Modeling L2 in Famf(Gam)

i) Interpretation: The three categories Gam, Vis and

Inn are categories of negative games (in which Opponent

always plays first), and these are known to model call-by-

name computation whereas L2 is call-by-value. We could have

modeled it using positive games, following the lines of [12].

Instead, we follow [1] and model L2 in the free completion

Fam(Gam) of Gam with respect to coproducts. This will

allow us to first characterize isomorphisms in Gam (result

which could be applied to a call-by-name language with state)

then deduce from it the isomorphisms in Fam(Gam). In fact

we will consider the completion Famf(Gam) of Gam with

respect to finite coproducts, since L2 has only finite types.

The objects of Famf(Gam) are finite families {Ai | i ∈ I}
of arenas. A map from {Ai | i ∈ I} to {Bj | j ∈ J} is

the data of a function f : I → J together with a family of

strategies {σi : Ai → Bf(i) | i ∈ I}. As shown in [3], the

cartesian closed structure of Gam extends to Famf(Gam).
Moreover, the weak coproducts in Gam give rise to a strong

monad T on Famf(Gam). Given families A = {Ai | i ∈ I}
and B = {Bj | j ∈ J}, we define

A×B = {Ai ×Bj | (i, j) ∈ I × J}

A ⇒ B = {Πi∈I(Ai ⇒ Bf(i)) | f : I → J}

TA = {Σi∈IAi}

The singleton family {1} is the terminal object of

Famf(Gam). By abuse of notation, we will still denote it

by 1. The other components of the cartesian closed structure

of Famf(Gam) and of the strong monad structure of T follow

naturally from these definitions. We skip the details, as all of

this is already covered in [1]. It is known that given a cartesian

closed category with a strong monad, one can interpret call-by-

value languages in the Kleisli category of the monad [21], and

the interpretation of L2 in Famf(Gam) follows these lines.

We interpret unit and bool as the families with respec-

tively one and two elements whose components are all empty

arenas. Of course we also need to give an interpretation for

var[A], along with morphisms for the read and write opera-

tions of the reference cell. Once again, we follow the lines of

[1] and consider the type var[A] as the product of its read and

write methods, hence we set Jvar[A]K = (JAK ⇒ T1)×T JAK.

The interpretation relies on the definition of a morphism

1 → Jvar[A]K, that is, if JAK = {Ai | i ∈ I}, a strategy

cell : (Πi∈I(Ai ⇒ 1⊥)× Σi∈IAi)⊥, where A⊥ = T{A} is

the lift operation. Apart from the initial protocol due to the lift,

the strategy cell works by associating each read request with

the latest write request and playing copycat between them.

A more detailed description is given in [1], and an algebraic

definition is obtained in [20]. As proved in [1], this gives a

sound interpretation of L2 in Famf(Gam)T .
j) Complete plays and full abstraction: A fully abstract

model of L2 is obtained by quotienting Famf(Gam)T by the

usual observational preorder. However, as is often the case

with fully abstract game semantics of languages with store,

it is effectively presentable: the observational preorder can be

characterized directly. Say a play s ∈ LA is complete if it has

as many questions and answers, i.e. all questions have been

answered. If σ is a strategy on an arena A, then let us denote by

comp(σ) the set of complete plays in σ. Take σ, τ : A → B
two morphisms in Famf(Gam)T , with A = {Ai | i ∈ I}
and B = {Bj | j ∈ J}. Then, σ and τ consist of families

{σi : Ai → Σj∈JBj | i ∈ I} and {τi : Ai → Σj∈JBj |
i ∈ I}. We then say that σ 4 τ if and only if for all i ∈ I ,

comp(σi) ⊆ comp(τi).
Take now two terms M and N of type A, and suppose

JAK = {Ai | i ∈ I}. Then JMK and JNK are morphisms from

1 to T JAK in Famf(Gam), i.e. strategies on Σi∈IAi. Given

the full abstraction result of [1], it is then straightforward to

prove the following equivalence:

M ≤ N ⇔ JMK 4 JNK

This concrete representation of the observational preorder will

be central to our characterization of isomorphisms in L2.
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III. ISOMORPHISMS IN Gam

We are now going to extend Laurent’s tools [18] to char-

acterize isomorphisms of types for L2. We will first recall

Laurent’s work in the visible and innocent cases, then extend

it to characterize isomorphisms in Gam. From there, we

will switch to call-by-value and study the isomorphisms in

Famf(Gam), and in its Kleisli category over T .

A. Isomorphisms and zig-zag strategies

We start by giving the definition of (a subtle adaptation of)

Laurent’s zig-zag plays.

DEFINITION 2. Let s ∈ LA⇒B be a legal play. It is zig-zag

if

1. Each P -move following an O-move in A (resp. in B) is

in B (resp. in A),

2. A P -move in A immediately follows an initial O-move in

B if and only if it is justified by it,

3. The (not necessarily legal) sequences s↾A and s↾B have

the same pointers.

If s only satisfies the first two conditions, then it is pre-zig-zag.

By extension, we will say that a strategy σ is pre-zig-zag

(resp. zig-zag) if all its plays are so. The core of Laurent’s

theorem is then that all isomorphisms in Vis are zig-zag

strategies. His proof does rely on visibility, however it only

gets involved to prove that the condition 3 of zig-zag plays is

satisfied. The first half of his argument does not use visibility

and actually proves that all isomorphisms in Gam are pre-

zig-zag. Here, being mainly interested in Gam, we make this

explicit. We need first the following lemma.

LEMMA 1 (Dual pre-zig-zag play). Let s ∈ LA⇒B be

a pre-zig-zag play, then there exists an unique pre-zig-zag

s ∈ LB⇒A such that s↾A = s↾A and s↾B = s↾B .

Proof: We define s by induction on s; ǫ = ǫ, and sab =
sba. We keep the same pointers, except for the case where a

move a in A was justified by an initial move b in B. Then

because of the pre-zig-zag condition on s, a is necessarily an

initial move in A and is set as the new justifier of b in s. There

is no other possible s, since the restrictions on A and B are

constrained by the hypotheses and their interleaving is forced

by the alternation and the pre-zig-zag conditions on s.

LEMMA 2. If σ : A ⇒ B, τ : B ⇒ A form an isomorphism in

Gam, then they are pre-zig-zag and for all s, s ∈ σ ⇔ s ∈ τ .

Proof: Consider an isomorphism σ : A ⇒ B, τ : B ⇒ A
in Gam. We will prove by induction on even k ∈ N that all

plays of σ, τ whose length is less than k are pre-zig-zag, and

that moreover {s | s ∈ σ ∧ |s| ≤ k} = {s ∈ τ | |s| ≤ k}.

If k = 0, this is trivial. Otherwise, suppose this is true

up to k ∈ N, and consider sab ∈ σ of length k + 2; let us

first prove condition (1). Without loss of generality, suppose

a ∈ MA. Since s↾B = s↾B , by a straightforward zipping

argument we can build an interaction u ∈ I(A1, B,A2) such

that u↾A1,B = s and u↾B,A2
= s, moreover since σ, τ form

an isomorphism we must have u↾A1,A2
∈ idA. Now, we

necessarily have b ∈ MB , otherwise u could be extended to

uab ∈ σ||τ with uab↾A1,A2
= u↾A1,A2

ab which is not a play

of the identity, contradiction. Hence sab satisfies condition 1
of pre-zig-zag plays.

To see why it satisfies condition 2, take sba ∈ σ with b in

B and a in A. If b is initial in B, then a necessarily points

to it since σ is single-threaded. Reciprocally, suppose a points

to an initial move in B earlier than b. Then we have s ∈ τ ,

and by the same zipping argument as above we have an unique

u ∈ I(B1, A,B2) such that u↾B1,A = s and u↾A,B2
= s. Since

σ, τ form an isomorphism we also have u↾B1,B2
∈ idB . Let

us now extend u to u′ = ub2ab1 in the unique way such that

u′
↾A,B2

= sba and u′
↾B1,A

∈ τ . Note that we are sure that b1 is

a move on B1 since sab1 is a play of τ of length k+2 and we

already know that these satisfy the condition 1 of pre-zig-zag

plays. But we also have u′
↾B1,B2

∈ idB , hence b2 points in s as

b1 points in s. This means that we have sab ∈ τ , such that a is

initial and b points in s, impossible since τ is single-threaded.

Hence sba satisfies condition 2 of pre-zig-zag plays.

We have proved that sab is pre-zig-zag, so sab is defined. By

induction hypothesis s ∈ τ and the same reasoning as above

shows that it extends to sab ∈ τ . The argument is symmetric,

hence {s | s ∈ σ ∧ |s| ≤ k + 2} = {s ∈ τ | |s| ≤ k + 2}.

For the sake of completeness, let us include Laurent’s

argument which proves that isomorphisms in Vis are zig-zag.

LEMMA 3. If σ : A ⇒ B, τ : B ⇒ A form an isomorphism

in Vis, then σ and τ are zig-zag strategies.

Proof: We already know that σ and τ are pre-zig-zag

strategies. We show by induction on n ∈ N that for all s ∈ σ,

if |s| ≤ n then s↾A and s↾B have the same pointers. Take

now s ∈ σ, and sab ∈ σ, suppose w.l.o.g. that a ∈ MA.

Suppose a points to (s↾A)i, then b points to (s↾B)i. Indeed,

it cannot point to (s↾B)j with j > i since that would break

visibility for σ. But if it points to (s↾B)j with j < i we use

the same reasoning on the dual pre-zig-zag play sab and get

a contradiction with the fact that τ is visible.

Let us denote by Gami, Visi and Inni the groupoids of

arenas and isomorphisms on the respective categories. In the

next sections, we use these facts to give more combinatorial

representations of Gami, Visi and Inni.

B. Notions of game morphisms

Laurent’s isomorphism theorem works by relating isomor-

phisms in Gam with isomorphisms in a simpler category

which has arenas as objects and forest morphisms2, i.e. maps

on moves that preserve initiality and enabling. Relaxing the

visibility conditions requires us to also consider relaxed no-

tions of game morphisms, that we present here.

DEFINITION 3. Let A be an arena. A path on A is a play

s ∈ LA such that except for the initial move, every move in

s points to the previous move. Formally, for all s′ab ⊑ s, a
justifies b in s. Let PA denote the set of paths on A. A path

morphism from A to B is a function φ : PA → PB such that

ip ◦ φ = φ ◦ ip and which preserves Q/A labeling: for all

2Note that in [18] arenas are forests, which is not the case here.



6

sa ∈ PA with φ(sa) = φ(s)b, we have λQA
A (a) = λQA

B (b).
There is a category Path of arenas and path morphisms.

This category Path comes with its own notion of iso-

morphisms of arenas. Note that whenever A is a forest, this

is exactly Laurent’s notion of forest isomorphism. We now

introduce two weaker notions of morphisms for arenas. In

what follows, let us call a legal play on A with only one

initial move a thread on A, and denote the set of threads on

A by TA. Likewise, let us call a pre-legal play with one initial

move a pre-legal thread and let us denote these by T ′
A.

DEFINITION 4. Let A, B be arenas, and let φ : T ′
A → T ′

B We

say that φ is a sequential morphism from A to B if ip ◦ φ =
φ ◦ ip, and if it preserves Q/A labeling, i.e. for all φ(sa) =
φ(s)b we have λQA

A (a) = λQA
B (b). We say that it is a justified

morphism if, additionally, jp ◦ φ = φ ◦ jp. There are two

categories Seq of arenas and sequential morphisms and Jus

of arenas and justified morphisms.

As above, we will denote by Seqi, Jusi and Pathi the

groupoids of invertible maps in Seq, Jus and Path. These

groupoids will soon appear to be identical to Gami, Visi and

Inni. To prove this, we need the following lemma.

LEMMA 4. Let s ∈ T ′
A, and σ : A ⇒ B an isomorphism in

Gam. There is then an unique play s′ ∈ σ such that s′↾A = s.

Proof: Remark first that if σ : A ⇒ B and τ : B ⇒ A
are inverses then they are both total, i.e. for all s ∈ σ and

sa ∈ LA⇒B there must be b such that sab ∈ σ, assuming it is

not the case easily leads to a contradiction. We now prove the

lemma by induction on s. If s = ǫ, this is trivial. Otherwise,

suppose sa ∈ T ′
A and we have by induction hypothesis s′ ∈ σ

such that s′↾A = s. If a is a P -move in A (hence an O-move

in A ⇒ B), there is an unique b such that s′ab ∈ σ, and

we do have s′ab↾A = sa. If a is an O-move in A (hence a

P -move in A ⇒ B), then let τ : B ⇒ A be the inverse of σ,

since s′ ∈ σ we have s′ ∈ τ . Being part of an isomorphism

τ is total, hence there is b such that s′ab ∈ τ . We deduce

from this that s′ba ∈ σ, and we have s′ba↾A = sa as needed.

This choice is unique: if there is another play t ∈ σ such that

t↾A = sa, then t = t′b′a (since t is zig-zag). By induction

hypothesis we have t′ = s′, thus s′b′a ∈ σ. From this we

deduce that s′ab′ ∈ τ , so b = b′ by determinism of τ .

PROPOSITION 1. If C ≃ D means that two groupoids C and

D are isomorphic, then we have:

Gami ≃ Seqi

Visi ≃ Jusi

Proof: Let us first define a functor F : Gami → Seqi.

It is defined as the identity on arenas. Let σ : A ⇒ B be

an isomorphism, and let s ∈ T ′
A then we define φσ(s) =

s′↾B , where s′ is the unique play on A ⇒ B which existence

is ensured by the lemma above. The function φσ commutes

with ip since σ is a pre-zig-zag strategy. To any question it

cannot associate an answer, as that would immediately break

well-bracketing on σ. But to any answer it cannot associate

a question, as that would immediately break well-bracketing

on σ−1. Then we define F (σ) = φσ . It is obvious that F
preserves identities and composition3.

Reciprocally, suppose φ : A → B is a sequential isomor-

phism. We mimic the usual definition of the identity by setting

G(φ) = {s ∈ LA⇒B | ∀s′ ⊑P s, φ(s′↾A) = s′↾B} (We apply

φ on plays whereas it is normally only defined on threads,

however it can be canonically extended to plays, so this is not

ambiguous). It is obvious that this construction is functorial,

and that it is inverse to F .

We have now an isomorphism Gami ≃ Seqi which

restricts naturally to Visi and Jusi. Indeed if σ : A ⇒ B
is a visible isomorphism, it is a zig-zag strategy therefore

s ∈ T ′
A and φσ(s) have the same pointers, which means that

jp◦φσ = φσ◦jp. Reciprocally if φσ is a justified morphism, all

s ∈ σ must be such that s↾A and s↾B have the same pointers,

therefore σ, being pre-zig-zag, always points in its P -view.

C. Innocent and visible case

In this section, we use the framework described above to

recall Laurent’s results. We have proved above that isomor-

phisms in Vis correspond to isomorphisms in Jus, which we

are now going to compare with isomorphisms in Path.

LEMMA 5. There is a full functor H : Visi → Pathi.

Proof: We have built in the above section a full and

faithful functor (actually an isomorphism) F : Visi → Jusi.

From a visible isomorphism σ : A ⇒ B we set H(σ) =
F (σ) ↾ PA, where f ↾ E′ restricts a function f : E → F
to a subset E′ ⊆ E of its domain. The image of a path by

F (σ) is always a path since it is a justified morphism, hence

H(σ) : PA → PB .

To see why H is full, suppose we have a path morphism

φ : PA → PB . Then φ admits a canonical extension φ∗ :
T ′
A → T ′

B . To define φ∗(s) we reason by induction on s, and

set φ∗(ǫ) = ǫ and φ∗(sa) = φ∗(s)a′, where a′ is the last move

of φ(pa), pa being the path of a in s. The move a′ keeps the

same pointer as a. It is clear that this defines as needed a

justified morphism φ∗ such that H(φ∗) = φ.

This ensures that arenas A and B are isomorphic in Vis

if and only if they are isomorphic in Path, i.e. they are

geometrically the same. Let us mention that as Laurent proved,

this correspondence is one-to-one in the innocent case: one

can prove that there is only one innocent zig-zag strategy

corresponding to a particular path isomorphism, hence H
restricts to an isomorphism of groupoids H ′ : Inni → Pathi.

k) Faithfulness of H: Note however that H itself is not

faithful, because we can exploit non-innocence to build non-

uniform isomorphisms, i.e. isomorphisms which change their

underlying path isomorphism as the interaction progresses. For

an example, consider the arena A =

q

q1 q2 a

a a
which is the interpretation of (bool → unit) → unit in

call-by-value and of unit × unit → unit in call-by-name.

3In fact, this construction can be seen as a particular case of Hyland and
Schalk’s faithful functor from games to relations [14], where the relation
happens to be functional.
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Figure 3. A play of the non-trivial involution i on A
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Gami
iso // Seqi

?
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Figure 4. Relations between all groupoids of isomorphisms

Consider now the strategy i : A ⇒ A which behaves as

follows. It starts by playing as the identity on A. The first

time Opponent plays q1 or q2 on the left hand side, it simply

copies it. Starting from the second time Opponent plays q1 or

q2 though, it swaps them. An example play of i is given in

Figure 3. Although it is not the identity, i is its own inverse.

Its image by H only takes into account the first behaviour

or i, thus is the same as for idA: the identity path morphism

on A. From this strategy we can extract the following term

f : B ⊢ M : B of L2, where B = (bool → unit) → unit.

new r := true in

λg.f(λb.if !r then r := false; g b else g (not b))

Although M is not the identity it is an involution on B, i.e.

we have (λf.M)(Mx) ∼=L2
x. Such non-trivial involutions

cannot be defined using only purely functional behaviour.

We give in Figure 4 a summary of all the groupoids of

isomorphisms encountered for the moment, along with their re-

lations. Following it, the question of finding the isomorphisms

in Gam boils down to the definition of an arrow from Seqi

to Pathi in this diagram, which is what we will attempt in

the next two subsections.

D. Non-visible isomorphisms by counting

We have seen above that we can build a full functor Visi →
Pathi, which allows to characterize isomorphic arenas in Vis.

However, this construction relies heavily on visibility. We now

investigate how to get rid of it and prove that two arenas A and

B are isomorphic in Gam if and only if they are isomorphic

in Path. In this subsection, we will describe for pedagogical

reasons an intuitive approach to the proof, which relies on

counting. However this approach suffers from some defects,

hence the full proof (described in the next subsection) will

follow slightly different lines.

If a ∈ MA, let us call its arity the quantity ar(a) = |{m ∈
MA | a ⊢A m}|. On pre-threads s ∈ T ′

A we define:

Q(s) =

|s|∑

i=1

ar(si)

If s ∈ T ′
A, Q(s) is also the number of ways s can be

extended to some sa (let us recall here that as a member

of T ′
A, s need not be alternating): the choice of a justifier

si plus a move enabled by si. These definitions allow to

express the following observation. If σ : A ⇒ B is an

isomorphism (thus a pre-zig-zag strategy) and s ∈ σ, then

Q(s↾A) = Q(s↾B), because σ being an isomorphism, it

must associate each possible extension of s↾A to an unique

extension of s↾B . But this also means that if sab ∈ σ we have

Q(s↾A) + ar(a) = Q(s↾Aa) = Q(s↾Bb) = Q(s↾B) + ar(b),
hence ar(a) = ar(b). Thus to each move a, σ must associate a

move with the same arity. This is a step in the right direction,

but we would like a deeper connection between a and b.
If a ∈ MA, we will use the notation Ja = {m ∈ MA |

a ⊢A m}. Let us define by induction on k the notion of a k-

isomorphism between a ∈ MA and b ∈ MB . For any a ∈ MA

and b ∈ MB there is automatically a 0-isomorphism ia,b. A

(k+1)-isomorphism from a to b is the data of an isomorphism

f : Ja → Jb along with, for all m ∈ Ja, a k-isomorphism

fm : m → f(m). We use the notation m ≃k n to denote

the fact that there is a k-isomorphism from m to n. In other

words, we have m ≃k n if the tree of paths of length at most k
starting form m is tree-isomorphic to the tree of paths of length

at most k starting from n. If k1 ≤ k2, f1 is a k1-isomorphism

and f2 is a k2-isomorphism, we say that f1 is a prefix of f2
if they agree up to depth k1. Note that in particular we have

m ≃1 n if and only if ar(m) = ar(n), so m ≃k n is indeed

a generalization of ar(m) = ar(n). By induction on k, one

can then prove that σ must always associate to each move m
a move n such that m ≃k n : to prove it for k+1, just apply

the counting argument above on ≃k-equivalence classes. From

all these k-isomorphisms, one can then deduce the existence

of a path isomorphism between A and B.

This counting argument has several unsatisfying aspects,

which are caused by the implicit use of the following lemma.

LEMMA 6 (Slicing of isomorphisms). Suppose E′ ⊆ E and

F ′ ⊆ F are finite sets, and that f : E → F and g : E′ → F ′

are isomorphisms. Then there is an isomorphism f \ g : E \
E′ → F \ F ′.

The obvious proof of this lemma is by cardinality reasons.

However this proof is, computationally speaking, “almost non-

effective”, in the sense that the isomorphism it produces

implicitly depends on the choice of a total ordering for E
and F . A consequence of that is that from any isomorphism in

Gam we will extract an isomorphism in Path, but we cannot

hope its choice to be canonical, for any reasonable meaning

of “canonical”. Even worse, the witness isomorphisms given

by this proof for ≃k and ≃k+1 need not agree together. This

implies that for infinitely deep arenas, one requires König’s
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Figure 5. Slicing of isomorphisms.

lemma to actually build a path isomorphism from a game

isomorphism. This means that we cannot deduce from the

proof above an algorithm to extract path isomorphisms.

E. Extraction of a path isomorphism

To obtain a more computationally meaningful extraction of

a path iso from a game iso, we must replace the proof of

Lemma 6 by something else than counting. As formalized in

the following proof, the idea is to remark that given the data

of Lemma 6, starting from x ∈ E \ E′, the sequence

x0 = f(x)

xn+1 = f ◦ g−1(xn)

must eventually reach F\F ′, as illustrated in Figure 5, yielding

a bijection between E \ E′ and F \ F ′.

PROPOSITION 2. If φ : A → B is a sequential play

isomorphism, then for all sa ∈ T ′
A with φ(sa) = φ(s)b,

there is a family (hk
s,sa)k∈N such that for all k, hk

s,sa is a

k-isomorphism from a to b. This family is coherent, in the

following sense: if k1 ≤ k2, hk1

s,sa is a prefix of hk2

s,sa.

Proof: We will use the following notations. If s ∈ T ′
A,

Es will be the set of atomic extensions of s, that is of plays

sa ∈ T ′
A, and Fs will be the set of atomic extensions of φ(s).

For all plays sa ∈ T ′
A, although strictly speaking Es is not a

subset of Esa, we have the following decomposition:

Esa = Es + Ja

Indeed, a move extending sa can either point to some si or

to a. Note also that for any s, φ : sa 7→ φ(s)b induces an

isomorphism fs : a 7→ b from Es to Fs.

For all s ∈ T ′
A and sa ∈ Es, we follow the reasoning illus-

trated in Figure 5 and consider a bipartite directed graph Gs,sa

defined as follows: its set of vertices is V = Esa+Fsa and its

set of edges is E = {(x, fsa(x)) | x ∈ Esa}+ {(y, f−1
s (y)) |

y ∈ Fs}. This graph is “deterministic”, in the sense that the

outwards degree of each vertex is at most one, moreover the

only vertices whose outwards degree is 0 are those of Jb
(where b = fs(a), so Fsa = Fs + Jb). Moreover Gs,sa must

be acyclic, since fs and fsa are isomorphisms. Thus from any

vertex in Ja, there is an unique path in G leading to a vertex

in Jb; this induces an isomorphism gs,sa : Ja → Jb. For each

pair (m, gs,sa(m)) we also keep track of the corresponding

path pms,sa = (m, fsa(m), f−1
s (fsa(m)), . . . , gs,sa(m)).

It is now time to build the k-isomorphisms, by induction

on k. For k = 0 this is obvious. For fixed k + 1 ≥ 1,

by induction hypothesis there is for each sa ∈ T ′
A with

φ(sa) = φ(s)b a k-isomorphism hk
s,sa from a to b. In

particular, for fixed sa ∈ T ′
A, consider the graph Gs,sa. Each

of its edges of the form (x, fsa(x)) are now labeled by the

k-isomorphism hk
sa,x and all its edges of the form (y, f−1

s (y))
are labeled by (hk

s,f−1
s (y)

)−1. For each pair (m, gs,sa(m))

we can now compose the labels along the path pms,sa and

get a k-isomorphism im : m → gs,sa(m). We then define

hk+1
s,sa = (gs,sa, (im)m∈Ja

) which is as needed a (k + 1)-
isomorphism from a to b.

Note finally that if k1 ≤ k2, hk1

s,sa is a prefix of hk2

s,sa. This is

proved by simultaneous induction on k1 and k2. If k1 = 0 this

is obvious. Otherwise, it relies on the fact that the graph Gs,sa

does not depend on k. Hence hk1+1
s,sa = (gs,sa, (im)m∈Ja

) and

hk2+1
s,sa = (gs,sa, (jm)m∈Ja

), and each im has be obtained from

k1-isomorphisms in the same way as jm has been obtained

from k2-isomorphisms, so it immediately boils down to the

induction hypothesis.

THEOREM 1. Two finitely branching arenas A and B are

Gam-isomorphic if and only if they are Path-isomorphic.

Proof: Consider an isomorphism σ : A ⇒ B in Gam.

Restricted on plays with only two moves, it gives an iso-

morphism f : IA → IB . By the previous proposition, there

is for each i ∈ IA and for each k ∈ N a k-isomorphism

hk
ǫ,i : i → f(i). Additionally, all these k-isomorphisms

are compatible with each other, so they converge to an ω-

isomorphism hǫ,i : i → f(i). The iso f together with hǫ,i for

all i define a path isomorphism from A to B.

l) Canonicity: For each pair of arenas A,B, we have

built a function KA,B : Gami(A,B) → Pathi(A,B). The

natural question is then whether, like in the other cases, this

function defines a full functor. Unfortunately the answer is no,

in fact KA,B is not even functorial. Indeed, the construction

is based on the more explicit proof of Lemma 6 illustrated in

Figure 5, which is not functorial; one can find sets E′ ⊆ E,

F ′ ⊆ F and G′ ⊆ G and isomorphisms E
f // F

g // G

and E′
f ′

// F ′
g′

// G′ such that (f \ f ′); (g \ g′) 6=
(f ; g) \ (f ′; g′). From this it is not hard to find a counter-

example to the functoriality of KA,B . It is a bit lengthy to

describe it properly though, so we do not include it.

Although not being a functor, K does satisfy some canon-

icity property: its result is invariant under renaming of moves

in A and B. In other terms, KA,B : Gami(A,B) →
Pathi(A,B) is natural in A and B, if both Gami(−,−) and

Pathi(−,−) are seen as bifunctors from Path
op
i × Pathi

to Set (using implicitly the faithful functor from Pathi to

Gami of Figure 4).

F. Application to L2

Our isomorphism theorem most naturally applies to Gam

(so to call-by-name languages), but L2 is modeled in

Famf(Gam), and more precisely in the Kleisli category of the

strong monad T , so we have to check how our result extends

to this. Let us first relate isomorphisms in Famf(Gam)T and

isomorphisms in Gam using the following lemma.
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LEMMA 7. Let A = (Ai)i∈I and B = (Bj)j∈J , then isomor-

phisms between A and B in Famf(Gam)T are in one-to-one

correspondence with pairs (f, (σi)i∈I) where f : I → J is a

bijection and each σi : Ai ⇒ Bf(i) is an iso in Gam.

Proof: Imagine σ : A → T (B) and τ : B → T (A)
are morphisms in Famf(Gam) that form an isomorphism in

Famf(Gam)T . Here A and B are families of arenas, so A =
(Ai)i∈I , and σ = (σi)i∈I with σi : Ai ⇒ T (B). Similarly,

we have B = (Bj)j∈J and τj : Bj ⇒ T (A). Then, first note

that σi and τj necessarily first give an answer to the initial

Opponent move in T , i.e. the initial question of the lifted

sum in T (B) and T (A). Indeed take i ∈ I , and consider

σi; τ
∗ : Ai → T (A), where τ∗ : T (B) → T (A) is the lifting

of τ : B → T (A). This morphism must be a component of

the identity on A in Famf(Gam)T since σ, τ form an iso.

In particular, it does directly answer the initial move in T .

However, by definition of τ∗ : T (B) → T (A) it is strict, i.e.

it directly interrogates the left occurrence of T , so σi must

necessarily first answer the initial move in T otherwise we

would immediately get a contradiction.

This means that each σi must first choose a component

j ∈ J (thus inducing a function f : I → J), then play as

σ′
i : Ai ⇒ Bj . The same analysis on τ provides a function

g : J → I and strategies τ ′j : Bj ⇒ Ag(j), and it is then

obvious that since σ, τ form an isomorphism g must be inverse

of f and each τ ′j inverse of σ′
g(j).

m) Syntactic characterization: Let us prove now that

the equational theory E given in Figure 1 characterizes the

types A and B such that JAK and JBK are isomorphic in

Famf(Gam)T .

LEMMA 8 (Type normal form). Any type A has an unique

representative (up to ≃E ) generated by the non-terminal S in:

S ::= booln × T

T ::= unit | Πi∈IU

U ::= T → S

Proof: Straightforward.

PROPOSITION 3. If JAK and JBK are isomorphic in

Famf(Gam)T , then A ≃E B.

Proof: By induction on their normal forms. For types

generated by S take A ≃E booln×A′ and B ≃E boolp×B′.

By Lemma 7 we have n = p (since JA′K and JB′K, generated

by T , must be singletons) and we still have JA′K ≃Famf (Gam)T

JB′K. The case of types generated by T and U is direct.

THEOREM 2. For any types A,B of L2 whose interpretation

give families (Ai)i∈I and (Bj)j∈J the following propositions

are equivalent:

(1) A ≃L2
B

(2) (Ai)i∈I ≃Famf (Gam)T /∼= (Bj)j∈J

(3) (Ai)i∈I ≃Famf (Gam)T (Bj)j∈J

(4) A ≃E B

Proof: (1) ⇒ (2) by soundness and by definition of

type isomorphisms in L2, (2) ⇒ (3) because the arenas are

complete, hence every play of the identity is a prefix of a

q

q1 q2 a

a a q′

q1 q2 a

a a

q

q1 q2 a

a a q′

q a

a

Figure 6. Non-trivial isomorphic arenas in Gam∞

complete play of the identity, so any isomorphism σ : A ⇒ A
such that comp(σ) = comp(idA) must satisfy idA ⊆ σ. But as

isomorphisms both are total strategies, so σ = idA. (3) ⇒ (4)
by Proposition 3. Finally, (4) ⇒ (1) because equations in E
can be implemented in the syntax of L2.

G. Isomorphisms in the presence of nat

As suggested by the importance of counting in the proof, the

presence of nat makes it possible to build a non-trivial isomor-

phism by playing Hilbert’s hotel. Consider the programming

language L from [1], obtained from L2 by replacing bool

with nat. This language has a fully abstract interpretation in

Fam(Gam∞)T , where Gam∞ is the category of not neces-

sarily finitely branching arenas, and single-threaded strategies.

PROPOSITION 4. There is an isomorphism in Fam(Gam∞)
between J(nat → unit) → (nat → unit) → unitK and

J(nat → unit) → (unit → unit) → unitK.

Proof: By definition of the interpretation of types, this

boils down to an isomorphism in Gam∞ between the two

arenas represented in Figure 6. Informally, the isomorphism

from left to right can be described as follows. As long as

q′ has not been played, it behaves as the identity. Whenever

Opponent plays q′, it copies it to the other side. Then if q′ has

only appeared once, there are two available copies of nat →
unit on the left side, one nat → unit and one unit → unit

on the right side, so Player picks a bijection between N + N

and N + 1 and plays accordingly. More generally, if q′ has

appeared n times, there are exactly n+ 1 available copies of

nat → unit on the left hand side, one copy of nat → unit

and n copies of unit → unit on the right hand side, so

Player has to follow a bijection between (n+1)N and N+n.

So any choice of a bijection between (n+1)N and N+n (for

all n ∈ N) will provide an isomorphism.

These strategies are not compact so the definability theorem

does not apply, however we can nonetheless manually extract

corresponding programs from them. We display them in Figure

7, where ∗ denotes the product operation on natural numbers,

and div M N outputs the result of the division algorithm

on M : nat and N : nat. Unfortunately, these terms are too

complex to hope for a reasonably-sized direct proof that their

interpretations give the strategies described above or even that

they form an isomorphism. This kind of difficulty emphasizes

the need for new algebraic methods to manipulate and prove

properties of imperative higher-order programs.
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f : (nat → unit) → (nat → unit) → unit ⊢
new count := 0, func := ⊥ in

λg : nat → unit.
let x = f (λn. g(n ∗ (!count+ 1))) in
λh : unit → unit.
count := !count+ 1;
let c = !count in

func := let h = !func in λn. if n = !count then h else g n;
x (λn. if n = 0 then !func c ()

else g((n− 1) ∗ (!count+ 1) + c))

f : (nat → unit) → (unit → unit) → unit ⊢
new count := 0, func := ⊥ in

λg : nat → unit.
let x = f (λn.
let (q, r) = div n (!count+ 1) in
if r = 0 then g q else !func r (q + 1))

in

λh : nat → unit.
count :=!count+ 1;
func := let h = !func in λn. if n = !count then h else h n;
let c =!count in x (λ . !func c 0)

Figure 7. Type isomorphism in L between (nat → unit) → (nat → unit) → unit and (nat → unit) → (unit → unit) → unit.

IV. CONCLUSION

We solved Laurent’s conjecture and characterized the iso-

morphisms of types in L2. Surprisingly, we realized that the

combination of higher-order references, natural numbers and

call-by-value allowed to define new non-trivial type isomor-

phisms. Note however that if well-bracketing is satisfied, the

proof of our core game-theoretic theorem adapts directly to

arenas where all moves only enable a finite number of ques-

tions, but an arbitrary numbers of answers. As a consequence,

there are no non-trivial isomorphisms (i.e. not already present

in the λ-calculus) in the call-by-name variant of L, although

we can define one using call/cc.

Note that despite the seemingly restricted power of L2, our

theorem does apply to all real-life programming languages that

have a bounded type of integer, such as bool32 or bool64: in

this setting, no non-trivial isomorphism can exist. However

unbounded natural numbers can be defined using recursive

types, so the isomorphism above can be implemented in a

call-by-value programming language with recursive types and

general references, such as OCAML.

This work can be extended in several different ways. An

obvious possibility is to study isomorphisms in the presence

of sum types, since the model is already equipped to handle

them. We could also try to eliminate bad variables. Murawski

and Tzevelekos’ games model [22] of Reduced ML may be

a good setting to try that, however it is not clear whether our

core results can be reproved in their nominal setting.
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