
HAL Id: hal-00651814
https://hal.science/hal-00651814v1

Submitted on 14 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Computational Steering and Analysis for HPC
Applications using a ParaView Interface and the HDF5

DSM Virtual File Driver
John Biddiscombe, Jerome Soumagne, Guillaume Oger, David Guibert,

Jean-Guillaume Piccinali

To cite this version:
John Biddiscombe, Jerome Soumagne, Guillaume Oger, David Guibert, Jean-Guillaume Piccinali.
Parallel Computational Steering and Analysis for HPC Applications using a ParaView Interface and
the HDF5 DSM Virtual File Driver. Eurographics Symposium on Parallel Graphics and Visualization,
2011, Llandudno, Wales, United Kingdom. pp.91–100, �10.2312/EGPGV/EGPGV11/091-100�. �hal-
00651814�

https://hal.science/hal-00651814v1
https://hal.archives-ouvertes.fr

Eurographics Symposium on Parallel Graphics and Visualization (2011)

T. Kuhlen, R. Pajarola, and K. Zhou (Editors)

Parallel Computational Steering and Analysis for HPC

Applications using a ParaView Interface and the HDF5 DSM

Virtual File Driver

John Biddiscombe1, Jerome Soumagne1,3, Guillaume Oger2, David Guibert4, Jean-Guillaume Piccinali1

1Swiss National Supercomputing Centre, 6928 Manno, Switzerland
2HydrOcean, 44321 Nantes, France

3INRIA Bordeaux Sud-Ouest, 33405 Talence, France
4Ecole Centrale Nantes, France

Abstract

We present a framework for interfacing an arbitrary HPC simulation code with an interactive ParaView session

using the HDF5 parallel IO library as the API. The implementation allows a flexible combination of parallel

simulation, concurrent parallel analysis and GUI client, all of which may be on the same or separate machines.

Data transfer between the simulation and the ParaView server takes place using a virtual file driver for HDF5

that bypasses the disk entirely and instead communicates directly between the coupled applications in parallel.

The simulation and ParaView tasks run as separate MPI jobs and may therefore use different core counts and/or

hardware configurations/platforms, making it possible to carefully tailor the amount of resources dedicated to

each part of the workload. The coupled applications write and read datasets to the shared virtual HDF5 file

layer, which allows the user to read data representing any aspect of the simulation and modify it using ParaView

pipelines, then write it back, to be reread by the simulation (or vice versa). This allows not only simple parameter

changes, but complete remeshing of grids, or operations involving regeneration of field values over the entire

domain, to be carried out. To avoid the problem of manually customizing the GUI for each application that is to

be steered, we make use of XML templates that describe outputs from the simulation, inputs back to it, and what

user interactions are permitted on the controlled elements. This XML is used to generate GUI and 3D controls for

manipulation of the simulation without requiring explicit knowledge of the underlying model.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Parallel Processing—

Computer Graphics [I.3.2]: Distributed/network graphics—Software Engineering [D.2.2]: Software libraries—

1. Introduction

Scientists and engineers scaling-up their codes to run on

HPC platforms may still wish to experiment with algorithms

and optimizations that affect the performance or the accu-

racy of the results they obtain. Often, it is desirable to play

with variables during a run to see how they affect a particu-

lar parameter (or derived result). When these parameters are

simple scalar values that control the algorithm it is possible

to write them to a file periodically and allow the simulation

to pick them up on the fly – a procedure that has been used

since the birth of scientific computing. When the parame-

ter to be controlled is more complex, or is used to produce

further data that is less obviously understood, it may be de-

sirable to have a user interface, which allows the interactive

adjustment of parameters with immediate feedback on the

effects they have. The driving force behind the work pre-

sented in this paper has been on the modeling of fluid flows

– and in particular fluid structure interactions, using particle

methods and boundary geometries. The interactions of the

particles and the geometries can produce deformations and

motions that are to be studied, and the placement of geome-

tries can dramatically affect the results of individual simu-

lations. For this reason an interface that allows the user to

interact with geometries, perform translations, rotations and

even re-meshing operations whilst the simulation continues,

is required. An additional consideration is that not one, but

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

four codes (from different teams within the project, using

different programming languages and different data models)

are candidates for the steering environment and it should be

capable of interfacing with them all.

Building a GUI to control and visualize an individual sim-

ulation can be a time consuming task, particularly when the

simulation is running on a cluster or supercomputer and not

on the developers workstation. For this reason, a solution

involving an existing application – in this case ParaView

[Hen05] – capable of parallel analysis was sought. The de-

velopments made to achieve this goal are described as fol-

lows; in section 2 we discuss the IO coupling of simulation

and steering along with modes of operation and synchroniza-

tion issues. Section 3 outlines the development of a plugin

for ParaView and how the simulation description is created

and interpreted to produce a controlling environment. Sec-

tion 4 deals with a specific application example where an

SPH code has been coupled and controlled by ParaView. Fi-

nally we compare our implementation to other solutions and

draw conclusions.

2. DSM Interface

In [SBC10], an approach was presented to in-situ post-

processing using aDistributed SharedMemory (DSM) as the

interface between arbitrary simulation and post-processing

applications using the HDF5 API for the exchange of data.

HDF5 supports virtual file driver (VFD) extensions that al-

low the customization of IO so that the standard disk writer

may be replaced by an alternative mechanism. When an ap-

plication makes use of the DSM VFD, the HDF5 library

transparently re-routes all the data transfers to a distributed

shared memory buffer allocated on a set of remote nodes

reachable via the network. The simulation writes data (in

parallel) to this virtual file, the controlling environment reads

(in parallel) from this file and performs additional/post-

processing operations as desired. The original design pre-

sented in [SBC10] catered only for write operations by the

simulation followed by reads from the host application, but

this has now been extended (see [SB11]) to support bi-

directional read/write access using a file lock to restrict ac-

cess from one side whilst the other is using it.

2.1. Synchronization

The DSM uses a client/server model where (generally) the

simulation writing the data is the client and the set of (post

processing) nodes receiving the data is the server. The driver

itself may use different modules for communication between

processes, one based on sockets and one based on the MPI

layer, which can also take advantage of the RMA imple-

mentation provided by MPI (when supported) if requested.

For communication within or between processes the terms

of intra-communicator and inter-communicator are used:

1. An intra-communicator represents the communicator

used for internal communications by a given application

or job, this communicator always uses the MPI interface;

2. An inter-communicator links two different applications

or two different sets of processes together and uses either

an MPI or a socket interface to connect them.

The client task is unchanged by the use of the DSM

driver (as compared to a standard MPI-IO driver), but the

server task requires an additional thread that is respon-

sible for handling communication requests served by the

inter-communicator. When using socket or standard MPI,

a handshaking process takes place for each block of write

operations, but when RMA is available in the MPI distri-

bution, writes from the client may take place without this

extra message overhead. In addition, when RMA is used,

the DSM synchronization mechanism (which was required

when making multiple send/receives during the create and

close operations to maintain file state coherency), is simpli-

fied by using an MPI window fence synchronization. Mem-

ory buffers on the client side are reduced as data is writ-

ten directly into the server side memory. For these reasons,

the RMA method is the preferred protocol. The latest spe-

cialized architectures developed for HPC increasingly make

use of MPI implementations that support RMA operations at

the hardware level and give excellent performance [GT07] in

terms of raw throughput of data.

Any operation, which modifies metadata in the file, flags

the driver that a synchronization step must take place prior to

subsequent accesses – and it is this metadata synchronization

that dictates that only one side of the connection may make

use of the file at any time. Parallel IO within HDF5 requires

collective operations between all nodes using the same file

when metadata changes are made: providing the client – or

the server – use the file independently, the HDF5 layer han-

dles local synchronization, but if both sides were to attempt

to (read/)write concurrently, an additional exchange of meta-

data would be required between tasks that we do not yet

support (currently the metadata is flushed to the file by the

HDF5 interface and becomes available automatically when

the file is closed and control is handed over). We therefore

operate using a file lock (mutex) that either side may acquire

to block access from the other until it is released.

2.2. Operating Modes and Timing

It is assumed that the simulation will make regular/periodic

writes to the file, and when using the steering API will is-

sue reads to see if any new data or instructions are available.

Since we do not support concurrent access to the file, a lock-

ing mechanism is required, along with a method to signal to

the other side that new data has been written. After the sim-

ulation performs a write, it will close the file, releasing its

lock and the file becomes available to the coupled process.

At this point, two principal modes of operation are possible.

The simulation may wait for its data to be further processed

and some new commands or data to be returned, or it may

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

fire and forget making a quick check to see if anything has

been left for it to act upon whilst it was calculating. The two

modes of operation (h5fd_dsm_set_mode), referred to

as wait mode and free mode are illustrated in figures 1(a)

and 1(b).

(a) The simulation writes data periodically and waits

for the analysis before continuing.

(b) The simulation loops iterations without waiting, the

user interacts via GUI controls and new data is picked

up whenever the simulation checks for it.

Figure 1: Two principal modes of operation for timing of

steering interactions.

The illustration in figure 1(a) is self explanatory: af-

ter each iteration the simulation writes data and waits

for the analysis task to signal that it is complete be-

fore the simulation reopens the file and collects new in-

structions and data. The wait operation is issued using a

h5fd_dsm_steering_wait (see section 2.4) from the

simulation, which then blocks until the next file handover by

the analysis. wait mode can be considered as the most intu-

itive for a direct coupling of applications and will be used

when a calculation explicitly depends upon a result of the

analysis before it can continue, the actual amount of time the

simulation waits will depend upon the workload/complexity

of the analysis pipelines setup by the user.

In free mode, if the analysis is overlapped with the sim-

ulation and does not prevent it accessing the file then the

simulation is normally delayed only by the time taken to

check for new commands/data – which in the absence of any

new instructions is of the order of milliseconds and for large

simulations can be safely ignored. More detailed timing of

bandwidths to/from the DSM compared to disk, and of the

steering overhead can be found in [SB11] and [SBC10].

Note that although the diagram in figure 1(a) shows no

user interaction taking place during the computation, the

user interface is not blocked at this point and arbitrary op-

erations may be performed by the user (including setup and

initialization steps prior to the next iteration). Similarly, the

calculation may perform multiple open/read/write/close cy-

cles with different datasets prior to triggering an update and

is not limited to a single access as hinted by the diagram.

Figure 1(b) shows a more complex example based on

the free mode of operation. The calculation loops indefi-

nitely issuing write commands, checking for new data us-

ing read commands and is permitted to open and close

the file at any time (unless locked by the steering side).

The simulation emits an update signal (via a call to

h5fd_dsm_server_udpate) whenever it has com-

pleted a step (and closes the file) and then immediately con-

tinues calculation on the next iteration. It may check for new

commands/data at any time it reaches a convenient point in

its algorithm where new data could be assimilated without

causing a failure. The steering side meanwhile, receives the

update command and immediately opens the file to read data

and perform its own calculations. At this point, the steering

application is post-processing time step T whilst the sim-

ulation has begun computing T + 1 (assuming that we are

talking about a simulation that iterates over time). Quite how

the interaction between post-processing and simulation takes

place is now entirely under the designer’s control. A simu-

lation that is operating in this free mode must be capable

of receiving new commands/data and know that this data

may not be directly related to the current calculation. At this

point, the ability to send specific commands to the simula-

tion that have special meanings becomes important. This

is discussed further in section 4.

Whilst the simulation is calculating, the steering side is

free to perform analysis, modify parameters and write new

data to the file. Usually, there will be a fixed pipeline setup in

advance to slice, contour etc and render the data as soon as

an h5fd_dsm_server_udpate signal is received. This

update is denoted by the periodically aligned green analysis

boxes in figure 1. The user is free to modify the pipeline,

change parameters and select outputs from it to be written

back to the file. These GUI interactions will be semi-random

and are denoted by the orange arrows in figure 1. The process

is therefore entirely asynchronous and there are no restric-

tions on how the user may interact with the GUI and issue

writes either with data or commands – it is the responsibil-

ity of the developer to ensure that the simulation can pick

up data at a convenient point of the calculation. No events

are triggered in the simulation, but the steering API provides

routines to check if new commands have been received. The

ParaView GUI however, does receive events triggered by the

DSM service thread, which allows automatic pipeline up-

dates. A final consideration is that whilst the waitmode may

waste resources, and the free mode may be difficult to syn-

chronize, the developer may switch to wait mode every N

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

iterations, to force some user interaction, then revert to free

mode again for a period. Alternatively, the switch between

modes may be user driven as a custom command (see sec-

tion 2.4) and toggled by the user in the GUI.

2.3. System Configuration and Resource Allocation

It is clear from figure 1 that the amount of time/resources al-

located to compute/steer tasks may have a significant impact

on the overall performance of the system (particularly so in

wait mode). For example, a simulation with very good scal-

ability may be run on many cores, using a low memory per

core and efficient communication, making good use of the

HPC platform. The analysis required to control or steer the

simulation may not scale well, or may require considerably

more memory per node, but with less total cores – perhaps

due to a very different pattern of access or communication.

The DSM interface handles this by being quite flexible in

how resources are allocated, consider figure 2, which shows

general configuration types that may be used – the work-

flow can be distributed between different machines or set

of nodes in a rather arbitrary manner. The first configura-

tion, figure 2(a) corresponds to the most distributed arrange-

ment whereM nodes run the simulation code and N perform

analysis. Tasks are coupled using the DSM in parallel – it

is assumed that the network switch connecting machines has

multiple channels so that traffic fromM to N using the inter-

communicator can take place in parallel and there is no bot-

tleneck in communication. The final rendering stage can then

happen on the same machine or on another machine (making

use of the ParaView client/server framework [CGAF06]) or

on the workstation where the ParaView client is running. Us-

ing separate machines makes it easy to ensure that optimized

nodes (e.g. GPU accelerated) are used where needed.

If a hybrid machine is available, or if the simulation and

analysis make use of similar node configurations, a single

machine (c.f. figure (b)) may be used for both tasks – but

note that separate nodes are used for the two tasks, so fine

tuning ofM and N is still permitted. Note also that whilst the

default configuration of the DSM is to be hosted by the anal-

ysis task (server) on N nodes, the server may reside on either

side of the inter-communicator link and thus be composed

of M nodes. In this way (assuming M > N) either M small

memory buffers, or N larger ones may be allocated, further

enhancing the customization of the setup depending on the

nodes/resources available.

Figure 2(c) shows the case where small data (or a very

high end workstation) is under consideration, and all data

can be analyzed on the workstation and commands sent back

to the simulation.

2.4. Steering Interface

The main DSM interface is modeled after the existing HDF5

VFD drivers, with additional calls for our steering frame-

work. The design of the original DSM driver was such that

an existing HDF5 application could be visualized or post-

processed in-situ by simply replacing theMPI-IO driver with

the DSM one. Unfortunately, whilst passive visualization is

straightforward, steering an application is not possible with-

out some fundamental changes to the code. A brief overview

of the steering API is presented here.

API

One of the first requirements when steering an application

is the ability to change a simple scalar parameter. Since our

API is built on top of HDF5, it is trivial to store such a pa-

rameter as an attribute within the file. Adding support for

vectors requires only the use of a dataset in the file. Be-

ing memory based, the file write operations are cheap with

no latency to disk, and being parallel in nature, any node

of the client simulation may make a read of the parame-

ter; the DSM VFD layer will retrieve it regardless of which

server node it is actually placed on. Once the ability to write

into an HDF5 dataset exists, it is easy to extend support to

handle point arrays, scalar/vector arrays and all other vtk-

DataArray types that are used within ParaView to repre-

sent objects. We are thus able to write any structure to the

file. One crucial factor is that both sides of the transaction

must be able to refer to a parameter by a unique name, and

find the correct value from the file. The developer is there-

fore required to assign unique names to all parameters and

commands and use them in the simulation code. The steering

environment is supplied these names in the form of an XML

document which is described in section 3.1. The following

h5fd_dsm commands are available:

(1) h 5 f d _ d sm_ s t e e r i n g _ i n i t (comm)

(2) h 5 f d _d sm_ s t e e r i n g_upd a t e ()

(3) h 5 f d _ d sm_ s t e e r i n g _ i s _ e n a b l e d (name)

(4) h 5 f d _ d sm_ s t e e r i n g _ s c a l a r _ g e t / s e t (name , mem_type_id , buf)

(5) h 5 f d _ d sm_ s t e e r i n g _ v e c t o r _ g e t / s e t (name , mem_type_id ,

num_elem , buf)

(6) h 5 f d _ d sm_ s t e e r i n g _ i s _ s e t (name , s e t)

(7) h 5 f d_d sm_s t e e r i n g_b eg i n _qu e r y ()

(8) h5 f d_d sm_s t e e r i ng_end_que ry ()

(9) h 5 f d _d sm_ s t e e r i n g _g e t _ h a nd l e (name , h and l e)

(1 0) h 5 f d _ d sm_ s t e e r i n g _ f r e e _ h a n d l e (h and l e)

(1 1) h 5 f d _d sm_ s t e e r i n g _wa i t ()

In addition to the commands listed here, it is simple to

pause and resume the controlled simulation, by locking and

unlocking the file and therefore blocking the application at

the next attempt to issue an HDF5 or h5fd_dsm command.

These commands do not need to touch the contents of the

file itself and are referred to as metadata commands.

By default all new parameters and arrays sent back for

steering are stored at a given time step in an Interaction

group which is a subgroup of the file (created automatically

by the steering API layer). This group can be customized if

necessary in case of conflict with the simulation data (in the

event that it uses the same group name for data storage). One

advantage of writing the interaction group directly into the

HDF5 data is that a user may easily dump (using a DSM

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

Simulation
Machine

D
S
M (InfiniBand)

Switch

Analysis
or Visu-
alization
Machine

D
S
M

R
en
d
er

G
U
I Workstation

G
U
I

R
en
d
er

DSM either side
M or N nodes

Remote/Local
Render and/or GUI

(a) Simulation and analysis on separate machines, GUI

client on a third.

Simulation
Nodes

D
S
M

Analysis
or Visu-
alization
Nodes

D
S
M

R
en
d
er

G
U
I Workstation

G
U
I

R
en
d
er

DSM on M
or N nodes

Remote/Local
Render and/or GUI

(b) Simulation and analysis on the same ma-

chine, but using different nodes, GUI client

separate.

Simulation
Machine

D
S
M

Analysis
or Visu-
alization
Machine

G
U
I

R
en
d
er

D
S
M

DSM either side
M or N nodes

(c) Simulation on one machine

and all analysis/visualization on

another.

Figure 2: The DSM interface can be used in different configurations, between different machines or nodes of the same machine.

Figure (b) may be the most commonly adopted as a local cluster may be treated as a simple extension of the workstation. Figure

(a) is more likely when combining a highly optimized code on many cores with low memory, to a dedicated analysis cluster with

fewer fat memory nodes. Figure (c) is more likely when the final data is smaller and can be handled on a high end workstation.

Other combinations are possible if remote image delivery using a system such as VNC is considered.

enabled h5dump) the parameters stored in order to check

their presence or their correctness. In contrast with visualiza-

tion only use of the DSM driver, for steering, the simulation

needs to be able to read from the file at any time (includ-

ing startup, for initialization data) and we therefore provide

a steering library initialization call (1) which can be used

to establish a connection between server and client before

it would otherwise take place – the communicator used for

IO is passed as a parameter if only a subset of nodes partic-

ipate in IO. Once the environment is initialized, (2) allows
the user to get and synchronize steering commands with the

host GUI at any point of the simulation. (2) in effect is a

special form of file close command which (in the ParaView

plugin) also triggers pipeline updates in the GUI.

(4) and (5) allow the writing of scalar and vector pa-

rameters respectively, whilst (6) checks their presence in

the file. As explained in section 2.2, parameters are dy-

namically written into the file so that one can get them

at any time. The set/get functions are primarily for send-

ing arrays from the GUI to the simulation, but may also

be used by the simulation to send additional information

to the GUI (such as time value updates at each step). Nor-

mally, all information would be present in the HDF5 output

from the code anyway, but additional data may be passed

in the Interactions group with convenient access using sim-

ple h5fd_dsm_steering_vector_get syntax – the

sometimes tedious process of managing handles to file and

memory spaces is taken care of by the API. As described in

section 2.2, (11) can be used to coordinate the work-flow,

making the simulation pause until certain steering instruc-

tions are received. User defined commands may be speci-

fied as booleans which are set after they are issued and then

cleared, for example, a user defined command can be tested

for and acted on as follows:

h 5 f d _ d sm_ s t e e r i n g _ i s _ s e t (" UserCommand " , f l a g) ;

i f (f l a g)

Pe r fo rmUse rAc t i on ;

e n d i f

(7), (8) are used when several consecutive operations are

necessary. When accessed from the client side, file open and

data requests result in inter-communicator traffic, which

can be minimized by reducing HDF5 handle acquisition and

release. Particularly when the file is open in read only mode,

metadata is cached already by the underlying HDF5 library

and traffic is correspondingly reduced.

(9) and (10) allow direct access to the HDF5 dataset han-

dle to the requested object and this handle may be used with

the conventional HDF5 API to perform IO. The advantage

of this is that the full range of parallel IO operations may

be used by making appropriate use of hyperslabs. This is

particularly important if a very large array is modified by a

user pipeline and returned to the simulation, where it must

be read back in parallel on the compute nodes.

It is important to remember that the steering API com-

mands listed above are intended as convenience functions

for the exchange of Interaction data that would not normally

take place. The standard HDF5 API should still be used for

the bulk of data writes performed by the simulation for input

to the steering application for analysis etc.

3. ICARUS ParaView plug-in

Up to this point, whilst the discussion has mentioned Par-

aView as the steering environment, there have been no Par-

aView specific modifications necessary. Any HDF5 based

applications may be coupled together – with an implied as-

sumption that one will be the master and the other the slave.

In this section, we describe the enhancements we have made

to the ParaView package to allow flexible creation of a cus-

tomized steering environment.

A plug-in, called ICARUS (Initialize Compute Analyze

Render Update Steer), has been developed to allow Par-

aView to interface through the DSM driver to the simulation.

A significant portion of the work by a developer to use the

plugin goes into the creation of XML templates which de-

scribe the outputs from the simulation, the parameters which

may be controlled, and the inputs back to it. The XML de-

scription templates are divided in two distinct parts, one

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

calledDomain describing the data for visualization only, and

one called Interactions defining the list of steering parame-

ters and commands one can control.

3.1. Domain Description Template

Data read from HDF5 in our plugin makes use of the XDMF

library for flexible import from a variety of sources – one

of HDF5’s great strengths is its ability to store data in many

ways, but this in turn makes it difficult to know the layout of

a particular simulation output without some help. We make

use of XDMF as a convenience since it allows a simple de-

scription of data using XML (a customized HDF5 reader

could equally well have been embedded in ParaView but

would need to be configured individually for each simulation

to be used). To read data (grid/mesh/image/...) one can either

supply an XDMF description file as described in [CM07] or

use an XML description template following the XDMF syn-

tax, which our plugin uses, to generate a complete XDMF

file on the fly. The XDMF template format we have created

does not require the size of data-sets to be explicitly stated,

only the structure of the data (topology/connectivity) needs

to be specified with its path to the HDF5 data-set. As the file

is received, the meta-data headers and self-describing nature

of HDF5 data-sets allows the missing information (eg. num-

ber of elements in the arrays) to be filled-in (by in-memory

routines using h5dump).

Visualization Properties

The template allows one or more Grids to be defined which

are mapped to datasets in ParaView/VTK parlance. If the

datasets written to the DSM are multi-block, as many grids

as the number of blocks must be defined. Each Grid follows

the following format example and contains at least a Topol-

ogy field with the topology type, a Geometry field with the

geometry type and the HDF5 path to access the data repre-

senting the geometry. Several attributes can then be added

specifying for each the HDF5 path to access the data. Note

that specific XDMF operations such as the JOIN can still be

provided, for instance:

<Domain>

. . .

<Gr id Name=" P a r t i c l e s ">

<Topology TopologyType=" P o l y v e r t e x ">

< / Topology>

<Geometry GeometryType="X_Y_Z">

<Data I t em> / S t ep #0 /X< / Da ta I t em>

<Data I t em> / S t ep #0 /Y< / Da ta I t em>

<Data I t em> / S t ep #0 /Z< / Da ta I t em>

< / Geometry>

< A t t r i b u t e A t t r i b u t eT y p e =" Vec to r "

Name=" Ve l o c i t y ">

<Data I t em Func t i o n =" JOIN ($0 , $1 , $2) "

I temType=" Func t i o n ">

<Data I t em> / S t ep #0 /VX< / Da ta I t em>

<Data I t em> / S t ep #0 /VY< / Da ta I t em>

<Data I t em> / S t ep #0 /VZ< / Da ta I t em>

< / Da ta I t em>

< / A t t r i b u t e >

< A t t r i b u t e >

<Data I t em> / S t ep #0 / P< / Da ta I t em>

< / A t t r i b u t e >

< A t t r i b u t e >

<Data I t em> / S t ep #0 / Smooth< / Da ta I t em>

< / A t t r i b u t e >

< / Gr id>

. . .

< / Domain>

The ICARUS plug-in generates from the template a com-

plete (in memory) XDMF file with all the information about

data precision and array sizes. When updates are received,

the parallel XDMF reader extracts data directly from the

DSM through the usual HDF5 operations. Note that only the

ParaView client needs access to the template – the fully gen-

erated XML is sent to the server using the ParaView clien-

t/server communication.

3.2. Interaction Template

To define steering parameters, we follow the existing model

of the ParaView server manager properties, which makes it

possible to piggy back the automatic generation of controls

on top of the existing mechanism used to generate filter/-

source panels.

3.2.1. Steering Properties

1. Int/Double/String VectorProperty

2. CommandProperty

3. DataExportProperty

Int/Double/String VectorProperties allow scalar, vector

and string parameters to be defined and generated in the

GUI and are the same as the existing ParaView properties.

Settings for default values, names, labels, etc, are available

so that one can tidy up the automatically generated user in-

terface. As with the ParaView server manager model, do-

mains can be attached to these properties, this allows a user

to restrict the parameters defined to either a boolean domain,

which will be then seen as a check box, or to a range domain

where possible input values are defined in a [min;max] inter-
val and appear as a slider.

Two new Properties have so far been added to support

steering. One is aCommandProperty, represented in the GUI

as a button, but without any state – when it is clicked, a

flag of the defined name is set in the Interactions group and

can be checked and cleared by the simulation (essentially

a boolean without the ability to toggle on/off). An example

may be seen in figure 4 and would be defined as follows:

<CommandProperty

name=" ReloadFreeBodyMesh "

l a b e l =" Reload f r e e body mesh ">

< / CommandProperty>

A DataExportProperty defines an input back to the sim-

ulation, it allows a whole ParaView dataset or a single data

array to be written into the file. One may interactively se-

lect a pipeline object, select the corresponding array (points,

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

. . .
H5FD_dsm_s t e e r i ng_ i n i t ;
. . .
main loop :

H5FD_dsm_s tee r ing_upda te ;
H5FD_dsm_s tee r ing_ i s_

s e t (" ReloadFreeBodyMesh " , f l a g) ;
. . .
i f f l a g :

. . .
H5Dopen (f i l e _ i d ,

" / Mesh #1 /XYZ" , d a t a s e t _ i d) ;
H5Dread (d a t a s e t _ i d , d a t a _ a r r a y) ;
H5Dclose (d a t a s e t _ i d) ;
. . .

end i f ;
. . .
compu t e_s t ep ;
. . .

end l oop ;
. . .

Simulation Code

H5FDdsm library

< I n t e r a c t i o n >
. . .
<Da t aExpo r t P r o p e r t y

name="Modif iedBodyNodes "
command=" S e t S t e e r i n gA r r a y "
l a b e l =" Modi f i ed Body Node Data ">
<DataExportDomain name=" d a t a _ e x p o r t "

f u l l _ p a t h =" / Mesh#1 "
geome t ry_pa th =" / Mesh #1 /XYZ"
t o po l o gy_p a t h =" / Mesh #1 / Connect ">

< / DataExportDomain>
< / Da t aExpo r t P r o p e r t y >
. . .

< / I n t e r a c t i o n >
<Domain>

. . .
< / Domain>

Description Template

ParaView + ICARUS

Transfer steering

parameters to simulation

Set steering parameters

through GUI

Figure 3: Example of usage between a simulation code (SPH-flow), and ParaView – The user defines in a description template

the interactions that the simulation will be able to access, GUI controls are automatically generated and modified parameters

are passed to the H5FDdsm library. The simulation gets the parameters and the commands by reading them from the DSM

using the same names as specified in the template.

connectivity or node/cell field) and write it back to the DSM.

The corresponding HDF path must be specified so that the

location of the written array is consistent with the simula-

tion’s expectations. If the array is going to be a modified

version of one sent initially to the GUI by the simulation, the

user may reuse the path in which it was originally written to

save space in the file. An example of the GUI generated is

visible in figure 3.

If a grid exported by the simulation is to be modified di-

rectly – and then returned back to the simulation some ac-

tion/control to be performed may be specified in the tem-

plate and reference the grid in question. For example in sec-

tion 4 with SPH-flow we wish to modify the geometry of the

free body in the fluid, and we therefore bind a 3D interac-

tive transform widget to it. This is done by adding hints to

the properties (as below). Currently, any 3D widget may be

created (box, plane, point etc), and for each grid with an at-

tached widget, a mini-pipeline is created containing a series

of filters, which extract the dataset from the multiblock input

(if multiple grids exist) and bind the widget with associated

transform to it. The GUI implementation and XML descrip-

tion are still experimental and we aim to add Constraint tags

to the hints to specify that a grid may not be moved or de-

formed in some way, more than a specified amount per time

step. A simulation may require certain constraints to prevent

it causing program failure.

<H in t s >

<As s o c i a t e dG r i d name="Body " / >

<Widge tCon t ro l name="Box" / >

< / H i n t s >

The mini-pipelines created to extract blocks are not ex-

posed to the user, but do in fact make use of XML custom

filters generated by ParaView itself. We plan to expose more

of these internals to allow templates to be specified using

hints, which contain complete analysis pipelines already en-

abled and embedded. The advantage of this is that no python

scripting is required to set them up, and whilst full python

scripting of all generated steering control and widgets is pos-

sible, this is not yet enabled. Note that the templates are

loaded at run time and ParaView client/server wrappers for

control properties (and mini pipelines) are generated on the

fly – these are then registered with the server manager and

objects instantiated – this means that all simulation controls

can be created without any recompilation of either ParaView

or the ICARUS plugin.

3.2.2. XML Steering Parser

One initial requirement when importing data from a simula-

tion was the ability to turn off the export of data on a field

by field or grid by grid basis. One does not wish to manually

define a flag for each possible grid or field, so we make use

of the generated XML file from the template that gives us ac-

cess to all the information required to build a map of all the

grids and arrays exported and display them in tree form in

the GUI. This can be clearly seen in the right panel of figure

4. Each node of the tree can be enabled/disabled in the GUI

with a corresponding flag allocated in the DSM metadata.

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

Two grids may have the same name, so we use the unique

HDF path to name the flags. They can be read by the simula-

tion (using h5fd_dsm_is_enabled) to tell it not to send

a given grid or array. In this way we can reduce the network

traffic to only the arrays we wish to work with for a partic-

ular analysis job without any recompilation or modification

of code or template edits.

3.3. Time and Automated Steering

During development of the interface, it was evident that time

management was a key concern. The simulation generates

time steps that are displayed in ParaView, but we found that

when working with SPH-flow – interactivity was sometimes

a problem. By this we mean that when working with large

data the simulation outputs data at a fairly slow rate (strong

scaling is under development) and the user can spend some

time waiting for data to arrive. Additionally we wished

to modify grids in a smooth and continuous way which

was not always possible using a mouse and 3D widget.

For this reason we wished to use keyframe animation to

move grids according to predefined paths, which could

be adjusted on the fly. In order to animate cleanly, it was

necessary to export at startup, the start and end times of the

anticipated simulation, so that the keyframe editor could be

initialized. To achieve this we send time range parameters

at startup and at each step the current time. However time

range updates and other non grid data sends caused trouble

when the automatic update of pipelines took place. We

therefore added an update level flag to the API using

h5fd_dsm_set_mode(H5FD_DSM_UPDATE_LEVEL-

_0+N. This allows us to send information at startup using

a UPDATE_LEVEL_0+N, where N = 0 is used for an

information update, N = 1 for a pipeline update and N ≥ 2

is available for custom messages. With these updates in

place we were able to animate objects within the GUI and

effectively use ParaView to generate geometry and send it to

the simulation – which has no built in capability to produce

meshes of it’s own. Although mesh animation was desired

principally, parameter animation linked to analysis is also

possible and with this capability in place – combined with

the ability to run in parallel – we believe a great many new

applications will be found for this framework.

On each iteration the simulation (after checking for com-

mands/data) will usually issue a file create command, which

is used as a signal to the DSM to wipe and renew the

contents. This prevents the memory file from growing ever

larger as time progresses. If an analysis operation requires

multiple steps in memory, then the simulation should add

new data to the file in new datasets and leave N steps be-

hind – either cleaning older datasets manually, or periodi-

cally performing a file create/wipe operation. A GUI control

can be created to control this behaviour.

4. Application to SPH-flow

Several computational fluid dynamic models and particu-

larly SPH models now make use of GPGPU for comput-

ing. This is for example the case of [GSSP10] where a very

interactive simulation can be obtained and rendered using

shaders or ray-tracing creating the effect of a real fluid. To

obtain such a level of interactivity, precision and models

must be less accurate and this is usually sufficient for cre-

ating visual effects. The solver we use here is designed for

CPU computing and uses several different models providing

a high degree of accuracy, which of course have the conse-

quence that the more precision requested, the lower the in-

teractivity. This solver, SPH-flow [OJG∗09] is able to com-

pute fluid and multi-physic simulations involving structures,

fluid-structure, multi-phasic or thermic interactions on com-

plex cases. The current version of SPH-Flow is mainly ded-

icated to the simulation of high dynamic phenomena, possi-

bly involving complex 3D topologies that classical meshed

based solvers cannot handle easily. A significant effort has

been made to improve the SPH model towards more ac-

curacy and robustness, together with high performance on

thousands of processors.

Adding computational steering to SPH-flow did not re-

quire weeks of effort. Initially, simple calls to set the DSM

driver were added, making it possible to monitor the data

output of the code during runs. The original code com-

puted and created a marching cube output which was writ-

ten to a separate file, this unfortunately caused problems be-

cause by default, a file create in the DSM triggers a wipe

of the memory (as opposed to a file open). Consequently,

the second dataset written would remove the first. To solve

this problem, calls to H5Fcreate were replaced by H5Fopen

with checks to test if the DSM usage was enabled (as the

code must still operate when not being steered). On start,

calls to set the time range were inserted and after each it-

eration, a call to test if parameters are sent and calls to

trigger updates were added. Modifying parameters such as

the fluid inlet velocity became trivial as they required only

simple h5fd_dsm_steering_scalar/vector_get

calls. The largest part of the work has been to allow the

code to reload a new geometry from the DSM when receiv-

ing a Reload command. This is because this capability did

not exist before and so it represents an entirely new devel-

opment and care must be taken that the new geometry does

not appear in some way with uninitialized associated vari-

ables, causing the simulation to blow up. We have success-

fully steered the SPH-flow application using our entire local

cluster, with 4 pvservers for visualization/analysis and 168

cores devoted to the simulation.

5. Related Work

The RealityGrid project [BCH∗03], which is mainly used

for grid computing allows the user to be connected dynami-

cally to the simulation, monitoring values of parameters and

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

Figure 4: The interface generated for SPH-flow using a template to describe 4 grids, one of which is to be controlled by a

box widget. The right panel contains the generated GUI that is used to enter/modify parameters to control the simulation. The

animation view (bottom) is setup to move the box widget through the domain and thereby drive the simulation. On the right are

3 snapshots of the simulation results as the mesh is pushed through the fluid – a scenario new to the simulation.

editing them if necessary. Once a client is connected to the

simulation component, it can send steering messages to the

simulation, which transmits data to the visualization com-

ponent. The computational steering API defined is quite ex-

haustive and provides many functions, however the neces-

sary degree of intrusion inside the code is high. For a code

already designed to take advantage of HDF5 IO, using our

steering model coupled to the ICARUS plug-in is a signifi-

cantly easier solution, reducing the likelihood of breaking a

given code.

The EPSN [REC07] project defines a parallel high level

steering model by manipulating and transferring objects

such as parameters, grids, meshes and points. A user can ask

for objects and these objects are automatically mapped (and

redistributed) using the EPSN model to HDF5, VTK, or any

other output format (for which a module in the library is pro-

vided – as is a ParaView plugin for visualization). One can

then easily interface the simulation or visualization code to

one of the mappers. As with the RealityGrid project, an in-

terface allows registering steerable parameters and actions.

The EPSN library also makes use of XML files to describe

the data and also provides task descriptions that can be used

to define synchronization points at which codes can wait for

each other. We have taken many ideas from the EPSN de-

velopment but found that for simple coupling the synchro-

nization points are not necessary. As we move to more so-

phisticated scenarios these ideas may need to be revisited.

EPSN includes a mesh redistribution layer which maps grids

on N processes in one task to the M processes in the other,

our system uses HDF5 as the parallel redistribution layer,

leaving decision on how to partition data to the developer’s

original implementation. Additionally a simulation making

use of EPSN must link to different high level library such as

the VTK library as well as CORBA for thread management,

whereas our simulation only requires the simulation to be

linked against the HDF5 and MPI libraries.

VisIt [CBB∗05] provides users with the libsim library, a

lightweight library, which is portable enough to be executed

on a large variety of HPC systems. The library provides an

API so that one can interface his code to the VisIt environ-

ment. However it is necessary to re-work the code so that

pointers to function loops can be passed to the interface.

Whilst this mechanism is basically the same for every code,

it does require a re-modeling of the simulation code and a

knowledge of the interface. Whilst VisIt (libsim) and Par-

aView (coprocessing [MFMG10]) both provide in-situ visu-

alization support, and both can be used for steering, the code

is compiled and linked into the simulation. Furthermore, as

described in [Chi07] and in [YWG∗10] where a full in-situ

visualization pipeline is applied on combustion simulations

at large scale, making use of these in-situ visualization sys-

tems means that the analysis will run on the same cores

as the simulation, placing additional memory demands on

them and requiring them to wait for completion before re-

suming. In most cases, post-processing operations have to

be well defined before running the simulation. The ability

c© The Eurographics Association 2011.

J. Biddiscombe & J. Soumagne / Parallel Computational Steering and Analysis for HPC Applications

for our library to use separate cores makes it more like the

datastager [AWE∗09] IO forwarding layer used by libraries

such as ADIOS [LKS∗08], though they do not yet support

steering or coupling in the way our library does, such as al-

lowing a complete or partial re-meshing of the boundaries as

we have done with SPH-flow.

6. Conclusion and Future Work

We have presented a framework allowing an engineer or a

scientist to enhance a parallel code using HDF5 extensions

and XML templates so that it can communicate directly with

a ParaView server and permit live visualization, analysis and

steering. The system has a flexible allocation of resources on

clusters or supercomputers and allows highly scalable simu-

lations to interface to less scalable analysis pipelines without

compromising the former. The underlying framework sup-

ports other types of coupling, which do not involve ParaView

and could be used to couple two simulations, or mesh gener-

ators and simulations together using a shared virtual file.

On larger systems at CSCS such as the Cray XE6 using

Gemini interconnect, it is not yet possible to join two ap-

plications dynamically using native MPI functions (without

forthcoming vendor provided operating system/MPI layer

fixes specific to the hardware/platform) and in the mean-

time, an additional mode of communication allowing us to

run both the DSM server and the simulation on different

nodes but within the same job is being developed. This solu-

tion involves launching both applications as part of the same

job using a single communicator and will require modifica-

tions to simulation initialization code, but will permit the use

of high speed RMA communication between tasks on large

machines.

Acknowledgments

This work is supported by the NextMuSE project receiving

funding from the European Community’s Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement

225967.

The software described in this paper is available for down-

load from https://hpcforge.org/projects/h5fddsm

and https://hpcforge.org/projects/icarus.

References

[AWE∗09] ABBASI H., WOLF M., EISENHAUER G., KLASKY

S., SCHWAN K., ZHENG F.: DataStager: scalable data stag-
ing services for petascale applications. In HPDC ’09: Proceed-

ings of the 18th ACM international symposium on High per-

formance distributed computing (New York, NY, USA, 2009),
ACM, pp. 39–48.

[BCH∗03] BROOKE J., COVENEY P., HARTING J., JHA S.,
PICKLES S., PINNING R., PORTER A.: Computational Steer-
ing in RealityGrid. In Proceedings of UK e-Science All Hands

Meeting 2003 (2003), pp. 885–888.

[CBB∗05] CHILDS H., BRUGGER E. S., BONNELL K. S.,
MEREDITH J. S., MILLER M., WHITLOCK B. J., MAX N.: A
Contract-Based System for Large Data Visualization. In Pro-

ceedings of IEEE Visualization 2005 (2005), pp. 190–198.

[CGAF06] CEDILNIK A., GEVECI B., AHRENS K. M. J.,
FAVRE J.: Remote Large Data Visualization in the Paraview
Framework. In Eurographics Symposium on Parallel Graphics

and Visualization (Braga, Portugal, 2006), Raffin B., Heirich A.,
Santos L. P., (Eds.), Eurographics Association, pp. 163–170.

[Chi07] CHILDS H.: Architectural Challenges and Solutions for
Petascale Postprocessing. Journal of Physics: Conference Series
78, 1 (2007), 012012.

[CM07] CLARKE J. A., MARK E. R.: Enhancements to the eX-
tensible Data Model and Format (XDMF). In HPCMP-UGC

’07: Proceedings of the 2007 DoD High Performance Computing

Modernization Program Users Group Conference (Washington,
DC, USA, 2007), IEEE Computer Society, pp. 322–327.

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive SPH simulation and rendering on the
GPU. In Proceedings of the 2010 ACM SIGGRAPH/Eurograph-

ics Symposium on Computer Animation (2010), SCA ’10, Euro-
graphics Association, pp. 55–64.

[GT07] GROPP W., THAKUR R.: Revealing the Performance of
MPI RMA Implementations. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, Cappello F., Her-
ault T., Dongarra J., (Eds.), vol. 4757 of Lecture Notes in Com-

puter Science. Springer Berlin / Heidelberg, 2007, pp. 272–280.

[Hen05] HENDERSON A.: ParaView Guide, A Parallel Visualiza-

tion Application. Kitware Inc., 2005.

[LKS∗08] LOFSTEAD J. F., KLASKY S., SCHWAN K., POD-
HORSZKI N., JIN C.: Flexible IO and integration for scientific
codes through the adaptable IO system (ADIOS). In CLADE ’08:

Proceedings of the 6th international workshop on Challenges of

large applications in distributed environments (New York, NY,
USA, 2008), ACM, pp. 15–24.

[MFMG10] MORELAND K., FABIAN N., MARION P., GEVECI

B.: Visualization on Supercomputing Platform Level II ASC

Milestone (3537-1B) Results from Sandia. Tech. rep., Sandia Na-
tional Laboratories, September 2010. SAND 2010-6118.

[OJG∗09] OGER G., JACQUIN E., GUILCHER P.-M., BROSSET

L., DEUFF J.-B., TOUZE D. L., ALESSANDRINI B.: Simula-
tions of complex hydro-elastic problems using the parallel SPH
model SPH-Flow. In Proceedings of the 4th SPHERIC (2009).

[REC07] RICHART N., ESNARD A., COULAUD O.: Toward a
Computational Steering Environment for Legacy Coupled Sim-
ulations. In Parallel and Distributed Computing, 2007. ISPDC

’07. Sixth International Symposium on (July 2007), p. 43.

[SB11] SOUMAGNE J., BIDDISCOMBE J.: Computational Steer-
ing and Parallel Online Monitoring Using RMA through the
HDF5 DSM Virtual File Driver. In International Conference on

Computational Science ICCS (to appear) (2011).

[SBC10] SOUMAGNE J., BIDDISCOMBE J., CLARKE J.: An
HDF5 MPI Virtual File Driver for Parallel In-situ Post-
processing. In Recent Advances in the Message Passing In-

terface, Keller R., Gabriel E., Resch M., Dongarra J., (Eds.),
vol. 6305 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2010, pp. 62–71.

[YWG∗10] YU H., WANG C., GROUT R., CHEN J., MA K.-L.:
In Situ Visualization for Large-Scale Combustion Simulations.
Computer Graphics and Applications, IEEE 30, 3 (2010), 45–
57.

c© The Eurographics Association 2011.

https://hpcforge.org/projects/h5fddsm
https://hpcforge.org/projects/icarus

