Moment Matrices, Border Bases and Real Radical Computation - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2013

Moment Matrices, Border Bases and Real Radical Computation

Résumé

In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite programming. While the border basis algorithms of [17] are efficient and numerically stable for computing complex roots, algorithms based on moment matrices [12] allow the incorporation of additional polynomials, e.g., to re- strict the computation to real roots or to eliminate multiple solutions. The proposed algorithm can be used to compute a border basis of the input ideal and, as opposed to other approaches, it can also compute the quotient structure of the (real) radical ideal directly, i.e., without prior algebraic techniques such as Gr ̈obner bases. It thus combines the strength of existing algorithms and provides a unified treatment for the computation of border bases for the ideal, the radical ideal and the real radical ideal.
Fichier principal
Vignette du fichier
paper-hal.pdf (276.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00651759 , version 1 (14-12-2011)

Identifiants

Citer

Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostalski, Philippe Trébuchet. Moment Matrices, Border Bases and Real Radical Computation. Journal of Symbolic Computation, 2013, 51, pp.63-85. ⟨10.1016/j.jsc.2012.03.007⟩. ⟨hal-00651759⟩
563 Consultations
318 Téléchargements

Altmetric

Partager

More