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Introduction

Let us consider the following stochastic heat equation in R n driven by a cylindrical Brownian motion W with values in a (finite-or infinite-dimensional) Hilbert space H:

(1.1)    ∂u ∂t (t, x) = ∆u(t, x) + g(t, x) Ẇ (t), t ≥ 0, x ∈ R n , u(0, x) = 0, x ∈ R n .
Under suitable measurability and integrability conditions on the process g : R + × R n × Ω → H, the process u : R + × R n × Ω → R given formally by the stochastic convolution u(t) = t 0 e (t-s)∆ g(s) dW (s), t ≥ 0, is well defined. This process is usually called the mild solution of (1.1), and it has stochastic maximal L 2 -regularity in the sense that

E ∇u 2 L 2 (R+;L 2 (R n ;R n )) ≤ C 2 E g 2 L 2 (R+;L 2 (R n ;H))
with a constant C independent of g and H. This follows from a classical result of Da Prato [START_REF] Prato | Regularity results of a convolution stochastic integral and applications to parabolic stochastic equations in a Hilbert space[END_REF] (see [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] for further results along these lines). It was subsequently shown by Krylov [START_REF] Krylov | A generalization of the Littlewood-Paley inequality and some other results related to stochastic partial differential equations[END_REF][START_REF]On the foundation of the Lp-theory of stochastic partial differential equations[END_REF] that, for p ≥ 2, u has stochastic maximal L p -regularity in the sense that

E ∇u p L p (R+;L 2 (R n ;R n )) ≤ C p p E g p L p (R+;L 2 (R n ;H))
. Krylov actually proves that L 2 (R n ; H) may be replaced by L q (R n ; H) for any 2 ≤ q ≤ p and that ∆ may be replaced by any second-order uniformly elliptic operator under mild regularity assumptions on the coefficients. For p > 2, the condition q ≤ p was removed in [START_REF]Stochastic maximal L p -regularity[END_REF] and the result was extended to arbitrary operators having a bounded H ∞ -calculus on L q (X, µ), where q ≥ 2 and (X, µ) is an arbitrary σ-finite measure space.

The condition p ≥ 2 in all these results is necessary, in the sense that the corresponding result for 1 ≤ p < 2 is false even for H = R [START_REF]Stochastic partial differential equations: six perspectives[END_REF]. The aim of this paper is to show that the stochastic heat equation (1.1) does have 'conical' stochastic maximal L p -regularity in the full range of 1 ≤ p < ∞, provided the condition g ∈ L p (R + × Ω; L 2 (R n ; H)) is replaced by the condition g ∈ L p (Ω; T p,2 2 (R + × R n , t -β dt × dx; H)). Here T p,2 2 (R + × R n , t -β dt × dx; H) is a weighted parabolic tent space of H-valued functions on R + × R n (the definition is stated in Section 2; for β = 1 the classical parabolic tent space T p,2 2 (R + ×R n ; H) is obtained). Our main result, stated somewhat informally (see Theorem 3.1 for the precise formulation), reads as follows.

Theorem 1.1. Let A = -div a(•)∇ be a divergence form elliptic operator on R n with bounded measurable real-valued coefficients. Then for all 1 ≤ p < ∞ and β > 0 the stochastic convolution process u(t) = t 0 e -(t-s)A g(s) dW (s), t ≥ 0, satisfies the conical stochastic maximal L p -regularity estimate

E ∇u p T p,2 2 (R+×R n ,t -β dt×dx;R n ) ≤ C p p,β E g p T p,2 2 
(R+×R n ,t -β dt×dx;H) . The precise assumptions on A are stated in Example 2.2 below. The proof of Theorem 1.1 proceeds in two steps. First, a T 2,2 2 -estimate is deduced from the Itô isometry (Section 4). Using off-diagonal bound techniques, this estimate is then extrapolated to a T p, 2 2 -estimate (Section 5). The results are applied to prove conical maximal L p -regularity for a class of stochastic partial differential equations on R n driven by space-time white noise (Section 6). We shall prove that if b : R n → R satisfies appropriate Lipschitz and growth assumptions and A is as in Theorem 1.1, then the mild solution of the stochastic PDE    ∂u ∂t (t, x) + Au(t, x) = b(∇u(t, x)) Ẇ (t), t ≥ 0, x ∈ R n , u(0, x) = u 0 (x),

x ∈ R n , has conical stochastic maximal L p -regularity for all 1 < p < ∞, in the sense that ∇u ∈ T p,2 2 (R + × R n , t -β dt × dx) for all 0 < β < 1 and all initial values u 0 ∈ D p (A β 2 ), the domain of the L p -realisation of A β 2 . Note that the weight t -β allows the handling of initial values in D p (A θ ) with θ > 0 arbitrarily small. It is only the stochastic part that forces us to take β > 0, and it seems that our technique does not work when β = 0.

The present paper, as well as [START_REF] Auscher | Singular integral operators on tent spaces[END_REF] which contains more elaborate developments not needed here, builds upon techniques developed in [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF]. There, similar off-diagonal bound techniques are applied to obtain conical maximal L p -regularity for a class of deterministic initial value problems. The key feature of both papers is that they depart from the traditional paradigm in the theory of evolution equations where a solution is a trajectory, indexed by time, in a suitably chosen state space. This could be called the 'Newtonian' paradigm, in which time and space are treated as separate entities. In the conical approach, space and time are inextricably mixed into one 'space-time'.

The idea of using tent space maximal regularity in PDEs goes back, as far as we know, to Koch and Tataru [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], who proved T ∞,2 -regularity of solutions of Navier-Stokes equations with rough initial data (see also [START_REF] Koch | Geometric flows with rough initial data[END_REF]). The underlying ideas come from the theory of Hardy spaces and its application to boundary value problems (see, e.g. [START_REF] Dahlberg | Hardy spaces and the Neumann problem in L p for Laplace's equation in Lipschitz domains[END_REF]). To the best of our knowledge, the present paper is the first to consider a tent space approach for stochastic PDEs.

The notations in this paper are standard. For unexplained terminology we refer to [START_REF]Maximal L p -regularity for stochastic evolution equations[END_REF][START_REF] Van Neerven | Stochastic integration in UMD Banach spaces[END_REF][START_REF] Van Neerven | Stochastic integration of functions with values in a Banach space[END_REF] (concerning cylindrical Brownian motions and vector-valued stochastic integration) and [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] (concerning tent spaces). We use the convention R + = (0, ∞). We work over the real scalar field.

Preliminaries

2.1.

Off-diagonal bounds. Our results rely on off-diagonal bound techniques. A family (T t ) t>0 of bounded linear operators on L 2 (R n ) is said to satisfy L q -L 2 offdiagonal bounds if there exist constants c > 0 and C ≥ 0 such that for all Borel sets E, F in R n and all f ∈ L 2 ∩ L q (R n ) we have

1 E T t 1 F f L 2 (R n ) ≤ Ct -n 2 ( 1 q -1 2 ) exp(-c(d(E, F )) 2 /t) 1 F f L q (R n ) , with d(E, F ) := inf{|x -y| : x ∈ E, y ∈ F }.
Such bounds are substitutes for the classical pointwise kernel estimates of Calderón-Zygmund theory, which are not available when one deals with semigroups generated by elliptic operators with rough coefficients. Following the breakthrough paper [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF], they have recently become a highly popular tool in harmonic analysis. Typical examples of their use are given in the memoir [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Note that L 2 -L 2 offdiagonal bounds imply uniform boundedness in L 2 (taking E = F = R n ). Observe that off-diagonal bounds form an ordered scale of conditions. Lemma 2.1. Let 1 ≤ q ≤ r ≤ 2, and (T t ) t>0 be a family of bounded linear operators on L 2 , which satisfies L q -L 2 off-diagonal bounds. Then (T t ) t>0 satisfies L r -L 2 off-diagonal bounds.

Proof. This is a consequence of [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type[END_REF]Proposition 3.2], where it is proven that such off-diagonal bounds are equivalent, on R n , to off-diagonal bounds on balls (see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type[END_REF]Definition 2.1]). The result for the latter follows from Hölder's inequality.

Example 2.2 (Divergence form elliptic operators). We mostly consider second order operators in divergence form A = -div a∇, with a ∈ L ∞ (R n ; M n (R)) elliptic in the sense that there exist C, C ′ > 0 such that for all x ∈ R n and ξ, ξ ′ ∈ R n we have

a(x)ξ • ξ ≥ C|ξ| 2 and |a(x)ξ • ξ ′ | ≤ C ′ |ξ||ξ ′ |.
It is proven in [1, subsection 4.3] that (t 1 2 ∇e -tA ) t≥0 satisfies L q -L 2 off-diagonal bounds for all q ∈ (1, 2]. In fact, (t 1 2 ∇e -tA ) t≥0 even satisfies L 1 -L 2 off-diagonal bounds, as can be seen in [11, page 51] as a consequence of [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Theorem 4 and Lemma 20]. We use these L 1 -L 2 bounds in the results below. If we assume only L q -L 2 bounds for some q ∈ (1, 2], Theorem 5.2 still holds for all p ∈ [1, 2]∩( 2n n+βq ′ , 2] (where 1 q + 1 q ′ = 1), but the proof is technical (see [START_REF] Auscher | Singular integral operators on tent spaces[END_REF]). This version suffices for proving Theorem 1.1.

Note that we assume that a has real-valued coefficients. In the stochastic setting, where the noise process W is also real-valued, this is a natural assumption.

2.2. Conical maximal L p -regularity. The notion of maximal L p -regularity has played an important role in much of the recent progress in the theory of nonlinear parabolic evolution equations. We refer to the lecture notes of Kunstmann and Weis [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus, Functional analytic methods for evolution equations[END_REF] for an overview and references to the rapidly expanding literature on this topic.

Motivated by applications to boundary value problems with L 2 -data, Auscher and Axelsson [START_REF]Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I[END_REF][START_REF] Auscher | Remarks on maximal regularity[END_REF] proved that for a bounded analytic C 0 -semigroups S = (S(t)) t≥0 with generator -A on a Hilbert space E, the classical maximal L 2 -regularity estimate

AS * g L 2 (R+;E) ≤ C g L 2 (R+;E)
implies, for any β ∈ (-1, ∞), the weighted maximal L 2 -regularity estimate

AS * g L 2 (R+,t -β dt;E) ≤ C β g L 2 (R+,t -β dt;E) . (2.1)
Here, S * g(t) = t 0 S(ts)g(s) ds denotes the convolution of g with the semigroup S and AS * g := A(S * g). See also [START_REF] Prüss | Maximal regularity for evolution equations in weighted Lp-spaces[END_REF] for similar weighted maximal regularity estimates in L p spaces.

With the aim of eventually extending the results of [START_REF]Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I[END_REF] to an L p -setting, a 'conical' L p -version of (2.1) was subsequently obtained in [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF]. Observing that, for

E = L 2 (R n ), one has (2.2) g L 2 (R+,t -β dt;L 2 (R n )) = R n ∞ 0 - B(x,t 1 2 
)

|g(t, y)| 2 dy dt t β dx 1 2 ,
where the dashed integral denotes the average over the ball B(x, t

2 ) = {y ∈ R n : |x -y| < t 1 2 }. One defines, for 1 ≤ p < ∞, g T p,2 2 (R+×R n ,t -β dt×dy) := R n ∞ 0 - B(x,t 1 2 ) |g(t, y)| 2 dy dt t β p 2 dx 1 p . 1 
The Banach space T p,2 2,β := T p,2 2 (R + × R n ; t -β dt × dy) consisting of all measurable functions g : R + × R n → R for which this norm is finite is called the tent space of exponent p and weight β. The spaces T p,2 2,β are weighted, parabolic versions of the spaces T p,2 introduced by Coifman, Meyer and Stein [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], and have been studied by many authors. We refer to [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] for a thorough discussion and references to the literature. It is useful to observe that T p,2 2,β can be identified with a closed subspace of L p (R n ; L 2 (t -n 2 -β dt × dy)) for 1 < p < ∞ and of the Hardy space H 1 (R n ; L 2 (t -n 2 -β dt × dy)) for p = 1 (see [START_REF] Harboure | A vector-valued approach to tent spaces[END_REF]).

Notation. From now on, whenever functions belong to a (vector-valued) Lebesgue space over R n , we shall suppress R n from our notations. For instance, we shall write

L 2 := L 2 (R n ), L 2 (H) = L 2 (R n ; H)
and thus use the notation L 2 (R n ) as an abbreviation for L 2 (R n ; R n ). Likewise we suppress R + × R n from the notations for (vector-valued) tent spaces. In all other instances we shall be notationally more explicit.

The next estimate is the main result of [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF].

Theorem 2.3 (Conical maximal L p -regularity). Let -A be the generator of a bounded analytic C 0 -semigroup S = (S(t)) t≥0 on L 2 , and suppose that the family

(tAS(t)) t≥0 satisfies L 2 -L 2 off-diagonal bounds. Then for all β > -1, p > sup 2n n+2(1+β) , 1 , and g ∈ L 2 (t -β dt; D(A)) ∩ T p,2 2,β one has AS * g T p,2 2,β ≤ C p,β g T p,2 2,β 
, with constant C p,β independent of g.

It is routine to see that the inclusions

L 2 (t -β dt; D(A)) ∩ T p,2 2,β ֒→ L 2 (t -β dt; R n ) ∩ T p,2 2,β = T 2,2 2,β ∩ T p,2 2,β ֒→ T p,2 2,β
are dense, so the above result gives the unique extendability of g → AS * g to a bounded operator on T p,2 2,β . The proof of this result, as well as that of Theorem 3.1 below, depends on a change of aperture result for tent spaces. Tent spaces with aperture α > 0 are defined by the norms

g T p,2 2,β,α := R n ∞ 0 - B(x,αt 1 2 ) |g(y, t)| 2 dy dt t β p 2 dx 1 p .
For all α ≥ 1 one has

g T p,2 2,β,α ≤ Cα n/(p∧2) g T p,2 2,β (2.3) 
for some constant C independent of α and m. This was first proved in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF] in a vector-valued context, but with an additional logarithmic factor. A different proof in the scalar-valued case was obtained in [START_REF]Change of angle in tent spaces[END_REF]. The important point is that the righthand side improves the classical bound from [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]. The weighted parabolic situation treated here follows from these results applied to the function (t, y) → t β+1 f (t 2 , y) (see [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF]). For later use we mention that the bounds (2.3) extend to the Hilbert space-valued tent spaces T p,2 2,β (H) (which are defined in the obvious way).

The main result

Given a probability space (Ω, F , P) endowed with a filtration F = (F t ) t≥0 and a real Hilbert space H, unless stated otherwise, W = (W (s)) s≥0 denotes a Fcylindrical Brownian motion in H (see, e.g., [START_REF]Maximal L p -regularity for stochastic evolution equations[END_REF] for the precise definition) which we consider to be fixed throughout the rest of the paper. In applications to stochastic partial differential equations, one typically takes H to be L 2 (D) for some domain D ⊆ R n ; this provides the mathematically rigorous model for space-time white noise on D. Also note that for

H = R d , W is just a standard F -Brownian motion in R d .
An F -adapted simple process with values in H is a measurable mapping g :

R + × R n × Ω → H of the form g(t, x, ω) = N ℓ=1 1 (t ℓ ,t ℓ+1 ] (t) N m=1 1 A mℓ (ω)φ mℓ (x) with 0 ≤ t 1 < • • • < t N < t N +1 < ∞, A mℓ ∈ F t ℓ ,
and φ mℓ simple functions on R n with values in H. For such processes, the stochastic convolution process

S ⋄ g(t) := t 0 S(t -s)g(s) dW (s)
is well-defined as an L 2 -valued process whenever S = (S(t)) t≥0 is a C 0 -semigroup of bounded linear operators on L 2 (see, e.g., [START_REF] Van Neerven | Stochastic integration in UMD Banach spaces[END_REF]).

The main result of this paper reads as follows.

Theorem 3.1 (Conical stochastic maximal L p -regularity). Let A = -div a(•)∇ be a divergence form elliptic operator on R n with bounded measurable real-valued coefficients, and denote by S = (S(t)) t≥0 the analytic C 0 -contraction semigroup generated by -A. Then for all 1 ≤ p < ∞ and β > 0, and all adapted simple processes g : R

+ × R n × Ω → H one has E ∇S ⋄ g p T p,2 2,β (R n ) ≤ C p p,β E g p T p,2
2,β (H) , with constant C p,β independent of g and H.

Remark 3.2. Compared to the results given in [START_REF] Krylov | A generalization of the Littlewood-Paley inequality and some other results related to stochastic partial differential equations[END_REF][START_REF]On the foundation of the Lp-theory of stochastic partial differential equations[END_REF][START_REF]Stochastic maximal L p -regularity[END_REF], Theorem 3.1 gives conical stochastic maximal L p -regularity for 1 ≤ p < ∞, while stochastic maximal L p -regularity can only hold for 2 ≤ p < ∞ even for A = -∆ (see [START_REF]Stochastic partial differential equations: six perspectives[END_REF] and the discussion in the Introduction).

The proof of Theorem 3.1 combines two ingredients: a T 2,2 2,β estimate, and an extrapolation result based on off-diagonal bounds for L which gives the T p,2 2,β estimate. These steps are carried out in Sections 4 and 5, respectively.

Conical stochastic maximal L 2 -regularity

A classical stochastic maximal L 2 -regularity result due to Da Prato (see [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]Theorem 6.14]) asserts that if -A generates an analytic C 0 -contraction semigroup (S(t)) t≥0 on a Hilbert space E and g is an F -adapted simple process with values in the vector space H ⊗ E of finite rank operators from H to E, then there exists a constant C ≥ 0, independent of g and H, such that

E A 1 2 S ⋄ g 2 L 2 (R+;E) ≤ C 2 E g 2 L 2 (R+;L2(H,E)) . (4.1)
Here, L 2 (H, E) denotes the space of Hilbert-Schmidt operators from H to E.

This estimate has the following weighted analogue.

Proposition 4.1. Suppose -A generates an analytic C 0 -contraction semigroup S = (S(t)) t≥0 on a Hilbert space E. Then for all β ≥ 0 there exists a constant C β ≥ 0 such that for all F -adapted simple processes g :

R + × Ω → L 2 (H, E), E A 1 2 S ⋄ g 2 L 2 (R+,t -β dt;E) ≤ C 2 β g 2 L 2 (R+,t -β dt;L2(H,E))
. Proof. For β = 0, this is Da Prato's result. We thus assume that β > 0. The proof follows the lines of Theorem 2.3 in [START_REF] Auscher | Remarks on maximal regularity[END_REF]. On the subinterval (0, t 2 ) we estimate, using the Itô isometry,

E t → t 2 0 A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+,t -β dt;E) = E t 2 0 A 1 2 S(t -s)g(s) 2 L2(H,E) ds dt t β E ∞ 0 t 2 0 (t -s) -1 g(s) 2 L2(H,E) ds dt t β E ∞ 0 g(s) 2 L2(H,E) ds s β .
On the subinterval ( t 2 , t) we have, using (4.1),

E t → t t 2 A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+,t -β dt;E) 1 2 E t → t t 2 s -β 2 A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) 1 2 + E t → t t 2 (s -β 2 -t -β 2 )A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) 1 2 E t → t 0 s -β 2 A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) 1 2 + E t → t t 2 (s -β 2 -t -β 2 )A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) 1 2 E g L 2 (R+, ds s β ;L2(H;E)) + E t → t t 2 (s -β 2 -t -β 2 )A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) 1 2 .
Using once more the Itô isometry, the last part is estimated as follows:

E t → t t 2 (s -β 2 -t -β 2 )A 1 2 S(t -s)g(s) dW (s) 2 L 2 (R+;E) E ∞ 0 t t 2 |s -β 2 -t -β 2 | 2 |s -t| g(s) 2 L2(H,E) ds dt E ∞ 0 g(s) 2 L2(H,E) 2s s | s t β 2 -1| 2 | t s -1| dt ds s β+1 E g 2 L 2 (R+,t -β dt;L2(H,E))
. The proof is concluded by collecting the estimates.

Following the principles described in Subsection 2.2, we shall specialise, in the next section, to the case E = L 2 (R n ), and identify

L 2 (R + , t -β dt; L 2 (H, L 2 (R n )) = L 2 (R + , t -β dt; L 2 (R n ; H)) = T 2,2 2,β (H) (cf. (2.2)).

Extrapolating conical stochastic maximal L 2 -regularity

In this section, we prove two abstract extrapolation results based on off-diagonal estimates. Proposition 5.1 is an extrapolation result for p ∈ [1, ∞) ∩ ( 2n n+2β , ∞), assuming L 2 -L 2 off-diagonal bounds, and Theorem 5.2 gives the result for p ∈ [1, ∞), assuming L 1 -L 2 off-diagonal bounds (the well-definedness of the stochastic integrals on the left-hand side of (5.1) and (5.3) being part of the assumptions).

Proposition 5.1 (Extrapolation via L 2 -L 2 off-diagonal bounds). Let (T t ) t>0 be a family of bounded linear operators on L 2 , let β > 0, and suppose there exists a constant C β ≥ 0, independent of g and H, such that

E t 0 T t-s g(s, •) dW (s) 2 T 2,2 2,β ≤ C 2 β E g 2 T 2,2 2,β (H) (5.1) 
for all F -adapted simple g : R

+ × R n × Ω → H. If (t 1 2 T t ) t>0 satisfies L 2 -L 2 -off- diagonal bounds, then, for p ∈ [1, ∞) ∩ ( 2n n+2β , ∞)
, there exists a constant C p,β ≥ 0, independent of g and H, such that

E t 0 T t-s g(s, •) dW (s) p T p,2 2,β ≤ C p p,β E g p T p,2
2,β (H) . Proof. We introduce the sets

C j (x, t) = B(x, t) j = 0 B(x, 2 j t) \ B(x, 2 j-1 t) j = 1, 2, . . .
Fix an F -adapted simple process g : R + × R n × Ω → H. Using the Itô isomorphism for stochastic integrals [START_REF] Van Neerven | Stochastic integration in UMD Banach spaces[END_REF] in combination with a square function estimate [30, Corollary 2.10], we obtain (5.2)

E t 0 T t-s g(s, •) dW (s) p T p,2 2,β E 1 {t≥s} (t, s)T t-s g(s, •) p T p,2 2,β (L 2 (R+;H)) = E 1 {t≥s} T t-s g(s, •) L 2 (R+;H) p T p,2 2,β = E R n ∞ 0 - B(x,t 1 2 
)

t 0 T t-s [g(s, •)](y) 2 H ds dy dt t β p 2 dx ≤ E ∞ j=0 ∞ k=1 I j,k + E ∞ j=0 J j ,
where

I j,k = R n ∞ 0 - B(x,t 1 2 
)

2 -k t 2 -k-1 t T t-s [1 Cj (x,4t 1 2 ) 
g(s,

•)](y) 

J j = R n ∞ 0 - B(x,t 1 2 
)

t t 2 T t-s [1 Cj (x,4s 1 2 ) 
g(s,

•)](y) 2 H ds dy

dt t β p 2 dx.
Following closely the proof given in [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF] we shall estimate each of these contributions separately.

We begin with an estimate for I j,k for j ≥ 0 and k ≥ 1. Using the off-diagonal bounds, we find

∞ 0 - B(x,t 1 2 ) 2 -k t 2 -k-1 t T t-s [1 Cj (x,4t 1 2 ) g(s, •)](y) 2 H ds dy dt t β = ∞ 0 2 -k t 2 -k-1 t 1 t -s 1 B(x,t 1 2 ) 
(ts)

1 2 T t-s [1 Cj (x,4t 1 2 ) 
g(s, •)]

2 L 2 (H) ds dt t n 2 +β ∞ 0 2 -k t 2 -k-1 t 1 t exp(- c4 j t t -s ) 1 Cj (x,4t 1 2 ) 
g(s, •)

2 L 2 (H) ds dt t n 2 +β exp(-c4 j ) ∞ 0 2 k+1 s 2 k s dt t n 2 +1+β 1 B(x,2 j+ k 2 +3 s 1 2 ) g(s, •) 2 L 2 (H) ds exp(-c4 j )2 -k( n 2 +β) ∞ 0 1 B(x,2 j+ k 2 +3 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β .

By (2.3) it follows that

EI j,k exp(-cp 2 4 j )2 -1 2 k( n 2 +β)p E g p T p,2 2,β,2 j+k/2+3 (H) exp(-cp 2 4 j )2 -1 2 k( n 2 +β)p 2 (j+ k 2 +3) np p∧2 E g p T p,2
2,β (H) . The sum E j,k I j,k thus converges since we assumed that p > 2n n+2β . Next we estimate J 0 . We have

E ∞ 0 - B(x,t 1 2 ) t t 2 T t-s [1 B(x,4s 1 
2 ) g(s, •)](y) 2 H ds dy dt t β ≤ E ∞ 0 - B(x,t 1 2 
)

t 0 T t-s [1 B(x,4s 1 2 ) 
g(s,

•)](y) 2 H ds dy dt t β ≤ E ∞ 0 R n t 0 T t-s [1 B(x,4s 1 
2 ) g(s, •)](y) 2 H ds dy dt t n 2 +β = E ∞ 0 R n E t 0 T t-s [1 B(x,4s 1 2 ) 
g(s,

•)](y) dW (s)

2 dy dt t n 2 +β = E (t, y) → t 0 T t-s [1 B(x,4s 1 2 ) g(s, •)](y) dW (s) 2 L 2 (t -n 2 -β dt×dy;H) E t → 1 B(x,4t 1 2 ) g(t, •) 2 L 2 (t -n 2 -β dt×dy;H) ,
where the last inequality follows from the T 2,2 2,β -boundedness assumption on the stochastic convolution operator. It follows that

EJ 0 E R n t → 1 B(x,4t 1 2 ) g(t, •) p L 2 (t -n 2 -β dt×dy;H) dx = E R n ∞ 0 R n 1 B(x,4t 1 2 ) 
(y) g(t, y) 2 H dy dt t

n 2 +β p 2 dx E g p T p,2
2,β (H) , the last of these estimates being a consequence of (2.3).

Finally we estimate J j for j ≥ 1. We have

∞ 0 - B(x,t 1 2 
)

t t 2 T t-s [1 Cj (x,4s 1 2 ) 
g(s,

•)](y) 2 H ds dy dt t β ∞ 0 t t 2 1 t -s exp(- c4 j s t -s ) 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds dt t n 2 +β ≤ ∞ 0 t t 2 1 t -s exp(-c 4 j s t -s ) 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β dt = ∞ 0 2s s 1 t -s exp(-c 4 j s t -s ) dt 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β ≤ exp(- c 2 4 j ) ∞ 0 2s s 1 t -s exp(- c 2 
4 j s t -s ) dt 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β = exp(- c 2 4 j ) ∞ 0 ∞ 1 exp(- c 2 4 j u) du u 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β exp(- c 2 4 j ) ∞ 0 1 B(x,2 j+2 s 1 2 ) g(s, •) 2 L 2 (H) ds s n 2 +β . With (2.3) it follows that EJ j exp(-c4 j-1 p)E g p T p,2 2,β,2 j+2 (H) exp(-c4 j-1 p)2 (j+2) np p∧2 E g p T p,2
2,β (H) , and the sum E j J j thus converges. Theorem 5.2 (Extrapolation via L 1 -L 2 off-diagonal bounds). Let (T t ) t>0 be a family of bounded linear operators on L 2 , let β > 0, and suppose there exists a constant C β ≥ 0,independent of g and H, such that

E t 0 T t-s g(s, •) dW (s) 2 T 2,2 2,β ≤ C 2 β E g 2 T 2,2 2,β (H) (5.3)
for all F -adapted simple process g :

R + × R n × Ω → H. If (t 1 2
T t ) t>0 is a family of bounded linear operators on L 2 which satisfies L 1 -L 2 off-diagonal bounds, then, for all p ∈ [1, ∞), there exists a constant C p,β ≥ 0, independent of g and H, such that

E t 0 T t-s g(s, •) dW (s) p T p,2 2,β ≤ C p p,β E g p T p,2
2,β (H) . Recall that L 1 -L 2 off-diagonal bounds are stronger than L 2 -L 2 off-diagonal bounds by Lemma 2.1, so the previous proposition applies, and gives the result for p ∈ [2, ∞).

The proof of Theorem 5.2 will be based on two lemmas. The first gives a simple sufficient condition for membership of T p,2 2,β (H).

Lemma 5.3. If a ∈ L 2 (R + × R n , t -β dt × dy; H) is supported in a set of the form (0, r 2 ) × B(x 0 , r) with r > 0 and x 0 ∈ R n , then, for all 1 ≤ p ≤ 2, we have a ∈ T p,2 2,β (H) and

a T p,2 2,β (H) r n( 1 p -1 2 ) a L 2 (R+×R n ,t -β dt×dy;H)
with implied constant depending on n and p, but not on β, r, and x 0 .

Proof. Noting that, for t ∈ (0, r 2 ), B(x 0 , r)∩B(x, t

2 ) = ∅ only if |x-x 0 | < t 1 2 1 
+r ≤ 2r, from Hölder's inequality we obtain

a p T p,2 2,β (H) = R n ∞ 0 - B(x,t 1 2 ) a(t, y) 2 H dy dt t β p 2 dx = B(x0,2r) r 2 0 - B(x,t 1 2 
)

a(t, y) 2 H dy dt t β p 2 dx ≤ B(x0,2r) dx 1-p 2 B(x0,2r) r 2 0 - B(x,t 1 2 
)

a(t, y) 2 H dy dt t β dx p 2 r n(1-p 2 ) B(x0,2r) r 2 0 R n 1 B(x,t 1 2 ) 
(y)

|B(x, t 1 2 )| a(t, y) 2 H dy dt t β dx p 2 = r n(1-p 2 ) r 2 0 R n B(x0,2r) 1 B(y,t 1 2 ) (x) 
|B(y, t

2 )| a(t, y) 2 H dx dy dt t β p 2 = r n(1-p 2 ) r 2 0 R n |B(x 0 , 2r) ∩ B(y, t 1 
2 )| |B(y, t 1 2 )| a(t, y) 2 H dy dt t β p 2 ≤ r n(1-p 2 ) ∞ 0 R n a(t, y) 2 H dy dt t β p 2 . 1 
For the second lemma we need to introduce some terminology. An atom with values in H is a function a : R + × R n → H supported in a set of the form (0, r 2 ) × B(x 0 , r) for some r > 0 and x 0 ∈ R n and satisfying the estimate

a L 2 (R+×R n ,t -β dt×dy;H) ≤ r -n 2 .
By the previous lemma, any atom belongs to

T 1,2 2,β (H) with norm a T 1,2 2,β (H) 1.
The next lemma is a consequence of the well-known fact that T 1,2 2,β (H) admits an atomic decomposition, and interpolation. Lemma 5.4. Let β ∈ R and let H be a Hilbert space. A bounded linear operator from T 2,2 2,β (H) to T 2,2 2,β (H ), which is uniformly bounded on atoms, extends to a bounded operator from T 1,2 2,β (H) to T 1,2 2,β (H ). A subtle point here is that an operator that is uniformly bounded on atoms is not necessarily defined on T 1,2 2,β (H). However, if the operator is also bounded on T 2,2 2,β (H), then a simple modification of [9, Theorem 4.9, Step 3] takes care of this issue.

Proof of Theorem 5.2. Given a simple function

f : R + → L 2 ⊗ H, let M f (t, x) := 1 { t 2 ≥s} [T t-s f (s, •)](x).
As in (5.2), given an adapted simple process g : R + × Ω → L 2 ⊗ H, for all 1 ≤ p < ∞, we have

E t 2 0 T t-s g(s, •) dW (s) p T p,2 2,β E M g p T p,2 2,β (L 2 (R+;H)) .
Hence the theorem is proved once we show that the linear mapping M is bounded from

T p,2 2,β (H) to T p,2 2,β (L 2 (R + ; H)) for p ∈ [1, 2]
. Indeed, the stochastic integral over the interval ( t 2 , t) has already been estimated in the proof of Proposition 5.1. By interpolation, it suffices to consider the exponents p = 1 and p = 2.

Step 1 -We start with the case p = 2. Proceeding as in (5.2), using the isometry

T 2,2 2,β (H) = L 2 (R + × R n , t -β dt × dy; H) (first
with H replaced by R and at the end of the computation with H), Fubini's theorem, the uniform boundedness of the operators t

1 2 T t , we obtain M f 2 T p,2 2,β (L 2 (R+;H)) = 1 { t 2 ≥s} T t-s f (s, •) L 2 (R+;H) 2 T p,2 2,β = ∞ 0 t 2 0 T t-s f (s, •) 2 L 2 (H) ds dt t β ∞ 0 t 2 0 s t f (s, •) 2 L 2 (H) ds s dt t β = 1 2 0 ∞ 0 f (tu, •) 2 L 2 (H) dt t β du = 1 2 0 ∞ 0 u β-1 f (t, •) 2 L 2 (H) dt t β du ∞ 0 f (t, •) 2 L 2 (H) dt t β = f 2 T p,2 2,β (H) .
Step 2 -Next we consider the case p = 1. We will prove that there exists a constant C β ≥ 0 such that for every atom a we have

M a T 1,2 2,β (L 2 (R+;H)) ≤ C β . (5.4)
An appeal to Lemma 5.4 will then finish the proof.

Fix an atom a supported in (0, r 2 ) × B(x 0 , r), and define the following sets:

C 0 :={(t, x) ∈ (0, ∞) × R n ; |x -x 0 | < 2r and t < (2r) 2 }, C j :={(t, x) ∈ (0, ∞) × R n ; 2 j r ≤ |x -x 0 | < 2 j+1 r and t < (2 j r) 2 }, j ≥ 1, C ′ j :={(t, x) ∈ (0, ∞) × R n ; |x -x 0 | < 2 j+1 r and (2 j r) 2 ≤ t < (2 (j+1) r) 2 }, j ≥ 1. We write 1 { t 2 ≥s} T t-s f (s, •) L 2 (R+;H) = 1 C0 (t, x) + j≥1 (1 Cj (t, x) + 1 C ′ j (t, x)) t 2 0 [T t-s a(s, •)](x) 2 H ds 1 2
and, using Lemma 5.3, show that each term is in T 1,2 2,β with suitable bounds. 1. Estimate on C 0 : Estimating as before, using the uniform boundedness of (t

1 2 T t ) t>0 we have B(x0,2r) 4r 2 0 t 2 0 [T t-s a(s, •)](x) 2 H ds dt t β dx 4r 2 0 t 2 0 s t a(s, •) 2 L 2 (H) ds s dt t β = 2r 2 0 4r 2 2s s t a(s, •) 2 L 2 (H) dt t β ds s ∞ 0 s 1-β a(s, •) 2 L 2 (H) ds s r -n .
Therefore, by Lemma 5.3,

(t, x) → 1 C0 (t, x) t 2 0 T t-s [a(s, •)](x) 2 H ds 1 2 T 1,2 2,β 1. 
2. Estimate on C j : Let us write Bj = B(x 0 , 2 j+1 r) \ B(x 0 , 2 j r). Using the L 1 -L 2 off-diagonal estimates, and the fact that a is supported on (0, r 2 ) × B(x 0 , r), we have

Bj 4 j r 2 0 t 2 0 T t-s [a(s, •)](x) 2 H ds dt t β dx = 4 j r 2 0 t 2 0 Bj t 1 2 T t-s [a(s, •)1 B(x0,r) (•)](x) 2 H dx ds dt t 1+β 4 j r 2 0 t 2 0 t -n 2 exp(-c4 j r 2 /t) a(s, •) 2 L 1 (R n ;H) ds dt t 1+β = 4 j r 2 0 t 2 0 s β a(s, •) 2 L 1 (R n ;H) ds s β t -β-n 2 exp(-c4 j r 2 /t) dt t r n r 2 0 r 2β a(s, •) 2 L 2 (H) ds s β 4 j r 2 0 t -β-n 2 exp(-c4 j r 2 /t) dt t r 2β (4 j r 2 ) -β-n 2 = r -n 4 -j(β+ n 2 ) .
Therefore, by Lemma 5.3,

(t, x) → 1 Cj (t, x) t 2 0 T t-s [a(s, •)](x) 2 H ds 1 2 T 1,2 2,β (2 j+1 r) n 2 r -n 2 2 -j(β+ n 2 )
2 -jβ .

3. Estimate on C ′ j : Using the L 1 -L 2 off-diagonal bounds, we have

B(x0,2 j+1 r) (2 j+1 r) 2 (2 j r) 2 t 2 0 T t-s [a(s, •)](x) 2 H ds dt t β dx = (2 j+1 r) 2 (2 j r) 2 t 2 0 B(x0,2 j+1 r) t 1 2 T t-s [a(s, •)1 B(x0,r) (•)](x) 2 H dx ds dt t 1+β (2 j+1 r) 2 (2 j r) 2 t 2 0 t -n 2 a(s, •) 2 L 1 (R n ;H) ds dt t 1+β r n r 2 0 r 2β a(s, •) 2 L 2 (H) ds s β (2 j+1 r) 2 (2 j r) 2 t -β-n 2 dt t r 2β (4 j r 2 ) (-β-n 2 ) = r -n 4 -j(β+ n 2 ) .
Therefore, by Lemma 5.3,

(t, x) → 1 C ′ j (t, x) t 2 0 T t-s [a(s, •)](x) 2 H ds 1 2 T 1, 2 2,β 2 -jβ . 
4. Collecting the estimates: Summing the above three estimates over j gives (5.4).

Proof of Theorem 3.1. For A as in Example 2.2, (t 1 2 ∇e -tA ) t≥0 has L 1 -L 2 off-diagonal bounds. By the solution of Kato's square root problem [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF],

A 1 2 u L 2 ∇u L 2 (R n ) . (5.5)
Moreover, A is maximal accretive on L 2 and therefore the bounded analytic semigroup generated by -A is contractive on L 2 . By Proposition 4.1, the mapping g → A 1 2 S ⋄ g (and hence the mapping g → ∇S ⋄ g) extends to a bounded operator from

L 2 F (Ω; T 2,2 2,β (H)) to L 2 F (Ω; T 2,2 2,β ) (respectively, from L 2 F (Ω; T 2,2 2,β (H)) to L 2 F (Ω; T 2,2 2,β (R n ))
). The result thus follows from Theorem 5.2.

Remark 5.5. The results in this section are stated in way that is suitable for applications to the divergence form elliptic operators from Example 2.2. Introducing an homogeneity parameter m as in [START_REF] Auscher | Singular integral operators on tent spaces[END_REF][START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF], one can prove analogue results suitable for the study of differential operators of order m. We have chosen not to do so here to make the paper more readable.

An application to SPDE

In this section we apply our results to prove conical stochastic maximal L pregularity for a class of nonlinear stochastic evolution equations. We consider the problem (6.1)

du(t, x) = div a(x)∇u(t, x) dt + b(∇u(t, x)) dW (t), t ≥ 0, x ∈ R n , u(0, x) = u 0 (x), x ∈ R n .
Here, W is an F -Brownian motion relative to some given filtration F , the function a : R n → M n (R) is bounded and measurable, the operator A = -div a∇ satisfies the ellipticity conditions of Example 2.2, the function b : R n → R is globally Lipschitz continuous, with Lipschitz constant L b , and satisfies

|b(x)| ≤ C b |x|, x ∈ R n . (6.2)
The initial value u 0 : R n → R belongs to D p (A β 2 ), the domain of the L p -realisation of A β 2 , for some 0 < β < 1. At the expense of making the arguments more involved, we could also add an additional semilinear term and consider cylindrical Brownian motions, but in order to bring out the principles more clearly we have chosen to consider a simple model problem.

In order to arrive at a notion of solution we proceed as follows. At least formally, we reformulate (6.1) as an abstract initial value problem as follows:

dU (t) + AU (t) dt = B(∇U (t)) dW (t), t ≥ 0, U (0) = u 0 .
Here A = -div a(•)∇ and

(B(u))(t, x) := b(u(t, x))
is the Nemytskii operator associated with b. Denoting by L p F (Ω; T p,2 2,β ) the closed subspace of all F -adapted processes belonging to L p (Ω; T p,2 2,β ), it is immediate from (6.2) that B maps L p F (Ω; T p,2 2,β ) into itself, and the Lipschitz continuity of b implies that of B, with the same constant.

In order to be consistent with the terminology used in the Introduction, at least formally, a "mild solution" should be an adapted "process" U that "satisfies" the variation of constants equation (6.3)

U (t) = S(t)u 0 + t 0 S(t -s)B(∇U (s)) dW (s),
where S is the bounded analytic C 0 -semigroup generated by -A. By conical stochastic maximal L p -regularity we then understand that the "gradient" of U is in L p (Ω; T p,2 2,β (R n )). In order to make this rigorous, we formally apply ∇ to both sides of the identity (6.3) and, again formally, substitute V = ∇U to arrive at the equation (6.4)

V = ∇S(•)u 0 + ∇S ⋄ B(V ).
Definition 6.1. The problem (6.1) is said to have conical stochastic maximal L pregularity with weight β if for every initial value u 0 ∈ D p (A

2 ) there exists a unique element V in L p (Ω; T p,2 2,β (R n )) such that (6.4) holds. Thus we solve for V , rather than for U . The above heuristic discussion shows that we may think of V as the "gradient of the mild solution of (6.3)". Remark 6.2. If V solves (6.4), then, at least formally, we have V = ∇U with U := S(•)u 0 +S ⋄B(V ). This definition makes sense provided stochastic convolution on the right-hand side is well defined in one way or the other. We are not asserting, however, that this process is a "mild solution" to (6.3) in any rigorous sense.

In the next lemma, which is of interest in its own right, we denote by S the semigroup generated by -A on L p . 1

β 0 0 1 2 1 → 1 p
The polytope of Lemma 6.3. Shaded in gray are the regions of steps 3 and 2; shaded dark is the region of step 4. Lemma 6.3. There exists β 0 ∈ (0, 1] with the following property. If p ∈ (1, ∞) and 0 < β < 1 are such that the pair ( 1 p , β) belongs to the interior of the planar polytope with vertices (0, 0), (0, β 0 ), ( 12 , 1), (1, 1), (1, 0), then for all u 0 ∈ D p (A

β 2 ) the function (t, x) → ∇S(t)u 0 (x) belongs to T p,2 2,β (R n ).
Remark 6.4. The constant β 0 is related to elliptic regularity theory, and can be arbitrary small. For certain specific classes of operators A, however, it is known that one can take β 0 = 1, viz. in the case of constant coefficients (in this case, the arguments can be simplified using standard Littlewood-Paley estimates), and in the case of continuous periodic coefficients with common periods (see [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Section 5.4], [11, page 139], and references therein).

Remark 6.5. For β = 0, the lemma holds for 1 < p < ∞ using [6, Theorem 3.1] and p -(A) = 1 (the number p -(A) being defined in [START_REF] Auscher | Vertical versus conical square functions[END_REF]). The argument given here for 1 < p < 2 and 0 < β < 1 applies to β = 0 as well, and gives a different proof of this case.

Proof. For this proof, we use complexified spaces. Let v 0 = A β 2 u 0 . The proof proceeds in four steps.

Step 1 -In the case p = 2 and 0 < β < 1, one has

(t, y) → ∇S(t)u 0 (y) 2 T p,2 2,β (C n ) ∞ 0 R n |∇e -tA u 0 | 2 dy dt t β ∞ 0 R n |A 1 2 e -tA u 0 | 2 dy dt t β = ∞ 0 R n |(tA) 1-β 2 e -tA v 0 | 2 dy dt t v 0 2 2
where the second equivalence uses the equivalence A

1 2 u L 2 ∇u L 2 (R n ) (cf. ( 5 
.5)), and the last inequality uses the boundedness of the H ∞ -functional calculus of A in L 2 (a result going back to [START_REF] Mcintosh | Operators which have an H∞ functional calculus, Miniconference on operator theory and partial differential equations[END_REF], see also [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus, Functional analytic methods for evolution equations[END_REF]Theorem 11.9]).

Step 2 -In the case 1 < p < 2 and 0 < β < 1, we use the first-order approach of [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF]. Consider the operator

D = 0 -div a(•) ∇ 0 acting on L 2 ⊕ L 2 (C n ).
This operator is bisectorial with angle η ∈ (0, π 2 ), its resolvent satisfies L 2 -L 2 off-diagonal estimates with arbitrary large decay and has a bounded H ∞ functional calculus. The operator A is sectorial of angle ω ∈ (0, π

2 ) and has the same properties. In particular, -A generates a bounded analytic C 0semigroup on L 2 ⊕ L 2 (C n ) (see [START_REF] Axelsson | Quadratic estimates and functional calculi of perturbed Dirac operators[END_REF]).

Note that t [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF]Theorem 7.10], one has the following equivalence of norms in the tent spaces upon changing ψ in the appropriate class (more precisely, as 1 < p < 2, it is enough that ψ has slight decay at 0 and sufficiently large decay at ∞: see the condition (d) in Proposition 7.5 there and note that we have cotype 2),

1-β 2 ∇S(t)u 0 = t 1 2 ∇e -tA (tA) -β 2 v 0 and (0, t 1 2 ∇e -tA (tA) -β 2 v 0 ) = ψ( √ tD)(v 0 , 0) for the function ψ ∈ H ∞ (S θ ) defined by ψ(z) = z(z 2 ) -β 2 e -z 2 (where θ ∈ (ω, π 2 ), S θ = Σ θ ∪ (-Σ θ ) ∪ {0}, and Σ θ = {z ∈ C\{0} | arg(z)| < θ}). Therefore, by
(t, y) → ψ( √ tD)(v 0 , 0)(y) T p,2 2,1 (C n+1 ) (t, y) → ψ( √ tD)(v 0 , 0)(y) T p,2 2,1 (C n+1 ) for ψ(z) = ze -z 2 . As ψ( √ tD)(v 0 , 0) = (0, t 1 2 ∇S(t)v 0 ) we have shown that (t, y) → ∇S(t)u 0 (y) T p,2 2,β (C n ) = (t, y) → t 1-β 2 ∇S(t)A -β 2 v 0 (y) T p,2 2,1 (C n ) (t, y) → t 1 2 ∇S(t)v 0 (y) T p,2 2,1 (C n ) = (t, y) → ∇S(t)v 0 (y) T p,2 2,0 (C n ) . Using [6, Theorem 3.1], this gives (t, y) → ∇S(t)u 0 (y) T p,2 2,β (C n ) v 0 L p = A β 2 u 0 L p .
Step 3 -We turn to the case 2 < p < ∞ and 0 < β < β 0 , where β 0 ∈ (0, 1] will be determined in a moment. We use the fact that the spaces T p,2 2,β interpolate (by either the complex or the real method, see e.g. [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]) between p = 2 and p = ∞. For p = ∞, T p,2 2,β is defined as the space of all locally square integrable functions such that the Carleson measure condition We claim that there exist β 0 ∈ (0, 1] such that for all 0 < β < β 0 and f ∈ L ∞ ,

(t, y) → t 1-β 2 ∇A -β 2 e -tA f (y) T ∞,2 2,1 (C n ) f L ∞ .
Assuming the claim, and using the p = 2 result for all 0 < β < 1, one concludes, by interpolation, that for 0 < β < β 0 and p ∈ [2, ∞),

(t, y) → t 1-β 2 ∇A -β 2 e -tA v 0 (y) T p,2 2,1 (C n ) v 0 L p , i.e., (t, y) → ∇S(t)u 0 (y) T p,2 2,β (C n ) A β 2 u 0 L p .
We now prove the claim. The argument is scale and translation invariant (up to changing the matrix a(x) to a(rx + x 0 ) which does not change the ellipticity constants), so we assume that B is the unit ball. The same proof works in the general case, and produces the required factor r n . Let f be a bounded measurable function with compact support. Let f 0 = f 1 2B and f 1 = ff 0 . By the p = 2 result, one has • exp -c|y| 2 s + t .

This estimate is proven in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Lemma 33,p. 139] for e -tA but the same proof (based on estimates for the kernel of the resolvent) gives the estimate for Ae -sA . Define β 0 = 1 2 (γ 0n + 2) ∈ (0, 1]. By the kernel estimate and the fact that f 1 is supported away from 2B, we have • exp -c|y| 2 s + t |f 1 (y)| dy ds s

f 1 L ∞ |y|≥2 1 |y| n+β0-β dy f 1 L ∞ , for 0 < β < β 0 . Therefore 1 0 t 1-β 2 ∇A -β 2 e -tA f 1 2 L 2 (B;C n ) dt t f 2 L ∞ .
Step 4 -The arguments so far show that the T p,2 2,β (C n ) estimate holds for 0 < Re β < 1 and p = 2, with controlled growth in terms of Im β. It also shows that the T p,2 2,β (C n ) estimate holds for 0 < Re β < β 0 and p = ∞ again with controlled growth in Im β. Using Stein's complex interpolation, one also gets the conclusion of the lemma for all pairs (p, β) such that the point ( 1 p , Re β) is inside the planar polytope with vertices (0, 0), (0, β 0 ), ( 1 2 , 1), ( 1 2 , 1), (0, 1). We leave the details to the reader. Theorem 6.6. Let p ∈ (1, ∞) and 0 < β < 1 be such that the pair ( 1 p , β) belongs to the interior of the planar polytope with vertices (0, 0), (0, β 0 ), ( 12 , 1), (1, 1), (1, 0), where β 0 is defined in Lemma 6.3. Suppose that K p,β L b < 1, where K p,β is the norm of the mapping g → ∇S ⋄ g from L p (Ω; T p,2 By Theorem 5.2, we have ∇S ⋄ B(v) ∈ L p F (Ω; T p,2 2,β (R n )) for all v ∈ T p,2 2,β (R n ). This, in combination with the previous lemma, shows that F maps L p F (Ω; T p,2 2,β (R n )) into itself.

For v 1 , v 2 ∈ L p F (Ω; T p,2 2,β (R n )) we may estimate

F (v 1 ) -F (v 2 ) L p (Ω;T p,2 2,β (R n )) = ∇S ⋄ (B(v 1 ) -B(v 2 )) L p (Ω;T p,2 2,β (R n )) ≤ K p,β B(v 1 ) -B(v 2 ) L p (Ω;T p,2 2,β (R n )) ≤ K p,β L b v 1 -v 2 L p (Ω;T p,2 2,β (R n ))
. Since by assumption K p,β L b < 1, F has a unique fixed point V in L p F (Ω; T p,2 2,β (R n )) and the theorem is proved.

  y)| 2 dy dt t β ≤ Cr n holds whenever B is a ball of radius r > 0, with C independent of B.

2

 2 ∇A -β 2 e -tA f 0 (y)|2 dy dtTo control the other term, we use the representation formula∇A -β 2 e -tA f 1 = C ∞ 0 ∇s β/2 (sA)e -(s+t)A f 1 ds s ,for some constant C > 0 independent of f 1 , which holds in L 2 (B; C n ) thanks to the following estimate on the kernel Ks (x, y) of Ae -sA . There are constants c, C > 0 and γ 0 > 0 in (n -2, n] (for n = 1, one has γ 0 = 1) such that ∀y ∈ 2B B |∇ x Ks+t (x, y)| 2 dx

∇A -β 2 e 2 ( 2 |y|≥2∇

 222 -tA f 1 L 2 (B;C n ) sA)e -(s+t)A f 1 ds s L 2 (B;C n ) Ks+t (•, y)f 1 (y) L 2 (B;C n )

  2,β ) to L p (Ω; T p,2 2,β (C n )) and L b is the Lipschitz constant of b. Then the problem (6.1) has conical stochastic maximal L p -regularity with weight β, i.e., (6.4) holds for all initial values u 0 ∈ D p (A β 2 ). Proof. Consider the fixed point mapping F on L p F (Ω; T p,2 2,β (R n )) defined by F (v) := ∇S(•)u 0 + ∇S ⋄ B(v).
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