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Abstract. For more than a century, physicists have searched for a unique and
general form for the force density that an electromagnetic field imposes on a medium.
The existing equations for this quantity, obtained, e.g., by Minkowski, Einstein and
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1. Introduction

The electric and magnetic field find their physical meaning through the force effects

they have on a unit electric charge and current. The force exerted by an electric field

e and a magnetic field b on a charge q moving with velocity v is given by the Lorentz

equation FL = qe + qv × b. This equation is valid also for charges belonging to a

continuous medium, in which case, however, e and b must be treated as microscopic

fields. We recall that the macroscopic fields E and B are spatial averages of e and b,

and that the physical meanings of these two pairs are different. In contrast to e and b,

the fields E and B can usually readily be calculated, even for complicated geometries,

e.g., by solving the macroscopic Maxwell’s equations using numerical methods. Thus,

if there would exist a general equation for the electromagnetic force density in terms

of E and B, one could insert the calculated E and B into this equation and obtain

the electromagnetic force density inside any material. Unfortunately, there exist more

than one equation for this quantity, and which of them is correct or more general, still

remains an open and intensively discussed question [1]–[18].

Among the many existing equations for the electromagnetic force density in a

medium, the four most famous ones are those by Minkowski [19], Abraham [20], Einstein

and Laub [21], and Helmholtz [1, 22]. These equations yield both quantitatively

and qualitatively different results in some particular cases [1]. For example, for a

stationary field inside a homogeneous and isotropic medium, both Minkowski’s and

Abraham’s force densities are equal to zero independently of the spatial distribution of

the field. In contrast, the Einstein-Laub and Helmholtz equations yield a non-zero force

density that compresses the medium towards regions of higher intensity. Furthermore,

for a stationary electromagnetic field with vectors E and B parallel to a boundary

between, say, vacuum and an isotropic dielectric, the force applied to the boundary is

(i) equal to zero in the Einstein-Laub picture, (ii) directed away from the medium in

both Minkowski’s and Abraham’s pictures, and (iii) directed into the medium in the

Helmholtz picture. As pointed out by Brevik in Ref. [1], the Minkowski, Abraham,

and Einstein-Laub results show disagreement at least with the experiments by Hakim

and Higham [23] in which they accurately measured the dependence of the hydrostatic

pressure in a liquid on the strength of the applied static electric field. Brevik has also

underlined the fact that, for stationary fields, the Helmholtz force density is the only one

that has not been contradicted in any experiment. To our knowledge, this statement

still holds true. However, the Helmholtz theory was originally written for static fields

only [22]. Hence, the force density in the theory does not contain any momentum density

of the field. Furthermore, the Helmholtz tensor, which later was generalized to account

also for oscillating fields [1], is valid only for isotropic and lossless media. In addition,

it can be used in practise only if the density derivatives of the electric permittivity and

magnetic permeability of the material are known at the frequency of the applied field

(as is the case, e.g., for Clausius-Mossotti or Lorentz-Lorenz type media).

In this work, we introduce a general expression for the electromagnetic force
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density written in terms of the three-dimensional energy-momentum tensor and the

momentum density of the field for an arbitrary continuous medium. This expression

is unambiguous and has a clear physical meaning. In the limit of a linear, isotropic,

and non-dispersive material, the obtained tensor and momentum density converge to

our earlier expressions [24, 25]. If, in addition, the medium obeys the Clausius-Mossotti

law, the derived tensor becomes the Helmholtz tensor. The general equation, however,

can be applied also to nonlinear, anisotropic, dispersive, and dissipative media, and

even to materials with optical gain. It naturally includes the effects of electro- and

magnetostriction. We also calculate the rate of work done by the field on the medium

per unit volume, starting from a microscopic picture of the interaction. This rate is

known to determine the temporal component of the four-force density. Therefore, it

also yields the four-dimensional energy-momentum tensor in space-time. The obtained

tensor is compared with those of Minkowski, Abraham, Einstein-Laub, and Helmholtz.

In particular, this tensor turns out to be close in its physical content to the Einstein-

Laub tensor.

2. Three-dimensional force density and energy-momentum tensor

In Ref. [24], by spatially averaging the microscopic Lorentz force density, we derived an

expression for the macroscopic force density imposed by an electromagnetic field on a

medium in the following form

f = ρE + J × B +
∑

k=x,y,z

(
Pk∇Eext,k + Mk∇Bext,k

)
+

d

dt
(P × Bext) .(1)

Here ρ and J are the macroscopic free electric charge and current densities, respectively.

The quantities with subindex k are the projections of the corresponding vector

quantities onto the Cartesian coordinate axes. The fields Eext ≡ 〈eext(r)〉δV and

Bext ≡ 〈bext(r)〉δV are the spatially averaged microscopic electric and magnetic field,

respectively, created by all sources that are external to the averaging volume δV [24].

These fields are equal to the ordinary macroscopic fields E and B from which the self-

fields of the electric charges that belong to δV are excluded. Hence, Eext and Bext
would be the traditional local fields if δV would be the volume occupied by a single

atom or molecule in the medium. Since Eext and Bext are averaged over a volume

that contains a large number of particles, we can call them the macroscopic local fields.

The quantities P and M are the macroscopic electric polarization and magnetization,

respectively.

From the derivation of Eq. (1) it is evident that this equation is quite general, valid

for inhomogeneous, electrically conducting, magnetic, anisotropic, nonlinear, dispersive,

and dissipative materials as long as P and M are not explicitly written in terms of E and

H. For example, for dispersive materials, P and M are related to E and H via the well-

known convolution integrals. The general relations connecting the electric displacement

D with P and E and the magnetic field H with M and B are D = ε0E + P and
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B = µ0(H + M), and the macroscopic Maxwell’s equations find their form as

∇ · D = ρ , (2)

∇ · B = 0 , (3)

−∇× E = Ḃ , (4)

∇× H = Ḋ + J, (5)

where the dots above D and B denote time derivatives.

In Ref. [25] we showed that, in the particular case of a narrow-band or

monochromatic field in a dissipative medium, one can obtain a complex-valued force

density in the form

f =
∑

k=x,y,z

(
P ∗

k∇Eext,k + M∗
k∇Bext,k

)
+

d

dt
(P∗ × Bext) , (6)

where the asterisk stands for complex conjugation. In this equation, terms like ρE and

J × B are absent, because P and M include the contributions also from conduction

charges that oscillate and create additional dipole moments. The medium is considered

to be electrically neutral and the complex-valued Maxwell’s equations to have the same

form as Eqs. (2)-(5), but without ρ and J. If the medium is linear and non-dispersive,

one can insert the relations

P = ε0(ε − 1)E and (7)

M = (µ − 1)H (8)

into Eq. (6) and express the force density in terms of the complex relative permittivity

ε and permeability µ [25], which are the most important materials parameters

characterizing electromagnetic properties of any medium. However, if the medium is

dispersive (while still linear), this cannot be done in the time domain, and one has to

resort to Fourier-transform techniques, and treat each frequency component separately.

In fact, applying Fourier transformation to Eq. (1) and neglecting dispersion is another

way to obtain Eq. (6). In Ref. [25], however, this equation is derived directly in the

microscopic interaction picture.

We proceed with the general Eq. (1). The fields Eext and Bext are given by the

following equations [24, 25]

Eext = E + P/(3ε0) , (9)

Bext = B− 2µ0M/3, (10)

which are valid for an arbitrary medium as long as the relations connecting P and M

to E and H are not established. In terms of the outer products ∇Eext and ∇Bext,

Eq. (1) can be written in an alternative form as

f = ρE + J × B + ∇Eext · P + ∇Bext ·M +
d

dt
(P × Bext). (11)

Substituting Eqs. (9) and (10) into Eq. (11), we can write

f = fe + fm +
d

dt
g, (12)
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where f is formally divided into three separate terms

fe = ρE + ∇E · P + ∇P ·P/(3ε0) , (13)

fm = J × B + ∇B · M − 2µ0∇M · M/3 , and (14)

g =
d

dt
(P× Bext) . (15)

In accordance with the law of conservation of energy and linear momentum, Eq. (12)

must be writable in the following form

f = −∇ · T̂ − dG

dt
, (16)

where T̂ is the three-dimensional energy-momentum tensor and G the momentum

density of the field in the medium. It is easy to show that Eq. (12) can be cast in

this form. For example, to obtain the corresponding transformation for fe [Eq. (13)], we

first write

∇P · P/(3ε0) = ∇ ·
( P 2

6ε0
Î
)
, (17)

where Î is the unit tensor and P the magnitude of the polarization vector. Then, using

Eq. (2), we find that

ρE + ∇E ·P = ∇ · (DE) − ε0

2
∇ · (E2Î) + D × (∇× E). (18)

Substituting Eqs. (17) and (18) into Eq. (13) and using Eq. (4), we find

fe = −∇ ·
(
− DE +

3ε0E
2 − P 2/ε0

6
Î
)
− D × Ḃ. (19)

In a similar way Eq. (14) can be rewritten to take on the form

fm = −∇ ·
(
− BH +

3µ0H
2 − µ0M

2

6
Î
)
− Ḋ × B. (20)

Finally, substitution of Eqs. (19) and (20) into Eq. (12) yields f in the form of Eq. (16)

with T̂ and G given by

T̂ = − DE +
3ε0E

2 − P 2/ε0

6
Î (21)

− BH +
3µ0H

2 − µ0M
2

6
Î ,

G = D × B − µ0P × H− µ0

3
P × M. (22)

These simple equations are the main result of this work. In Refs. [24] and [25], the

expressions for T̂ and G were derived for cases in which the dispersion, anisotropy,

and nonlinearity of the medium can be ignored. Equations (21) and (22) apply to any

medium. They are in full agreement with the results of Refs. [24] and [25]. It can

be easily seen that if the medium is not magnetic, so that we can write M = 0 and

B = µ0H, Eq. (22) yields

G =
1

c2
E × H, (23)

independently of the dielectric properties of the material; c is the speed of light in

vacuum.
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3. Physical interpretation

To gain physical insight into Eqs. (21) and (22), we write them in the form

T̂ = − DE +
(1

2
D · E + Vel

)
Î (24)

− BH +
(1

2
B · H + Vmag

)
Î ,

G = D × B − g, (25)

where

Vel = − 1

2
P · Eext , (26)

Vmag = − 1

2
M · Bext, (27)

and

g = P × Bext. (28)

The quantities Vel and Vmag, which make the tensor differ from the Minkowski tensor,

are the potential energy densities of the medium interacting with the macroscopic electric

and magnetic local fields [26, 27]. Consequently, the quantity

V = Vel + Vmag, (29)

which is the total density of the field-matter interaction potential, is equal to the density

of the work the field has done on the medium (which is also equal to the density of work

done in introducing the medium into the field) [27]. Note that, in principle, V can be

positive, but at least for static and quasi-monochromatic fields, its time-averaged value

is negative. The terms Vel and Vmag are responsible for electro- and magnetostriction,

respectively, and lead to electromagnetic forces that compress the medium towards

regions of higher intensity.

It is worth mentioning that if Eqs. (26)-(28) would contain the ordinary macroscopic

fields E and B instead of Eext and Bext, then T̂ and G would be exactly the energy-

momentum tensor and the field momentum density in the Einstein-Laub theory [1, 21].

In the present form, the tensor becomes the Helmholtz tensor, if the medium is a

transparent dielectric that obeys the Clausius-Mossotti law [24, 25].

Equation (25) shows that the momentum density of the field is equal to the

Minkowski momentum density minus a vector quantity g. In Ref. [28], the quantity

g with B used instead of Bext is referred to as a pseudomomentum density. If the

same pseudomomentum density would be used in Eq. (25), G would be exactly the

electromagnetic momentum density of Ref. [28]. For non-magnetic materials, G is

indeed the same as in [28], and it is also the same as the one in the Einstein-Laub

and Abraham theories [1, 20, 21], i.e., equal to that in vacuum.

Equations (16), (21), and (22) [or alternatively (24) and (25)] can be used to

calculate the force density imposed by an electromagnetic field on an arbitrary medium

that can be described by the macroscopic Maxwell’s equations. This force density will
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govern the motion of the medium and its parts, and lead to deformation and compression

of the medium. The force on an arbitrary part of the medium can be calculated by

integrating f over the volume of this part, and any object placed in a homogeneous

medium can be considered simply as a part of a general inhomogeneous medium.

Next we discuss some consequences of the presence of V in the equation for f. After

the introduction of an electromagnetic field in a medium, the potential V will on average

lead to a compression of the medium towards the points of maximum intensity. As a

result, the internal pressure of the medium, p, will evolve towards an equilibrium at

a time scale determined by the speed of sound in the medium [1], starting from the

original value p0 of the pressure. After reaching an equilibrium, the field-induced excess

pressure, pexc = p− p0, will be distributed in accordance to pexc = −V to compensate

for the electromagnetic compression. The unevenly distributed excess pressure will lead

to appearance of an Archimedes-like force density

fexc = −∇pexc = ∇V, (30)

with which the medium will eventually act on itself. The force density fexc is equal in

magnitude and opposite in direction to the electromagnetic compressive force density

−∇V . Thus, at equilibrium, the overall force density applied to each point inside the

medium is f̃ = f + fexc. If the field is harmonic or stationary, the time-averaged force

density f̃ is equal to the time-averaged force density introduced by Minkowski, i.e.,

〈̃f〉 = 〈fM〉 = −∇ · 〈T̂− V Î〉, (31)

where the fact that 〈Ġ〉 = 0 is used. On the other hand, if the field is quasi-

monochromatic and has slowly varying amplitudes E0(t) and B0(t), such that on average

the field-matter system evolves adiabatically, then at each point in the medium the force

density f̃ averaged over one or several oscillation periods is

〈̃f〉 = 〈f + fexc〉 = −∇ · 〈T̂M〉 − 〈Ġ〉, (32)

with G given by Eq. (22). Note that for non-magnetic materials, G is described by

the Abraham’s expression and not by the Minkowski’s one. Here we want to underline

the fact that within a single oscillation period of a high-frequency (say, optical) field,

the equilibrium cannot be reached and the results of Minkowski and Abraham cannot

be applied. Neither can they be applied to the case of a short electromagnetic pulse

(wavepacket), if the pulse’s temporal duration is shorter than the time required for

sound to transversely cross the pulse.

To summarize, if 〈Ġ〉 = 0, Minkowski’s tensor describes correctly the total

time-averaged force density 〈̃f〉 in a medium that is already compressed by the field

and equilibrated. The same can be said about Abraham’s tensor if the medium is

isotropic, since in this case the two tensors are equal. This makes it difficult to

experimentally resolve the Abraham-Minkowski controversy. We emphasize, however,

that the properties of the material, such as volume, density, inhomogeneity, and

anisotropy, can change under the compression or deformation by the field. Furthermore,

before the system reaches an equilibrium, the excess pressure will change and will not
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compensate for the compressive action of the electromagnetic force density. In such

cases, the Minkowski’s and Abraham’s tensors are insufficient for describing even the

time-averaged reaction of the medium to the field.

4. Rate of work and Poynting theorem

We proceed to calculating the rate of work done by the field on the medium. Within

the concept of four-dimensional space-time, this rate determines the projection of the

four-force density onto the temporal axis [26]. Therefore this calculation, in conjunction

with Eq. (16), must also yield the four-dimensional energy-momentum tensor.

On the microscopic level, the field-matter interaction is unambiguously described

by the microscopic Maxwell’s equations

ε0∇ · e = ξ , (33)

∇ · b = 0 , (34)

−∇× e = ḃ , (35)
1

µ0
∇× b = ε0ė + j , (36)

where ξ and j are the microscopic electric charge and current density, respectively.

Within the microscopic picture, the rate of work done by the electromagnetic field on a

medium, per unit volume, is given by [26, 27]

ȧ = j · e. (37)

The electric current density j can be written in terms of the atomic characteristics as [24]

j =
∑

i

q̃iṙiδ(r − ri) +
∑

l

(ḋl + ∇× ml)δ(r − rl), (38)

where q̃i denotes the magnitude of a free charge i located at coordinate ri in the medium,

dl and ml are the electric and magnetic dipole moments, respectively, of an atom l

located at rl, and δ(r − rl) is the Dirac delta function centered at rl. Equation (38)

holds within the electric and magnetic dipole approximation that is usually used to

derive the macroscopic Maxwell’s equations from the microscopic ones [24, 29].

The macroscopic rate of work Ȧ is found in a standard way by spatially averaging ȧ

over an elementary spherical volume δV . Using Eqs. (37) and (38), Maxwell’s equation

(35), and the integration properties of the delta function, we obtain

Ȧ =
1

δV

∑

i in δV

q̃iṙi · e(ri) +
1

δV

∑

l in δV

(ḋl · e(rl) + ml · ḃ(rl)), (39)

where the summation is performed over the particles located in δV . Within the small

δV , the free charges and atoms can be considered to be uniformly distributed and have

constant characteristics; q̃iṙi = q̃v, dl = d and ml = m. This allows us to write

Ȧ =
1

δV
q̃v ·

∑

i in δV

e(ri) +
1

δV

(
ḋ ·

∑

l in δV

e(rl) + m ·
∑

l in δV

ḃ(rl)
)
. (40)
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The sum over the free charge coordinates in the first term can be substituted with

ÑE [24], where E is the volume averaged electric field and Ñ is the number of free

charges in δV . Note that the volume averaged electric field produced by the charges

themselves is equal to zero under the assumption of their uniform distribution in δV .

Since q̃vÑ/δV = J, we have

Ȧ1 = J ·E, (41)

where Ȧ1 stands for the first term in Eq. (40). Before making similar substitutions in

the second term, we must exclude the strongly inhomogeneous own fields of the dipoles,

eown and bown, from e(rl) and b(rl). The field superposition principle allows us to

write e(r) = eext(r) + eown(r) and b(r) = bext(r) + bown(r), where eext(r) and

bext(r) are the fields produced by all sources external to δV . For brevity, we do not

include the fields of the free charges in these expansions, since they anyway average to

zero. In accordance to these expansions, we write for the second term in Eq. (40)

Ȧ2 = Ȧ2, ext + Ȧ2, own. (42)

We now replace the averaging of the smooth external fields over the dipole coordinates

with volume averaging and, using the definitions 〈eext(r)〉δV = Eext and 〈bext(r)〉δV =

Bext, we obtain

Ȧ2, ext = Ṗ · Eext + M · Ḃext. (43)

Here P ≡ NδV d/δV , M ≡ NδV m/δV , and NδV is the number of dipoles in δV .

When evaluating the term

Ȧ2, own =
1

δV

(
ḋ ·

∑

l in δV

eown(rl) + m ·
∑

l in δV

ḃown(rl)
)
, (44)

we depart from the classical picture of a two-point-charge dipole and consider each

dipole (atom) as a positively charged nucleus surrounded by a spherical electron shell.

This is the simplest model that helps one avoid the problems in describing the dipole-

field interaction without resorting to quantum mechanics (e.g., the problem of infinitely

growing internal fields and unavoidable collapse of a two-point-charge dipole when in a

weakened field the charge separation vanishes). In an external electric field, the shell

moves with respect to the nucleus. However, the total field created by the shell is equal

to zero at the position of the nucleus, even if it is shifted from the shell center. Similarly,

the field produced by the nucleus is equal to zero when integrated over the shell. We

can therefore exclude the field of each atom l from eown(rl) in Eq. (44). The same can

be done to ḃown(rl), since −∇× e = ḃ. This allows us to replace the sums in Eq. (44)

with volume integrals, thus replacing the averaging of eown(r) and bown(r) over the

atomic coordinates with volume averaging. The fields produced by each atom averaged

over the volume δV from which the volume occupied by the atom itself is excluded (due

to the reasons explained above) are equal to zero. So are the sums in Eq. (44), which

yields Ȧ2, own = 0. In principle, the obtained result reflects the known fact that, on
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average, dipoles that compose a continuous medium interact exclusively with the local

fields. Using the obtained expressions for Ȧ1 and Ȧ2, ext, we write

Ȧ = J · E + Ṗ · Eext + M · Ḃext. (45)

With the help of Eqs. (2)-(5) and using Eqs. (9), (10), and (45), we then obtain

Ȧ = − d

dt

(3ε0E
2 − P 2/ε0

6
+

3µ0H
2 − µ0M

2

6

)
(46)

− ∇ · (E × H) + B · Ḣ− H · Ḃ.

This equation can be rewritten in a compact and more insightful form as

Ȧ = −Ẇ − V̇ −∇ · S + ζ, (47)

where

W =
1

2
(D · E + B ·H) , (48)

S = E × H , and (49)

ζ = B · Ḣ − H · Ḃ. (50)

In Eqs. (47)-(50), W is a quantity that is usually referred to as the energy density of

the field propagating in the medium, V is the interaction potential given by Eq. (29), S

is the Poynting vector that in most cases describes the electromagnetic energy flow,

and ζ is a term that is non-zero only if the medium exhibits magnetic temporal

dispersion or magnetic nonlinearity. For usual propagating electromagnetic fields (say,

with frequencies above 1 GHz) in usual materials, the magnetic properties mentioned

are absent. It is worth to note that if we move −V̇ and ζ to the left-hand side of Eq. (47)

and use Eq. (45), we obtain

J · E +
1

2
(Ṗ ·E − P · Ė) +

1

2
(Ṁ · B − M · Ḃ) = −Ẇ −∇ · S. (51)

The pairs {P, E} and {M, B} are seen to enter symmetrically in this equation and form

expressions similar to Eq. (50). In the absence of temporal dispersion and nonlinearity,

both electric and magnetic, Eq. (51) coincides with the differential Poynting theorem in

its simple and widely used form [26, 27]

J · E = −Ẇ −∇ · S. (52)

5. Four-force density and energy-momentum tensor

Now we can obtain the equation for the four-force density in terms of a 4 × 4 energy-

momentum tensor in space-time for the case of a medium that does not exhibit magnetic

dispersion and nonlinearity. The three spatial components of the four-force density are

given by Eq. (16). The temporal component is given by ft = Ȧ/c [26], where the

expression for Ȧ was introduced in Eq. (47); ζ is set to zero. Denoting the four-force

density by f4 ≡ (ft fx fy fz)
T, where T stands for transpose, and the operator nabla by

∇4 ≡ (1
c
d/dt d/dx d/dy d/dz)T, we obtain

f4 = −∇4 · T̂4, (53)
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where

T̂4 = Tij =




W + V cGx cGy cGz

Sx/c Txx Txy Txz

Sy/c Tyx Tyy Tyz

Sz/c Tzx Tzy Tzz


 (54)

is a four-dimensional contravariant energy-momentum tensor. This tensor can be

expanded as

T̂4 =




W cG
(M)
x cG

(M)
y cG

(M)
z

Sx/c Uxx + W Txy Txz

Sy/c Tyx Uyy + W Tyz

Sz/c Tzx Tzy Uzz + W


 (55)

+




V −cgx −cgy −cgz

0 V 0 0

0 0 V 0

0 0 0 V


 ,

where Uii = −DiEi−BiHi and G(M) = D×B. The first term represents the Minkowski

tensor that is traceless. The trace of T̂4, that is the sum of the diagonal elements of

a mixed tensor Tj
i , is equal to −2V . If the medium is vacuum or the potential energy

density V is uniform over the region of interest, then V is equal to or can be set to

be equal to 0, which makes T̂4 traceless. The trace of the four-dimensional Einstein-

Laub tensor is also equal to −2V , where, however, V is written without the local field

corrections.

The tensor T̂4 is in general not symmetric, but if the medium is linear, isotropic,

non-dissipative, and non-magnetic (so that the intrinsic angular momentum of the field

cannot be transferred to the medium), the sum in Eq. (55) is symmetric owing to the off-

diagonal elements −cgi. So is T̂4 in this case. The asymmetry of T̂4 is connected with

the fact that the classical torque density r× f does not contain a contribution from the

intrinsic (spin) angular momentum of the field; this contribution to a vector component

l of the torque density is given by Tki −Tik, where (i, k, l) are cyclic combinations of the

indices (see Eq. (4.61) in Ref. [1]).

With regard to the four-dimensional Einstein-Laub tensor we note that among the

other mentioned tensors this tensor is indeed very close to ours. Similarly to T̂4, it

is neither traceless nor symmetric. It differs from our tensor only in the fields E and

B [Eext and Bext in our case] in the expressions for V and g. We would also like

to mention here the recent theoretical developments by Mansuripur that are in direct

correspondence with the Einstein-Laub theory [12].

6. CONCLUSIONS

We have introduced a general expression for the macroscopic electromagnetic force

density in an arbitrary continuous medium. We have derived the expressions for the
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three-dimensional energy-momentum tensor and the momentum density of the field

applicable to any medium. We have discussed the connections of our results with the

corresponding quantities in the theories of Minkowski, Helmholtz, Einstein and Laub,

and Abraham. Similarly to the Helmholtz tensor, our tensor describes also electro- and

magnetostriction effects. It converges to the Helmholtz tensor, if the medium obeys

the Clausius-Mossotti law. Thus, our tensor is automatically in agreement with all

experiments in which the Helmholtz tensor has been shown to be valid [1, 24]. New

phenomena can be discovered by applying the new Eqs. (21) and (22) to such media that

are beyond the applicability of the Helmholtz tensor, i.e., to an anisotropic, nonlinear,

dispersive, or dissipative medium as well as to a medium with optical gain [25].

We have shown that, in order to calculate the overall time-averaged force density

originating from an electromagnetic field in a medium that is in equilibrium with the

field, one can use the Minkowski tensor. In this case, the field-induced compression

effects must be properly taken into account. The field momentum density, however,

must be described using the Abraham’s expression if the medium is not magnetic.

We have also derived the rate of work done by the field on the medium per

unit volume. Using the derived expression, we have obtained the four-dimensional

energy-momentum tensor in space-time. This tensor is physically very similar to the

Einstein-Laub tensor. From a practical point of view, our tensor allows calculating

motion, compression, and deformation of a medium by an arbitrary electromagnetic

field. We hope that this work will not only contribute to the long-awaited resolution and

clarification of the Abraham-Minkowski controversy, but also find useful applications.
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