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Conical intersections (CIs) play an important role in the nonadiabatic molecular processes. Char-
acterizing and localizing them is important for describing and controlling electronic energy �ow in
molecules. It is known that no conical intersection appears in free diatomic systems. In earlier works
[J. Phys. B. 41, 221001 (2008), J. Phys. B. 44, 045603 (2011)] it was pointed out that CIs can be
formed both by standing and running laser waves even in diatomics. The energetic and internuclear
positions of these CIs depend on the laser frequencies while the strength of their nonadiabatic cou-
plings can be modi�ed by the �eld intensities. In this work we calculate the topological or Berry
phase of the light-induced CI in the Na2 molecule. The presence of this phase is a clear �ngerprint
of the laser-induced CI. In addition, we perform a detailed study of the wave packet propagation
and discuss e�ects which re�ect the signi�cant presence of the laser-induced CI.

I. Introduction

Conical intersections (CIs) between electronic poten-
tial energy surfaces play a key mechanistic role in the
nonadiabatic molecular processes [1�3]. In this case the
nuclear and electronic motion can couple and the en-
ergy exchange between the electrons and nuclei may be-
come signi�cant. In several important cases like disso-
ciation, proton transfer, isomerization processes of poly-
atomic molecules or radiationless deactivation of the ex-
cited state systems [4�9] the CIs can provide very e�cient
channel for ultrafast interstate crossing on the femtosec-
ond time scale. CIs can be evolved between di�erent elec-
tronic states starting from triatomic systems to a truly
large polyatomic molecules. Several important books,
review articles and publications have demonstrated the
existence and relevance of such intersections in recent
decades [3, 10�12].
Generally CIs are not isolated points in the con�gura-

tion space. Rather, they are an in�nite number of con-
nected points forming a seam. For a diatomic molecule
that has only one degree of freedom, it is not possible for
two electronic states of the same symmetry to become

degenerate and as a consequence of the well-known non-
crossing rule an avoided crossing results. It should be
noted, however, that this statement is true only in free
space. As it was shown in earlier papers [13, 14] CIs
can be formed both by standing and running laser waves
even in diatomic systems. In the former case the laser
light-induces CIs which couple the center of mass motion
with the internal rovibrational degrees of freedom. In the
latter case, the rotational motion constitutes the missing
degree of freedom to allow for the formation of a CI. It
was found that in a diatomic system under the in�uence
of a standing laser �eld (optical lattice) a periodic array
of CIs is formed by the laser light [13]. In addition, it was
shown that the appearance of these light-induced CIs can
signi�cantly reduce the magnitude of the trapping e�ect
of cold diatomic molecules in the lowest electronic state.
For the case of running laser waves, it was demonstrated
that there is a very strong impact of the light-induced
CIs on the molecular spectrum and spectral properties
[14].

We would like to mention that often the rotational de-
gree of freedom is neglected and only the vibrational one
is taken into account in computing diatomic molecules in
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laser �elds, and thus the CI is neglected (see e.g. [15�
17] and citations therein). Previous works demonstrated,
however, the importance of the rotations in the presence
of an intense laser �eld [18, 19].
The light-induced CIs constitute a novel and physically

interesting new laser-matter phenomenon. The presence
of these light-induced CIs in diatomic systems may com-
pletely change their original, i.e., �eld free, physical prop-
erties. In other words, using either standing or running
laser waves it is possible to build in signi�cant nonadi-
abatic e�ects into molecular systems using manipulable
external forces allowing one to open up a new direction
in the �eld of molecular quantum control processes.
The light-induced strong nonadiabaticity couples in a

controllable way di�erent electronic states of the molecule
and depending on the �eld intensity can be extremely
large in the vicinity of the CIs. The nonadiabatic cou-
plings become singular at the CIs [10]. The presence of a
CI provides the source for numerous statical and dynam-
ical nonadiabatic phenomena. One of these phenomena
is the appearance of a topological e�ect often referred
to as Longuet-Higgins or Berry phase [21�23]. In this
work as a continuation of the former ones [13, 14] we
choose again the Na2 molecule as a sample system. One
of our aims is to calculate the topological or Berry phase
in Na2. The presence of this phase is a clear �ngerprint
of the laser-induced CI.
As well studied in free polyatomic molecules, the dy-

namics of the system is highly a�ected by CIs and be-
comes strongly nonadiabatic owing to the strong cou-
pling between the nuclei and electrons. The importance
of this feature cannot be overemphasized. Therefore, in-
vestigating the dynamics in the region of laser induced CI
is another goal of this paper. The presented wave packet
propagation study is expected to be of particular interest
and to re�ect the e�ect of the light-induced CI.
The paper is organized as follows. Section II gives a

brief description of our working Hamiltonian. In Section
III a short characterization of the CIs and of the result-
ing nonadiabatic couplings is presented. We present the
Berry phase and the results of the wave-packet calcula-
tions related to the two lowest states of sodium dimer in
Section IV and V, respectively. These sections are also
devoted to the discussion. Conclusions are presented in
Section VI.

II. The Hamiltonian

The results reported here are obtained by solving the
time-dependent Schrödinger equation for the nuclear mo-
tion of Na2 proceeding on two coupled potential energy
surfaces. The respective electronic states are coupled
by a running laser wave of wavelength λ, and labeled
X (ground, X1Σ+

g ) and A (excited, A1Σ+
u ):

i~
d

dt

(
ψX
ψA

)
= Ĥ

(
ψX
ψA

)
, (1)

where the total molecule and �eld Hamiltonian is

Ĥ = (Ĥvib + Ĥrot) + Ŵ. (2)

Here, Ĥvib and Ĥrot are the molecular vibrational and
rotational kinetic energy Hamiltonian, respectively, and
Ŵ is the potential energy matrix in the above two elec-
tronic states. These terms are given by

Ĥvib = −1̂
~2

2µ
∂2

∂R2
, (3)

Ĥrot = 1̂
L2
θϕ

2µR2
, (4)

µ being the reduced mass of the diatomic molecule, R
and (θ,ϕ) are its vibrational and rotational coordinates,
respectively, and L2

θϕ is the angular momentum opera-
tor of the nuclei. The molecule-light term coupling the
two electronic states can be written as the scalar product
of the transition dipole moment −→d and the electric-�eld
vector −→ε :

−→
d · −→ε = ε0d(R) cos θ cosωLt. (5)

Here ε0 is the maximum laser �eld amplitude, ωL is the
laser frequency which couples the two electronic states,
d(R) is the transition dipole matrix element. For symme-
try reason only the z component of the transition dipole
moment (d(R) =< ψe1|

∑
j zj |ψe2 >) is non-vanishing.

The potential part Ŵ contains the �eld-free potential
energy curves VX and VA of the two electronic states
as diagonal elements and the radiative coupling as the
nondiagonal element. In the static dressed state repre-
sentation this potential energy matrix has the following
form:

Ŵ =
(

VX (ε0/2)d(R) cos θ
(ε0/2)d(R) cos θ VA − ~ωL

)
. (6)

The potential energies VX and VA of the two electronic
states and the transition dipole moment were taken from
[24].

III. Conical Intersection and Nonadiabatic Coupling

Matrix

In eq. (6) of Sec. II. we gave the expression for the po-
tential energy matrix Ŵ . To continue, we de�ne as usual
the unitary matrix Û which diagonalizes the potential
energy matrix and thus transforms the Hamiltonian (2)
to its adiabatic representation:
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Figure 1: Light-induced conical intersection between the
V lowerad (R, θ) and V upperad (R, θ) adiabatic potential energy sur-
faces in the Na2 molecule. The applied �eld intensity and
photon energy are: I = 3.0× 1010 W

cm2 and ~ωL = 1.968 eV.

U(R, θ) =
(

cos Φ(R, θ) sin Φ(R, θ)
− sin Φ(R, θ) cos Φ(R, θ)

)
, (7)

with

Φ(R, θ) =
1
2

arctan
(

ε0 d(R) cos θ
VA(R)− ~ωL − VX(R)

)
. (8)

In this picture the ÛŴ Û† transformation produces the
adiabatic potential energy surfaces, V lowerad (R, θ) and
V upperad (R, θ). These two potential energy surfaces can
cross each other, forming a real conical intersection (see
Figure 1), only if the two conditions (cos θ = 0, (θ = π/2)
and VX(R) = VA(R)− ~ωL) are simultaneously ful�lled.
The characteristic features of this CI can be changed by
varying the frequency and intensity of the light �eld. In-
creasing the frequency, for example, moves the CI to a
smaller internuclear distance and to a smaller energetic
position. While the steepness of the CI cone formed by
the adiabatic surfaces, which is related to the strength of
the nonadiabatic coupling, can be controlled by the laser
intensity.
The molecule-light couplings are eliminated from the

potential energy matrix by applying the diagonalizing
transformation speci�ed above. On the other hand,
nonadiabatic couplings now appear in the transformed
kinetic energy operator. As is known from the literature

[2, 10], these nonadiabatic couplings can be calculated as
the derivatives of the transformation angle Φ with respect
to the corresponding nuclear coordinate

τ12R = ∂Φ/∂R and τ12θ = ∂Φ/∂θ. (9)

In Figure 2 we display the nonadiabatic couplings in the
close vicinity of the light-induced CI. As expected their
values can be very large and diverge at the CI as is the
case for natural CIs of polyatomics (compare with [10]).
This leads us to conclude that the light-induced CIs intro-
duce similar nonadiabatic e�ects as in polyatomics such
that the usual Born-Oppenheimer approximation will not
be valid any more.

IV. Topological or Berry Phase

Having discussed some important features of the light-
induced CIs, let us study now the impact of this intersec-
tion on physical properties of the Na2. To continue we
turn to the topological or Berry phase.
It was �rst pointed out by Longuet-Higgins and

Herzberg [21, 22] that each real adiabatic electronic
state changes sign when transported continuously along
a closed loop enclosing the point of conical intersection.
Mead and Truhlar connected this geometric phase e�ect
with the single electronic state problem [25] and Berry
generalized the theory [23]. Hence the name Berry phase.
As the total wave function must be single valued, it is fa-
vorable to make the electronic wave function in the adia-
batic representation complex by multiplying it by a phase
factor ensuring that the total wave function remains sin-
gle valued. The fact that the electronic eigenfunctions
are modi�ed has a direct e�ect on the nuclear dynamics
even when a single potential energy surface is consid-
ered. Consequently, the appearance of the Berry phase
in a molecular system can be considered as a clear signa-
ture of the conical intersection independently of whether
it is a natural or a laser-induced one.
To continue, we refer to the literature [2] that the topo-

logical or Berry phase α12 can be calculated for a closed
contour Γ as:

α12 =
∮

Γ

τ12(s′) · ds′, (10)

where τ12 is the non-adiabatic coupling term between the
two electronic states, the components of which are intro-
duced in the previous section. As a consequence of sign
changes of the adiabatic states, it can be proven that the
value of this phase is equal to:

α12 = π ×
{

2n+ 1 if Γ encircles odd number of CIs
2n if Γ encircles even number of CIs

n = 0,±1,±2, ... (11)
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Figure 2: The nonadiabatic coupling terms (τ12R =
∂Φ/∂R and τ12θ = ∂Φ/∂θ) for Na2. The applied �eld in-
tensity and photon energy are: I = 3.0×1010 W

cm2 and ~ωL =
1.968 eV.

Now, using eq. (9), it is possible to calculate the Berry
phase α12 for a closed path Γ as follows:

α12 = Φ(s0)end of the path −Φ(s0)begining of the path. (12)

In Fig. 3a we display the energy curve VX of the elec-

Figure 3: (a) Potential energy VX and �eld-dressed poten-
tial energy VA − ~ωL curves of Na2. The X and A notations
correspond to the X1Σ+

g and A1Σ+
u electronic states. (b) Ge-

ometrical arrangement of the contours used in the topological
phase calculations. The angle β {0...2π} parametrizes the
actual position in the con�guration space where the trans-
formation angle is calculated. The black triangle shows the
position of the laser-induced conical intersection. (c) Trans-
formation angles as a function of β for three di�erent geomet-
rical arrangements. Only the solid curve is calculated along
a path surrounding the CI. The arrows denote that the solid
and dashed functions are given by the scale on the left side
while the value of the dotted function is given by the scale on
the right side.
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tronic ground state X1Σ+
g and the shifted energy curve

(VA−~ωL) of the �rst excited electronic state A1Σ+
u . The

position of the curve crossing is indeed the position of the
CI where the two conditions (cos θ = 0, (θ = π/2) and
VX(R) = VA(R) − ~ωL) are satis�ed. The geometrical
arrangement used as contours in the topological phase
calculations are shown in Fig. 3b. Here, three di�er-
ent circles are presented but only one of them surrounds
the CI. The numerical calculations take place along these
closed paths characterized by their centers (R0, θ0) and
�radii� ρ . The actual position is given by an angle β
{0...2π}:

R = R0 + ρ cosβ (13)

θ = θ0 −
2ρ
R0

sinβ.

The �eld intensity is chosen as I = 3.0×108 W
cm2 at a pho-

ton energy of ~ωL = 1.870 eV . In Fig. 3c the obtained
values of the Φ transformation angles are presented for
the three arrangements shown. The Berry phase α12 can
be calculated from the di�erence of Φ at the beginning
and at the end of the path. It can be clearly seen that
α12 di�ers from zero only in that situation, when the cir-
cle surrounds the CI. In this case the phase takes on the
value α12 = π. If a contour in a given plane does not
surround the CI, the value α12 = 0 is found. These nu-
merical results are in full agreement with eq. (11). We
note, however, that the di�erent curves display di�erent
shapes in Fig. 3c and all of them possess relatively sud-
den jumps along the path. This �nding, although not
a�ecting our conclusion concerning the encircling of a
CI, is of interest too and may a�ect the dynamics of the
single valued state mentioned above.
The results obtained for the transformation angle

Φ(R, θ) as a function of both coordinates R and θ are
displayed as color mapped pictures in Fig. 4 for two
di�erent intensities, I = 3.0 × 108 W

cm2 (Fig. 4a) and
I = 3.0 × 1010 W

cm2 (Fig. 4b). It is seen that the trans-
formation angle changes when modifying the intensity of
the laser �eld but, as expected, this does not cause any
change in the value of the topological phases themselves
for the closed contours. The sharpness of the transitions
between di�erent intervals is strongly a�ected by modi-
fying the intensities but not the di�erences between the
starting and the ending values of the transformation an-
gle for closed contours.

V. Wave Packet Dynamics

In this section we discuss the impact of the light-
induced CI on the time-dependent wave packet propa-
gation. We demonstrate that the appearance of light-
induced conical intersections leads to substantial and
non-trivial e�ects in the dynamics. As is well known
from the studies of conical intersections in polyatomics,
the details of the dynamics are highly intricate and can-
not be understood without explicit computations. It is in

Figure 4: Color mapped plots of the transformation angle as
a functions of R and θ for two intensities of the laser �eld: (a)
I = 3.0× 108 W

cm2 and (b) I = 3.0× 1010 W
cm2 .

general useless to try to relate details of the complex mul-
timode dynamics to details of the nonadiabatic couplings.
The situation is similar in the present case. The light-
induced CIs studied here lead to strong nonadiabatic
mixing of rotational and vibrational states on both elec-
tronic adiabatic (or diabatic) surfaces which cannot be
predicted without explicit computations. Several trends,
however, can be understood from the general concept of
CIs.
The results presented here are obtained by solving nu-

merically the time-dependent Schrödinger equation (1).
The evolution of the wave function is calculated by using
the usual time propagator

|ψ(R, θ, t) >= exp(− i
~
Ĥ t)|ψ(R, θ, 0) >, (14)

where the time-independent Hamiltonian Ĥ is given
by eqs.(2) and (6). We expressed this Hamilto-
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nian in matrix representation in the basis set of
the free molecular electronic and rovibrational states(
(|ϕXν,J(R, θ) >; 0)T and (0; |ϕAν,J(R, θ) >)T

)
. The spa-

tial components of these free molecular states were
calculated using the particle in a box functions,{√

2/L sin(kπR/L)
}
k=1,2,...,Nb

which are multiplied by

Legendre polynomials {Pj(cos θ)}j=0,1,2,...,NJ
. In our nu-

merical calculations we have used Nb = 500 and NJ = 95
for the X surface whereas for the A surface we have con-
sidered correspondingly 96 Legendre polynomials. In this
representation the eigenvalues (Ej) and eigen functions
(φj) of the Hamiltonian can be obtained numerically.
Next, one can describe the initial wave function in terms
of these eigen functions: |ψ(R, θ, t = 0)〉 =

∑
j cjφj .

Based on this partitioning of the initial wave function
one can reformulate equation 14:

|ψ(R, θ, t > 0)〉 =
∑
j

exp
(
− i

~
Ej t

)
cjφj . (15)

Throughout the paper the initial wave function is cho-
sen as the electronic and rovibrational ground state so-
lution of the �eld free Hamiltonian: |ψ(R, θ, t = 0)〉 =(∣∣ϕXν=0, J=0(R, θ)

〉
; 0
)T
.

To shed more light on the meaning of the wave packet
propagation in the present context we stress that we are
calculating the dynamics of a system which is �rst in a
�eld free space and then suddenly exposed to the running
laser wave. It is shown in the Appendix that this physi-
cal situation amounts to propagating the initial �eld free
molecular state with the Hamiltonian (2-6). In order to
compare with experiments, it su�ces that in the latter
the time of switching on the wave at the molecular site
must be much shorter than the period of the laser.
The solution of eq.(14) is used to calculate the autocor-

relation function which is the overlap between the initial
and the time evolved wave packets

C(t) = | < ψ(R, θ, 0)|ψ(R, θ, t) > | (16)

=
∣∣∣∣∫ π

0

dθ · sin θ
∫ ∞

0

dR · ψ(R, θ, 0)∗ · ψ(R, θ, t)
∣∣∣∣ .

as well as the time-dependent population on di�erent adi-
abatic or diabatic surfaces (SF )

PSF (t) = < ψSF (R, θ, t)|ψSF (R, θ, t) >= (17)∫ π
0

dθ · sin θ
∫ ∞

0

dR · ψSF (R, θ, t)∗ · ψSF (R, θ, t).

More speci�cally, we study the following quantities
PXdia(t), PAdia(t) and Pupperad (t), which correspond to the
population of (or probability of being on) the ground
state diabatic surface (SF = X), on the excited state di-
abatic surface (SF = A) and on the adiabatic upper state
surface (SF = upper)[30], respectively. In the numerical
calculations the two �eld intensities I = 3.0 × 108 W

cm2

and I = 3.0 × 1010 W
cm2 , and the two di�erent values of

the photon energy 1.851 eV and 1.968 eV were used. The
internuclear (R) and the energetic (E) positions of the
light-induced conical intersections are easily determined
(see below) and, of course, do not depend on the used
laser intensity. The dynamical investigations performed
can be classi�ed according to the actual position of the
conical intersections and intensity. To avoid numerous
�gures showing the many results obtained, we collect the
numerical results for the autocorrelation and various pop-
ulation functions compactly in a single picture for each
set of parameters (photon energy and �eld intensity).
We begin with the weak �eld situation (I = 3.0 ×

108 W
cm2 ). In Fig. 5 we �rst display the results for

~ωL = 1.851 eV . Here, the energy of the initial wave
packet is slightly above the bottom of the VA − ~ωL
curve, but still below the lowest vibrational level of an-
gular momentum J = 1 on the A surface to which it
couples directly. Furthermore, the energy of initial wave
packet is also below that the energy of the CI. It is known
that in such cases the nonadiabatic e�ects on the initial
wave packet are weak [10]. Consequently, the whole wave
packet stays localized on the X surface up to 50 ps and
the populations on the two diabatic surfaces remain prac-
tically unchanged. Turning to the adiabatic picture, the
situation is similar. The population on the upper surface
is more or less constant and very low (around ∼ 0.004)
apart from the �rst 1− 2 ps. On the other hand, the au-
tocorrelation function does show clear periodical changes
which due to fact that the initial �eld free state is a linear
combination of essentially two eigenfunctions of the full
Hamiltonian (2,6). Ordered by increasing energy, these
are the �rst and third eigenstates φ1 and φ3, and are ini-
tially populated by ∼ 73.3% and ∼ 26.4%, respectively.
We now increase the laser frequency to ~ωL =

1.968 eV . The results of the computations are collected
in Fig. 6 in analogy to Fig. 5. In this situation both
the energetic and internuclear positions of the CI change
to lower values. Importantly, the position of the initial
wave packet is now higher by about 0.1 eV than the bot-
tom of the VA−~ωL curve, and is also above the position
of the CI. In contrast to the �rst example, the wave func-
tion can now spread out more e�ciently through the CI.
The decay of the autocorrelation function is rather fast:
it arrives at its �rst zero after 1.34 ps. At later times
it oscillates and exhibits a larger recurrence at around
9.5 ps and thereafter continues to oscillate with a larger
amplitude than before this recurrence. In this case the
initial wave function is a linear combination of several
eigenfunctions. Nine of them cover more than 98% of
the initial wave function. The periods of times related
to the energy di�erences between these eigenfunctions
are in the range from 1.5 ps to 20.1 ps and �ve of them
- between neighbouring states - are between 9.8 ps and
10.9 ps. The interference of these states causes the �ir-
regular� oscillations and the recurrences of the autocor-
relation function. All populations show large variations
with time. The population on the X surface is changing
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Figure 5: Potential curves and results for �eld intensity I = 3.0× 108 W
cm2 and frequency ~ωL = 1.851 eV . (a) Potential energy

VX and �eld-dressed potential energy VA−~ωL curves of Na2. The dashed-dotted vertical line indicates the geometric position
of the CI and the dashed-dotted horizontal line the energy position of the initial state of the propagation. (b) Autocorrelation
function (solid line), population on the ground state diabatic surface (dotted line), on the excited state diabatic surface (dashed
line) and on the adiabatic upper state surface (• • •) are shown as a function of time.

Figure 6: The same as Figure 5 except that the laser frequency is now increased to ~ωL = 1.968 eV . For more details see Fig.
5.

rapidly within the 1st ps and then continues to oscillate
around approximately the value of ∼ 0.4 also exhibiting
- as in the case of the autocorrelation function - a local
enhancement at around 9.5 ps. A recurrence in the au-
tocorrelation function implies that the wave packet has
returned partly to the initial one. Since the initial wave
packet in here starts from the ground state X surface,
the population on this surface may also grow around the
recurrence. The population of the adiabatic upper state
follow approximately the shape of that of the X state.

Because of the applied weak �eld in the cases stud-
ied above in Figs. 5 and 6, the energy split between the

adiabatic upper and lower curves at the crossing point
of the diabatic curves and θ = 0 is extremely small and
almost negligible (it amounts to ∼ 10meV ). However,
the picture changes markedly in the case of the higher
�eld intensity studied here, I = 3.0 × 1010 W

cm2 . These
adiabatic curves are depicted in addition to the diabatic
curves in panels (a) of Figs. 7 and 8. Increasing the �eld
intensity increases the energy split substantially as ex-
pected from the o� diagonal term in the potential matrix
Ŵ in (6). At the value of R of the CI where the respec-
tive diabatic curves cross, the energy split is twice the
absolute value of this o� diagonal term. In polyatomic
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molecules it is known that the appearance of nonadia-
batic e�ects intensi�es due to conical intersections when
the so-called interstate coupling constants increase [10].
In the present context of light-induced CIs the analogous
interstate coupling constant is given by ε0 d(R)/2 as can
be seen by comparing Eq.(6) and the respective equations
in Ref.[10]. Since this interstate coupling constant in-
creases with increasing �eld intensity, we expect stronger
nonadiabatic e�ects in stronger �elds, in general.
Again, as for the weak �eld, we study here two situa-

tion with di�erent laser frequencies. We depict in Fig. 7
the results for the lower frequency ~ωL = 1.851 eV . We
see that the autocorrelation function now decays very
fast within the �rst 200 fs to a rather low value of about
∼ 0.35 and continues to drop to about ∼ 0.21 during
the next 400 fs. The population on the X surface is per-
manently decreasing (from 1 to ∼ 0.55) during the �rst
600 fs. In contrast, the population on the upper adi-
abatic surface changes very little (see the scale on the
right hand side of the �gure). This is due to the fact
that the initially populated level is well below the en-
ergy of the CI and essentially within the lower adiabatic
surface, see Fig. 7(a).
The results obtained for the larger laser frequency

(~ωL = 1.968 eV ) are summarized in Fig. 8. The energy
of the initial wave packet is now slightly above the energy
of the CI and is signi�cantly larger than the bottom of the
VA− ~ωL curve. We see that due to this energetic situa-
tion the dynamics is pretty fast and the autocorrelation
function drops signi�cantly to only about 0.23 within the
short time of just 75 fs. Later on this function continues
to decay exhibiting oscillations. This behavior of the au-
tocorrelation function is rather similar to those found in
small polyatomics with �eld free CIs [1, 3]. The popula-
tions of the diabatic and in this example of the adiabatic
states as well also show rapid substantial changes on a
similarly short time scale. Interestingly, the population
on the diabatic A surface, which is zero initially, now be-
comes considerably larger than that of the X surface at
most of the time interval depicted in Fig. 8(b).
Finally, we would like to gain some insight into the im-

pact of the CI by freezing the rotational degree of free-
dom. For this purpose we assume that the orientation of
the system is �xed during the process and the molecu-
lar axis is parallel to the polarization of the laser �eld,
i.e., we set cos θ = 1 in eq.(6), to maximize the cou-
pling between the electronic states. In what follows we
compare the results of this calculations (referred to as the
�no CI� case) with the above shown full calculations (�CI�
case). The results obtained for the autocorrelation func-
tion and the adiabatic population are collected in Fig. 9
for ~ωL = 1.968 eV and I = 3.0 × 1010 W

cm2 where they
are also compared with the respective quantities taken
from Fig. 8. The di�erences between the �no CI� and
�CI� results are obviously considerable. First, the be-
havior of the �no CI� autocorrelation function is rather
structured, while the correct function is nearly smooth
showing a more or less continuous decay. This di�er-

ence is due to the much larger density of states available
and populated in the �CI� case where many odd J val-
ues contribute in contrast to only J=0 in the �no CI�
case. Interestingly, the �no CI� autocorrelation function
decreases much faster at very short times (up to 30 fs)
than the correct one, and at later times it shows dramatic
recurrences up to a value of 0.8 in sharp contrast to the
decaying function in the �CI� case.
Another quantity of interest is the population of the

upper adiabatic state. Both the �CI� and �no CI� results
are rather comparable in the short time period where
the autocorrelation function drops fast (about 30 fs). At
longer times, the deviation between the populations be-
come quite remarkable. In the �no CI� case the adiabatic
population jumps back close to its original value and then
falls o� relatively �atly except of the �bump� occurring at
around 300 fs, a time when the autocorrelation function
has its large recurrences. In contrast, the correct pop-
ulation of the upper adiabatic state continues to decay
and at the end of the 600 fs shown in Fig. 9 more than
60% of its initial value has been transferred to the lower
adiabatic state.
One may be tempted to expect that if the laser inten-

sity is weak, say I = 3.0× 108 W
cm2 , the deviations of the

�no CI� from the �CI� results will be hardly visible. This
is, however, not necessarily the situation. In Fig. 10 we
display in analogy to Fig. 9 the results obtained for the
weak intensity. The �no CI� results are surprisingly dif-
ferent from the �CI� ones already discussed above. First
of all, we notice that like in the stronger �eld (see Fig.
9), also here the autocorrelation function in the �no CI�
case decreases more rapidly at the very beginning than in
the �CI� case. But the most striking feature of the auto-
correlation function in the �no CI� case is the appearance
of nearly complete periodic recurrences where the wave
packet returns to the initial wave function. We shall re-
turn to this behavior below. Concerning the population
on the upper adiabatic surface, it seems rather meaning-
less to compare between the �no CI� and the �CI� cases.
The former one displays much more similarities to the
autocorrelation function in the �no CI� case than having
any resemblance to the result of the �CI� case.
To understand the behavior in the �no CI� case, we

should study some details of the actual wave func-
tion. It turns out that at the given photon energy ac-
cidentally two eigenstates of the �eld free Hamiltonian
(ϕXν=0 and ϕAν=8) are nearly degenerate: EA8 − EX0 ≈
25µeV . In the laser �eld these two �eld free states
will strongly mix giving rise to the two new eigen-
states: |φ522〉 ≈

(
0.68

∣∣ϕX0 〉 ; 0.72
∣∣ϕA8 〉)T and |φ552〉 ≈(

0.71
∣∣ϕX0 〉 ; −0.70

∣∣ϕA8 〉)T , with which have an energy
split of: E552 −E522 ≈ 3.06meV . Our initial wave func-
tion at t = 0 is the electronic and vibrational ground
state of the �eld free system (ϕXν=0), and can be excel-
lently expressed by these two eigenstates: |Ψ(t = 0)〉 =(∣∣ϕX0 〉 ; 0

)T ≈ 0.68 |φ522〉 + 0.71 |φ552〉. At later times
we have a beating between these two eigenstates and the
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Figure 7: Potential curves and results for �eld intensity I = 3.0× 1010 W
cm2 and frequency ~ωL = 1.851 eV . (a) Potential energy

VX and �eld-dressed potential energy VA−~ωL curves of Na2. Shown are also the respective adiabatic potential curves at θ = 0
as dashed curves. The dashed-dotted vertical line indicates the geometric position of the CI and the dashed-dotted horizontal
line the energy position of the initial state of the propagation. (b) Autocorrelation function (solid line), population on the
ground state diabatic surface (dotted line), on the excited state diabatic surface (dashed line) and on the adiabatic upper state
surface (• • •) are shown as a function of time.

Figure 8: The same as Figure 7 except that the laser frequency is now increased to ~ωL = 1.968 eV . For more details see Fig.
7.

energy split of ∼ 3meV leads to periodic recurrences in
the autocorrelation function with a time period of about
T ≈ 1.36 ps as observed in the calculations. In the �CI�
case the situation is rather di�erent as initial state hav-
ing J = 0 couples directly only to �eld free states of
J = 1 which in turn couple to J = 0 and 3 states etc.
Consequently, the nearly degenerate state which is re-
sponsible for the striking beating found in the �no CI�
case is irrelevant in the full calculation. To demonstrate
the impact of the CI we brie�y mention that the starting
wave function when expressed by the respective eigen-

functions acquires contributions of similar weights from
8 eigenfunctions. Moreover, when expanded in �eld free
states, the eigenfunctions in the �CI� case are found to
be mixtures of several rotationally excited eigenstates of
the �eld free problem on the two diabatic surfaces with
signi�cant coe�cients (> 0.2) up to J = 13.
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Figure 9: Autocorrelation function and population on the adi-
abatic upper state surface as a function of time for the �no CI�
case where the rotational motion has been frozen (cos θ = 1
in eq.(6)). The results are compared with those of the full
calculations (�CI� case). The laser �eld intensity and photon
energy are: I = 3.0 × 1010 W

cm2 and ~ωL = 1.968 eV . The
curves of the autocorrelation function are marked with (solid
line) and (dotted line) for the �CI� and �no CI� cases, respec-
tively. The curves of the upper state population are marked
with (• • •) and (����) for the �CI� and �no CI� cases,
respectively.

VI. Conclusions

Recently, a novel and physically interesting phe-
nomenon was found [13, 14] in the �eld of light-matter
interactions. It was shown theoretically that exposing a
diatomic molecule to a laser �eld can give rise to the ap-
pearance of so called light-induced CIs. In this situation
the rotation is the additional nuclear degree of freedom
which enables the formation of the CIs. The topology
of these light-induced CIs is easily revealed by describing
the molecule-light interaction in �eld-dressed electronic
state picture. As is well known from the �eld of nonadia-
batic processes, the nuclear dynamics is strongly coupled
to the electronic dynamics in the vicinity of CIs, due to
the appearance of in�nitely large nonadiabatic coupling
terms. Being singular at the CI, the nonadiabatic cou-
plings may become the source of numerous statical and
dynamical phenomena. The possibility to induce arti�-
cially - by using a laser �eld - strong nonadiabatic e�ects
into a molecular system promises a wealth of controllable
new phenomena even in diatomic molecules.
Conical intersections are abundant in free polyatomic

molecules. There is a signi�cant di�erence between these
natural CIs and the laser-induced ones. The natural CIs
can not be modi�ed while light-induced ones can be con-
trolled. The positions of these CIs are determined by the
laser frequency and the strengths of their nonadiabatic
couplings by the intensity of the laser.

Figure 10: Autocorrelation function and population on the
adiabatic upper state surface are �gured as a function of time.
The applied laser �eld intensity and photon energy are: I =
3.0 × 108 W

cm2 and ~ωL = 1.968 eV. For more details see Fig.
9.

In this work the topological or Berry phase in the Na2

molecule was studied. We performed calculations along
closed contours that surround a light-induced CI and ob-
tained α = π for the value of the topological phase. As
known for the case of single CIs given in nature, this
result can be considered as a proof that a �true� coni-
cal intersection has been found. Interesting results have
also been found for contours which do not surround the
light-induced CI. At the heart of this work we have also
performed wave packet calculations demonstrating that
the light-induced CI has a strong impact on the molec-
ular dynamics even for weak laser �elds. The situation
resembles that in �eld free polyatomic molecules where
the dynamics is highly a�ected by CIs given by nature
owing to the strong coupling between the nuclei and the
electrons.

Appendix

A. On the propagation of a wave packet with a

time-dependent Hamiltonian in the Floquet picture

The TDSE we wish to solve is

H(t)ψ(t) = i~∂tΨ(t) (18)

where H(t) = H(t + T ) stands the time-dependent
Hamiltonian for a diatomic molecule in a cw laser �eld
with the frequency ωL = 2π/T .
In our studied case

H(t) = HA(R, θ)|Ψelec
A 〉〈Ψelec

A |+HX(R, θ)|Ψelec
X 〉〈Ψelec

X |
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+ E0 cos(θ)d(R) cos(ωLt) · (19)
· [|Ψelec

A 〉〈Ψelec
X |+ |Ψelec

X 〉〈Ψelec
A |]

where HX is the time-independent Hamiltonian with
the ground electronic energy as function of R as a poten-
tial and similarly HA is the time-independent Hamilto-
nian for the �rst excited electronic state.
The initial state is the �eld-free state of the molecule

which is suddenly exposed to the cw laser beam. In our
case the initial state is taken as the ground vibrational
and rotational eigenstate of HX , χXν=0,J=0 and therefore,

|Ψ(t = 0) >= χXν=0,J=0|Ψelec
X 〉 . (20)

Using the Shirley approach [26] we can expand the so-
lution of the TDSE with the quasi-energy (Floquet) so-
lutions which we denote here by |ΨQE

α (t) > (we will ex-
plain what they are later). Following Shirley the solution
of Eq.18 is given by,

|Ψ(t) >=
∑
α

CαΨQE
α (t)〉 (21)

where

Cα = 〈ΨQE
α (t = 0)|Ψ(t = 0)〉 . (22)

The quasi-energy (Floquet) solutions are de�ned as
(see for example, [27, 28])

|ΨQE
α (t)〉 = e−iE

QE
α t/~

∞∑
n=−∞

eiωLnt|ϕn,α〉 (23)

where correspondingly EQEα and the n-th components of
the vector |−→ϕ α > are the eigenvalues and eigen-states of
the time-independent Floquet matrix, HF , which its
(n, n′) matrix element is de�ned as

[HF ]n,n′ = (24)

1
T

∫ T

0

e−iωLnt[−i~ ∂
∂t

+H(t)]e+iωLn
′tdt

where {(n′, n)}0,±1,±2,.... By substituting Eq.23 into
Eq.21 (see the (t,t') formalism as derived by [29]) one

gets that the solution of the TDSE is given by

|Ψ(t) >=
∑
n

e−iωLnt[e−iHF t/~|Ψ(t = 0) >]n,n′=0 (25)

and therefore when {e−iωLnt}n=0,±1,... are used as a basis
set then

HF ~ψ(t) = i~
d

dt
~ψ(t) (26)

where each one of the Fourier component is the �eld-
free initial state. For our case the (n, n′) Floquet matrix
element is de�ned as

[HF ]n′,n = δ2n′,2nHX(R, θ)|Ψelec
X 〉〈Ψelec

X | (27)

+ δ2n′+1,2n+1HA(R, θ)|Ψelec
A 〉〈Ψelec

A |

+ [δ2n′,2n+1 + δ2n+1,2n′ ]
E0
2

cos(θ)d(R) ·

· [|Ψelec
A 〉〈Ψelec

X |+ |Ψelec
X 〉〈Ψelec

A |]
Even when the laser �eld is strong the Fourier com-

ponents can be truncated and the Floquet matrix can
be truncated. For the case where the photoinduced dy-
namics is a net one-photon process (as in our case) it is
enough to take {n′, n} = 0,−1 or {n′, n} = 0,+1 and the
initial state is the �eld-free state which is de�ned above
in Eq.22. For our studied case the time-independent Flo-
quet matrix which is given above in Eq.27 and the prop-
agation of the wavepacket within the framework of the
Floquet formalism as given above on Eq.26 are as de�ned
in Eqs.1-6 in our paper.
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