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I. Introduction

Conical intersections (CIs) between electronic potential energy surfaces play a key mechanistic role in the nonadiabatic molecular processes [13]. In this case the nuclear and electronic motion can couple and the energy exchange between the electrons and nuclei may become signicant. In several important cases like dissociation, proton transfer, isomerization processes of polyatomic molecules or radiationless deactivation of the excited state systems [49] the CIs can provide very ecient channel for ultrafast interstate crossing on the femtosecond time scale. CIs can be evolved between dierent electronic states starting from triatomic systems to a truly large polyatomic molecules. Several important books, review articles and publications have demonstrated the existence and relevance of such intersections in recent decades [START_REF] Worth | [END_REF]1012].

Generally CIs are not isolated points in the conguration space. Rather, they are an innite number of connected points forming a seam. For a diatomic molecule that has only one degree of freedom, it is not possible for two electronic states of the same symmetry to become degenerate and as a consequence of the well-known noncrossing rule an avoided crossing results. It should be noted, however, that this statement is true only in free space. As it was shown in earlier papers [13,14] CIs can be formed both by standing and running laser waves even in diatomic systems. In the former case the laser light-induces CIs which couple the center of mass motion with the internal rovibrational degrees of freedom. In the latter case, the rotational motion constitutes the missing degree of freedom to allow for the formation of a CI. It was found that in a diatomic system under the inuence of a standing laser eld (optical lattice) a periodic array of CIs is formed by the laser light [13]. In addition, it was shown that the appearance of these light-induced CIs can signicantly reduce the magnitude of the trapping eect of cold diatomic molecules in the lowest electronic state.

For the case of running laser waves, it was demonstrated that there is a very strong impact of the light-induced CIs on the molecular spectrum and spectral properties [14].

We would like to mention that often the rotational degree of freedom is neglected and only the vibrational one is taken into account in computing diatomic molecules in laser elds, and thus the CI is neglected (see e.g. [15 17] and citations therein). Previous works demonstrated, however, the importance of the rotations in the presence of an intense laser eld [18,19].

The light-induced CIs constitute a novel and physically interesting new laser-matter phenomenon. The presence of these light-induced CIs in diatomic systems may completely change their original, i.e., eld free, physical properties. In other words, using either standing or running laser waves it is possible to build in signicant nonadiabatic eects into molecular systems using manipulable external forces allowing one to open up a new direction in the eld of molecular quantum control processes.

The light-induced strong nonadiabaticity couples in a controllable way dierent electronic states of the molecule and depending on the eld intensity can be extremely large in the vicinity of the CIs. The nonadiabatic couplings become singular at the CIs [START_REF] Köppel | [END_REF]. The presence of a CI provides the source for numerous statical and dynamical nonadiabatic phenomena. One of these phenomena is the appearance of a topological eect often referred to as Longuet-Higgins or Berry phase [2123]. In this work as a continuation of the former ones [13,14] we choose again the Na 2 molecule as a sample system. One of our aims is to calculate the topological or Berry phase in Na 2 . The presence of this phase is a clear ngerprint of the laser-induced CI.

As well studied in free polyatomic molecules, the dynamics of the system is highly aected by CIs and becomes strongly nonadiabatic owing to the strong coupling between the nuclei and electrons. The importance of this feature cannot be overemphasized. Therefore, investigating the dynamics in the region of laser induced CI is another goal of this paper. The presented wave packet propagation study is expected to be of particular interest and to reect the eect of the light-induced CI.

The paper is organized as follows. Section II gives a brief description of our working Hamiltonian. In Section III a short characterization of the CIs and of the resulting nonadiabatic couplings is presented. We present the Berry phase and the results of the wave-packet calculations related to the two lowest states of sodium dimer in Section IV and V, respectively. These sections are also devoted to the discussion. Conclusions are presented in Section VI.

II. The Hamiltonian

The results reported here are obtained by solving the time-dependent Schrödinger equation for the nuclear motion of Na 2 proceeding on two coupled potential energy surfaces. The respective electronic states are coupled by a running laser wave of wavelength λ, and labeled X (ground, X 1 Σ + g ) and A (excited,

A 1 Σ + u ): i d dt ψ X ψ A = Ĥ ψ X ψ A , (1) 
where the total molecule and eld Hamiltonian is Ĥ = ( Ĥvib + Ĥrot ) + Ŵ.

(2)

Here, Ĥvib and Ĥrot are the molecular vibrational and rotational kinetic energy Hamiltonian, respectively, and Ŵ is the potential energy matrix in the above two electronic states. These terms are given by

Ĥvib = -1 2 2µ ∂ 2 ∂R 2 , (3) 
Ĥrot = 1 L 2 θϕ 2µR 2 , (4) 
µ being the reduced mass of the diatomic molecule, R and (θ,ϕ) are its vibrational and rotational coordinates, respectively, and L 2 θϕ is the angular momentum opera- tor of the nuclei. The molecule-light term coupling the two electronic states can be written as the scalar product of the transition dipole moment -→ d and the electric-eld vector -→ ε :

- → d • - → ε = 0 d(R) cos θ cos ω L t. ( 5 
)
Here 0 is the maximum laser eld amplitude, ω L is the laser frequency which couples the two electronic states, d(R) is the transition dipole matrix element. For symmetry reason only the z component of the transition dipole moment (d(R) =< ψ e 1 | j z j |ψ e 2 >) is non-vanishing. The potential part Ŵ contains the eld-free potential energy curves V X and V A of the two electronic states as diagonal elements and the radiative coupling as the nondiagonal element. In the static dressed state representation this potential energy matrix has the following form:

Ŵ = V X ( 0 /2)d(R) cos θ ( 0 /2)d(R) cos θ V A -ω L . (6) 
The potential energies V X and V A of the two electronic states and the transition dipole moment were taken from [24].

III. Conical Intersection and Nonadiabatic Coupling Matrix

In eq. ( 6) of Sec. II. we gave the expression for the potential energy matrix Ŵ . To continue, we dene as usual the unitary matrix Û which diagonalizes the potential energy matrix and thus transforms the Hamiltonian [START_REF] Baer | Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections[END_REF] to its adiabatic representation: 

U (R, θ) = cos Φ(R, θ) sin Φ(R, θ) -sin Φ(R, θ) cos Φ(R, θ) , (7) 
with

Φ(R, θ) = 1 2 arctan ε 0 d(R) cos θ V A (R) -ω L -V X (R) . (8) 
In this picture the Û Ŵ Û † transformation produces the adiabatic potential energy surfaces, V lower ad (R, θ) and V upper ad (R, θ). These two potential energy surfaces can cross each other, forming a real conical intersection (see Figure 1), only if the two conditions (cos θ = 0, (θ = π/2) and V X (R) = V A (R) -ω L ) are simultaneously fullled.

The characteristic features of this CI can be changed by varying the frequency and intensity of the light eld. Increasing the frequency, for example, moves the CI to a smaller internuclear distance and to a smaller energetic position. While the steepness of the CI cone formed by the adiabatic surfaces, which is related to the strength of the nonadiabatic coupling, can be controlled by the laser intensity.

The molecule-light couplings are eliminated from the potential energy matrix by applying the diagonalizing transformation specied above.

On the other hand, nonadiabatic couplings now appear in the transformed kinetic energy operator. As is known from the literature 

In Figure 2 we display the nonadiabatic couplings in the close vicinity of the light-induced CI. As expected their values can be very large and diverge at the CI as is the case for natural CIs of polyatomics (compare with [START_REF] Köppel | [END_REF]).

This leads us to conclude that the light-induced CIs introduce similar nonadiabatic eects as in polyatomics such that the usual Born-Oppenheimer approximation will not be valid any more.

IV. Topological or Berry Phase

Having discussed some important features of the lightinduced CIs, let us study now the impact of this intersection on physical properties of the Na 2 . To continue we turn to the topological or Berry phase.

It was rst pointed out by Longuet-Higgins and Herzberg [21,22] that each real adiabatic electronic state changes sign when transported continuously along a closed loop enclosing the point of conical intersection.

Mead and Truhlar connected this geometric phase eect with the single electronic state problem [25] and Berry generalized the theory [23]. Hence the name Berry phase.

As the total wave function must be single valued, it is favorable to make the electronic wave function in the adiabatic representation complex by multiplying it by a phase factor ensuring that the total wave function remains single valued. The fact that the electronic eigenfunctions are modied has a direct eect on the nuclear dynamics even when a single potential energy surface is considered. Consequently, the appearance of the Berry phase in a molecular system can be considered as a clear signature of the conical intersection independently of whether it is a natural or a laser-induced one.

To continue, we refer to the literature [START_REF] Baer | Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections[END_REF] that the topological or Berry phase α 12 can be calculated for a closed contour Γ as:

α 12 = Γ τ 12 (s ) • ds , (10) 
where τ 12 is the non-adiabatic coupling term between the two electronic states, the components of which are introduced in the previous section. As a consequence of sign changes of the adiabatic states, it can be proven that the value of this phase is equal to:

α 12 = π × 2n + 1 if Γ encircles odd number of CIs 2n if Γ encircles even number of CIs n = 0, ±1, ±2, ... (11) 
Figure 2:

The nonadiabatic coupling terms (τ12R = ∂Φ/∂R and τ 12θ = ∂Φ/∂θ) for Na2. The applied eld intensity and photon energy are: I = 3.0×10 10 W cm 2 and ωL = 1.968 eV. Now, using eq. ( 9), it is possible to calculate the Berry phase α 12 for a closed path Γ as follows:

α 12 = Φ(s0) end of the path -Φ(s0) begining of the path . (12) In Fig. 3a we display the energy curve V X of the elec- 

V. Wave Packet Dynamics

In this section we discuss the impact of the lightinduced CI on the time-dependent wave packet propagation. We demonstrate that the appearance of lightinduced conical intersections leads to substantial and non-trivial eects in the dynamics. As is well known from the studies of conical intersections in polyatomics, the details of the dynamics are highly intricate and cannot be understood without explicit computations. It is in The results presented here are obtained by solving numerically the time-dependent Schrödinger equation [START_REF]Conical Intersections: Electronic Structure, Dynamics and Spectroscopy[END_REF].

The evolution of the wave function is calculated by using the usual time propagator

|ψ(R, θ, t) >= exp(- i H t)|ψ(R, θ, 0) >, (14) 
where the time-independent Hamiltonian Ĥ is given by eqs.( 2) and ( 6).

We expressed this Hamilto-nian in matrix representation in the basis set of the free molecular electronic and rovibrational states (|ϕ X ν,J (R, θ) >; 0) T and (0; |ϕ A ν,J (R, θ) >) T . The spatial components of these free molecular states were calculated using the particle in a box functions, 2/L sin(kπR/L) k=1,2,...,N b which are multiplied by Legendre polynomials {P j (cos θ)} j=0,1,2,...,N J . In our nu- merical calculations we have used N b = 500 and N J = 95

for the X surface whereas for the A surface we have considered correspondingly 96 Legendre polynomials. In this representation the eigenvalues (E j ) and eigen functions (φ j ) of the Hamiltonian can be obtained numerically.

Next, one can describe the initial wave function in terms of these eigen functions: |ψ(R, θ, t = 0) = j c j φ j .

Based on this partitioning of the initial wave function one can reformulate equation 14:

|ψ(R, θ, t > 0) = j exp - i E j t c j φ j . ( 15 
)
Throughout the paper the initial wave function is chosen as the electronic and rovibrational ground state solution of the eld free Hamiltonian:

|ψ(R, θ, t = 0) = ϕ X ν=0, J=0 (R, θ) ; 0 T .
To shed more light on the meaning of the wave packet propagation in the present context we stress that we are calculating the dynamics of a system which is rst in a eld free space and then suddenly exposed to the running laser wave. It is shown in the Appendix that this physical situation amounts to propagating the initial eld free molecular state with the Hamiltonian [START_REF] Baer | Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections[END_REF][START_REF] Worth | [END_REF][START_REF] Klessinger | Excited States and Photochemistry of Organic Molecules[END_REF][START_REF] Kukura | [END_REF](6). In order to compare with experiments, it suces that in the latter the time of switching on the wave at the molecular site must be much shorter than the period of the laser.

The solution of eq.( 14) is used to calculate the autocorrelation function which is the overlap between the initial and the time evolved wave packets

C(t) = | < ψ(R, θ, 0)|ψ(R, θ, t) > | (16) = π 0 dθ • sin θ ∞ 0 dR • ψ(R, θ, 0) * • ψ(R, θ, t) .
as well as the time-dependent population on dierent adiabatic or diabatic surfaces (SF )

P SF (t) = < ψ SF (R, θ, t)|ψ SF (R, θ, t) >= (17) π 0 dθ • sin θ ∞ 0 dR • ψ SF (R, θ, t) * • ψ SF (R, θ, t).
More specically, we study the following quantities We begin with the weak eld situation (I = 3.0 × 10 8 W cm 2 ).

P X dia (t), P A dia (t)
In Fig. 5 we rst display the results for ω L = 1.851 eV . Here, the energy of the initial wave packet is slightly above the bottom of the V A -ω L curve, but still below the lowest vibrational level of angular momentum J = 1 on the A surface to which it couples directly. Furthermore, the energy of initial wave packet is also below that the energy of the CI. It is known that in such cases the nonadiabatic eects on the initial wave packet are weak [START_REF] Köppel | [END_REF]. Consequently, the whole wave packet stays localized on the X surface up to 50 ps and the populations on the two diabatic surfaces remain practically unchanged. Turning to the adiabatic picture, the situation is similar. The population on the upper surface is more or less constant and very low (around ∼ 0.004) apart from the rst 1 -2 ps. On the other hand, the autocorrelation function does show clear periodical changes which due to fact that the initial eld free state is a linear combination of essentially two eigenfunctions of the full Hamiltonian [START_REF] Baer | Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections[END_REF]6). Ordered by increasing energy, these are the rst and third eigenstates φ 1 and φ 3 , and are initially populated by ∼ 73.3% and ∼ 26.4%, respectively.

We now increase the laser frequency to ω L = 1.968 eV . The results of the computations are collected in Fig. 6 in analogy to Fig. 5. In this situation both the energetic and internuclear positions of the CI change to lower values. Importantly, the position of the initial wave packet is now higher by about 0.1 eV than the bottom of the V A -ω L curve, and is also above the position of the CI. In contrast to the rst example, the wave function can now spread out more eciently through the CI.

The decay of the autocorrelation function is rather fast: it arrives at its rst zero after 1.34 ps. At later times it oscillates and exhibits a larger recurrence at around 9.5 ps and thereafter continues to oscillate with a larger amplitude than before this recurrence. In this case the initial wave function is a linear combination of several eigenfunctions. Nine of them cover more than 98% of the initial wave function. The periods of times related to the energy dierences between these eigenfunctions are in the range from 1.5 ps to 20.1 ps and ve of them -between neighbouring states -are between 9.8 ps and 10.9 ps. The interference of these states causes the irregular oscillations and the recurrences of the autocorrelation function. All populations show large variations with time. The population on the X surface is changing Because of the applied weak eld in the cases studied above in Figs. 5 and6, the energy split between the adiabatic upper and lower curves at the crossing point of the diabatic curves and θ = 0 is extremely small and almost negligible (it amounts to ∼ 10 meV ). However, the picture changes markedly in the case of the higher eld intensity studied here, I = 3.0 × 10 10 W cm 2 . These adiabatic curves are depicted in addition to the diabatic curves in panels (a) of Figs. 7 and8. Increasing the eld intensity increases the energy split substantially as expected from the o diagonal term in the potential matrix Ŵ in (6). At the value of R of the CI where the respective diabatic curves cross, the energy split is twice the absolute value of this o diagonal term. In polyatomic molecules it is known that the appearance of nonadiabatic eects intensies due to conical intersections when the so-called interstate coupling constants increase [START_REF] Köppel | [END_REF].

In the present context of light-induced CIs the analogous interstate coupling constant is given by 0 d(R)/2 as can be seen by comparing Eq.( 6) and the respective equations in Ref. [START_REF] Köppel | [END_REF]. Since this interstate coupling constant increases with increasing eld intensity, we expect stronger nonadiabatic eects in stronger elds, in general.

Again, as for the weak eld, we study here two situation with dierent laser frequencies. We depict in Fig. 7 the results for the lower frequency ω L = 1.851 eV . We see that the autocorrelation function now decays very fast within the rst 200 f s to a rather low value of about ∼ 0.35 and continues to drop to about ∼ 0.21 during the next 400 f s. The population on the X surface is permanently decreasing (from 1 to ∼ 0.55) during the rst 600 f s. In contrast, the population on the upper adiabatic surface changes very little (see the scale on the right hand side of the gure). This is due to the fact that the initially populated level is well below the energy of the CI and essentially within the lower adiabatic surface, see Fig. 7(a).

The results obtained for the larger laser frequency ( ω L = 1.968 eV ) are summarized in Fig. 8. The energy of the initial wave packet is now slightly above the energy of the CI and is signicantly larger than the bottom of the V A -ω L curve. We see that due to this energetic situation the dynamics is pretty fast and the autocorrelation function drops signicantly to only about 0.23 within the short time of just 75 f s. Later on this function continues to decay exhibiting oscillations. This behavior of the autocorrelation function is rather similar to those found in small polyatomics with eld free CIs [START_REF]Conical Intersections: Electronic Structure, Dynamics and Spectroscopy[END_REF][START_REF] Worth | [END_REF]. The populations of the diabatic and in this example of the adiabatic states as well also show rapid substantial changes on a similarly short time scale. Interestingly, the population on the diabatic A surface, which is zero initially, now becomes considerably larger than that of the X surface at most of the time interval depicted in Fig. 8(b).

Finally, we would like to gain some insight into the impact of the CI by freezing the rotational degree of freedom. For this purpose we assume that the orientation of the system is xed during the process and the molecular axis is parallel to the polarization of the laser eld, i.e., we set cos θ = 1 in eq.( 6), to maximize the coupling between the electronic states. In what follows we compare the results of this calculations (referred to as the no CI case) with the above shown full calculations (CI case). The results obtained for the autocorrelation function and the adiabatic population are collected in Fig. 9 for ω L = 1.968 eV and I = 3.0 × 10 10 W cm 2 where they are also compared with the respective quantities taken from Fig. 8. The dierences between the no CI and CI results are obviously considerable. First, the behavior of the no CI autocorrelation function is rather structured, while the correct function is nearly smooth showing a more or less continuous decay. This dier-ence is due to the much larger density of states available and populated in the CI case where many odd J values contribute in contrast to only J=0 in the no CI case. Interestingly, the no CI autocorrelation function decreases much faster at very short times (up to 30 f s) than the correct one, and at later times it shows dramatic recurrences up to a value of 0.8 in sharp contrast to the decaying function in the CI case.

Another quantity of interest is the population of the upper adiabatic state. Both the CI and no CI results are rather comparable in the short time period where the autocorrelation function drops fast (about 30 f s). At longer times, the deviation between the populations become quite remarkable. In the no CI case the adiabatic population jumps back close to its original value and then falls o relatively atly except of the bump occurring at around 300 f s, a time when the autocorrelation function has its large recurrences. In contrast, the correct population of the upper adiabatic state continues to decay and at the end of the 600 f s shown in Fig. 9 more than 60% of its initial value has been transferred to the lower adiabatic state.

One may be tempted to expect that if the laser intensity is weak, say I = 3.0 × 10 8 W cm 2 , the deviations of the no CI from the CI results will be hardly visible. This is, however, not necessarily the situation. In Fig. 10 we display in analogy to Fig. 9 the results obtained for the weak intensity. The no CI results are surprisingly different from the CI ones already discussed above. First of all, we notice that like in the stronger eld (see Fig. 9), also here the autocorrelation function in the no CI case decreases more rapidly at the very beginning than in the CI case. But the most striking feature of the autocorrelation function in the no CI case is the appearance of nearly complete periodic recurrences where the wave packet returns to the initial wave function. We shall return to this behavior below. Concerning the population on the upper adiabatic surface, it seems rather meaningless to compare between the no CI and the CI cases.

The former one displays much more similarities to the autocorrelation function in the no CI case than having any resemblance to the result of the CI case.

To understand the behavior in the no CI case, we should study some details of the actual wave function. It turns out that at the given photon energy accidentally two eigenstates of the eld free Hamiltonian energy split of ∼ 3 meV leads to periodic recurrences in the autocorrelation function with a time period of about T ≈ 1.36 ps as observed in the calculations. In the CI case the situation is rather dierent as initial state having J = 0 couples directly only to eld free states of J = 1 which in turn couple to J = 0 and 3 states etc.

Consequently, the nearly degenerate state which is responsible for the striking beating found in the no CI case is irrelevant in the full calculation. To demonstrate the impact of the CI we briey mention that the starting wave function when expressed by the respective eigen-functions acquires contributions of similar weights from 8 eigenfunctions. Moreover, when expanded in eld free states, the eigenfunctions in the CI case are found to be mixtures of several rotationally excited eigenstates of the eld free problem on the two diabatic surfaces with signicant coecients (> 0.2) up to J = 13. 

VI. Conclusions

Recently, a novel and physically interesting phenomenon was found [13,14] + E 0 cos(θ)d(R) cos(ω L t) •

•

[|Ψ elec A Ψ elec X | + |Ψ elec X Ψ elec A |]
where H X is the time-independent Hamiltonian with the ground electronic energy as function of R as a potential and similarly H A is the time-independent Hamiltonian for the rst excited electronic state.

The initial state is the eld-free state of the molecule which is suddenly exposed to the cw laser beam. In our case the initial state is taken as the ground vibrational and rotational eigenstate of H X , χ X ν=0,J=0 and therefore, |Ψ(t = 0) >= χ X ν=0,J=0 |Ψ elec X .

(

) 20 
Using the Shirley approach [26] we can expand the solution of the TDSE with the quasi-energy (Floquet) solutions which we denote here by |Ψ QE α (t) > (we will explain what they are later). Following Shirley the solution of Eq.18 is given by,

|Ψ(t) >= α C α Ψ QE α (t) (21) 
where

C α = Ψ QE α (t = 0)|Ψ(t = 0) . (22) 
The quasi-energy (Floquet) solutions are dened as (see for example, [START_REF] Faisal | Theory of Multiphoton Processes[END_REF][START_REF] Moiseyev | Non-hermitian Quantum Mechanics[END_REF])

|Ψ QE α (t) = e -iE QE α t/ ∞ n=-∞ e iω L nt |ϕ n,α (23) 
where correspondingly E QE α and the n-th components of the vector | -→ ϕ α > are the eigenvalues and eigen-states of the time-independent Floquet matrix, H F , which its (n, n ) matrix element is dened as Even when the laser eld is strong the Fourier components can be truncated and the Floquet matrix can be truncated. For the case where the photoinduced dynamics is a net one-photon process (as in our case) it is enough to take {n , n} = 0, -1 or {n , n} = 0, +1 and the initial state is the eld-free state which is dened above in Eq.22. For our studied case the time-independent Floquet matrix which is given above in Eq.27 and the propagation of the wavepacket within the framework of the Floquet formalism as given above on Eq.26 are as dened in Eqs.1-6 in our paper.

[H F ] n,n = (24) 1 T 
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 1 Figure 1: Light-induced conical intersection between the V lower ad (R, θ) and V upper ad (R, θ) adiabatic potential energy surfaces in the Na2 molecule. The applied eld intensity and photon energy are: I = 3.0 × 10 10 W cm 2 and ωL = 1.968 eV.

[ 2 ,

 2 10], these nonadiabatic couplings can be calculated as the derivatives of the transformation angle Φ with respect to the corresponding nuclear coordinate τ 12R = ∂Φ/∂R and τ 12θ = ∂Φ/∂θ.

Figure 3 :

 3 Figure 3: (a) Potential energy VX and eld-dressed potential energy VA -ωL curves of Na2. The X and A notations correspond to the X 1 Σ + g and A 1 Σ + u electronic states. (b) Geometrical arrangement of the contours used in the topological phase calculations. The angle β {0...2π} parametrizes the actual position in the conguration space where the transformation angle is calculated. The black triangle shows the position of the laser-induced conical intersection. (c) Transformation angles as a function of β for three dierent geometrical arrangements. Only the solid curve is calculated along a path surrounding the CI. The arrows denote that the solid and dashed functions are given by the scale on the left side while the value of the dotted function is given by the scale on the right side.

Figure 4 :

 4 Figure 4: Color mapped plots of the transformation angle as a functions of R and θ for two intensities of the laser eld: (a) I = 3.0 × 10 8 W cm 2 and (b) I = 3.0 × 10 10 W cm 2 .

  and P upper ad (t), which correspond to the population of (or probability of being on) the ground state diabatic surface (SF = X), on the excited state diabatic surface (SF = A) and on the adiabatic upper state surface (SF = upper)[30], respectively. In the numerical calculations the two eld intensities I = 3.0 × 10 8 W cm 2 and I = 3.0 × 10 10 W cm 2 , and the two dierent values of the photon energy 1.851 eV and 1.968 eV were used. The internuclear (R) and the energetic (E) positions of the light-induced conical intersections are easily determined (see below) and, of course, do not depend on the used laser intensity. The dynamical investigations performed can be classied according to the actual position of the conical intersections and intensity. To avoid numerous gures showing the many results obtained, we collect the numerical results for the autocorrelation and various population functions compactly in a single picture for each set of parameters (photon energy and eld intensity).

Figure 5 :

 5 Figure 5: Potential curves and results for eld intensity I = 3.0 × 10 8 W cm 2 and frequency ωL = 1.851 eV . (a) Potential energy VX and eld-dressed potential energy VA -ωL curves of Na2. The dashed-dotted vertical line indicates the geometric position of the CI and the dashed-dotted horizontal line the energy position of the initial state of the propagation. (b) Autocorrelation function (solid line), population on the ground state diabatic surface (dotted line), on the excited state diabatic surface (dashed line) and on the adiabatic upper state surface (• • •) are shown as a function of time.

Figure 6 :

 6 Figure 6: The same as Figure 5 except that the laser frequency is now increased to ωL = 1.968 eV . For more details see Fig.

5 .

 5 rapidly within the 1 st ps and then continues to oscillate around approximately the value of ∼ 0.4 also exhibiting -as in the case of the autocorrelation function -a local enhancement at around 9.5 ps. A recurrence in the autocorrelation function implies that the wave packet has returned partly to the initial one. Since the initial wave packet in here starts from the ground state X surface, the population on this surface may also grow around the recurrence. The population of the adiabatic upper state follow approximately the shape of that of the X state.

; 8 T

 8 and ϕ A ν=8 ) are nearly degenerate: E A 8 -E X 0 ≈ 25 µeV . In the laser eld these two eld free states will strongly mix giving rise to the two new eigenstates: |φ 522 ≈ 0.68 ϕ X 0 , with which have an energy split of: E 552 -E 522 ≈ 3.06 meV . Our initial wave function at t = 0 is the electronic and vibrational ground state of the eld free system (ϕ X ν=0 ), and can be excel- lently expressed by these two eigenstates: |Ψ(t = 0) = ϕ X 0 ; 0 T ≈ 0.68 |φ 522 + 0.71 |φ 552 . At later times we have a beating between these two eigenstates and the

Figure 7 :

 7 Figure 7: Potential curves and results for eld intensity I = 3.0 × 10 10 W cm 2 and frequency ωL = 1.851 eV . (a) Potential energy VX and eld-dressed potential energy VA -ωL curves of Na2. Shown are also the respective adiabatic potential curves at θ = 0 as dashed curves. The dashed-dotted vertical line indicates the geometric position of the CI and the dashed-dotted horizontal line the energy position of the initial state of the propagation. (b) Autocorrelation function (solid line), population on the ground state diabatic surface (dotted line), on the excited state diabatic surface (dashed line) and on the adiabatic upper state surface (• • •) are shown as a function of time.

Figure 8 :

 8 Figure 8: The same as Figure 7 except that the laser frequency is now increased to ωL = 1.968 eV . For more details see Fig.

Figure 9 :

 9 Figure 9: Autocorrelation function and population on the adiabatic upper state surface as a function of time for the no CI case where the rotational motion has been frozen (cos θ = 1 in eq.(6)). The results are compared with those of the full calculations (CI case). The laser eld intensity and photon energy are: I = 3.0 × 10 10 W cm 2 and ωL = 1.968 eV . The curves of the autocorrelation function are marked with (solid line) and (dotted line) for the CI and no CI cases, respectively. The curves of the upper state population are marked with (• • •) and (

  in the eld of light-matter interactions. It was shown theoretically that exposing a diatomic molecule to a laser eld can give rise to the appearance of so called light-induced CIs. In this situation the rotation is the additional nuclear degree of freedom which enables the formation of the CIs. The topology of these light-induced CIs is easily revealed by describing the molecule-light interaction in eld-dressed electronic state picture. As is well known from the eld of nonadiabatic processes, the nuclear dynamics is strongly coupled to the electronic dynamics in the vicinity of CIs, due to the appearance of innitely large nonadiabatic coupling terms. Being singular at the CI, the nonadiabatic couplings may become the source of numerous statical and dynamical phenomena. The possibility to induce articially -by using a laser eld -strong nonadiabatic eects into a molecular system promises a wealth of controllable new phenomena even in diatomic molecules.Conical intersections are abundant in free polyatomicmolecules. There is a signicant dierence between these natural CIs and the laser-induced ones. The natural CIs can not be modied while light-induced ones can be controlled. The positions of these CIs are determined by the laser frequency and the strengths of their nonadiabatic couplings by the intensity of the laser.
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 10 Figure 10: Autocorrelation function and population on the adiabatic upper state surface are gured as a function of time. The applied laser eld intensity and photon energy are: I = 3.0 × 10 8 W cm 2 and ωL = 1.968 eV. For more details see Fig.

9 .

 9 In this work the topological or Berry phase in the Na 2 molecule was studied. We performed calculations along closed contours that surround a light-induced CI and obtained α = π for the value of the topological phase. As known for the case of single CIs given in nature, this result can be considered as a proof that a true conical intersection has been found. Interesting results have also been found for contours which do not surround the light-induced CI. At the heart of this work we have also performed wave packet calculations demonstrating that the light-induced CI has a strong impact on the molecular dynamics even for weak laser elds. The situation resembles that in eld free polyatomic molecules where the dynamics is highly aected by CIs given by nature owing to the strong coupling between the nuclei and the electrons.

  

  

  {(n , n)} 0,±1,±2,... . By substituting Eq.23 into Eq.21 (see the (t,t') formalism as derived by[START_REF] Peskin | [END_REF]) one gets that the solution of the TDSE is given by|Ψ(t) >= n e -iω L nt [e -iH F t/ |Ψ(t = 0) >] n,n =0 (25)and therefore when {e -iω L nt } n=0,±1,... are used as a basis where each one of the Fourier component is the eldfree initial state. For our case the (n, n ) Floquet matrix element is dened as[H F ] n ,n = δ 2n ,2n H X (R, θ)|Ψ elec

	set then			
	H F ψ(t) = i	d dt	ψ(t)	(26)
				X	Ψ elec X |	(27)
	+ δ 2n +1,2n+1 H A (R, θ)|Ψ elec A	Ψ elec A |
	+ [δ 2n ,2n+1 + δ 2n+1,2n ]	E 0 2	cos(θ)d(R) •
	• [|Ψ elec A	Ψ elec X | + |Ψ elec X	Ψ elec A |]

T 0 e -iω L nt [-i ∂ ∂t + H(t)]e +iω L n t dt

where
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Appendix

A.

On the propagation of a wave packet with a time-dependent Hamiltonian in the Floquet picture

The TDSE we wish to solve is

where H(t) = H(t + T ) stands the time-dependent Hamiltonian for a diatomic molecule in a cw laser eld with the frequency ω L = 2π/T . In our studied case