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Within the lowest-order relativistic approximation (∼ v 2 /c 2 ) and to first order in m e /M , the tensorial form of the relativistic corrections of the nuclear recoil Hamiltonian is derived, opening interesting perspectives for calculating isotope shifts in the multiconfiguration Dirac-Hartree-Fock framework. Their calculation is illustrated for selected Li-, B-and C-like ions. The present work underlines the fact that the relativistic corrections to the nuclear recoil are definitively necessary for getting reliable isotope shift values.

Introduction

Nuclear and relativistic effects in atomic spectra are treated in the pioneer works of Stone [1,2] and Veseth [3]. The theory of the mass shift has then been reformulated by Palmer [4]. Calculations of nuclear motional effects in many-electron atoms have been performed by Parpia and co-workers [5,6] in the relativistic scheme, using fully relativistic wave functions, but adopting the non-relativistic form of the recoil operator. Relativistic nuclear recoil corrections to the energy levels of multicharged ions have been estimated by Shabaev and Artemyev [7] who derived the relativistic corrections of the recoil Hamiltonian. In a study of isotope shifts of forbidden transitions in Be-and B-like argon ions, Tupitsyn et al [8] showed that a proper evaluation of the mass isotope shift requires the use of this relativistic recoil operator. The latter has also been shown to be crucial by Porsev et al [9] for calculating isotope shifts of transitions between the fine structure energy levels of the ground multiplets of Fe I and Fe II.

As far as computational atomic structure is concerned, the extension of the available relativistic codes such as grasp2k [10] or mcdf-gme [START_REF] Indelicato | Mcdfgme, a multiconfiguration dirac-fock and general matrix elements program[END_REF][START_REF] Desclaux | Methods and Techniques in Computational Chemistry[END_REF] is needed for estimating these mass corrections properly for any many-electron system. Programs to calculate pure angular momentum coefficients for any scalar one-and two-particle operator are available [START_REF] Gaigalas | [END_REF] but do require the knowledge of the tensorial structure of the operators to be integrated between the many-electron atomic wave functions [START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF]. The tensorial form of the nuclear recoil Hamiltonian is derived in the present work, opening interesting perspectives for calculating isotope shifts in the multiconfiguration Dirac-Hartree-Fock (MCDHF) framework.

The relativistic mass shift operator

In the MCDHF method, the atomic state function (ASF) Ψ(γP JM J ), of a stationary state of an atom, is expressed as a linear combination of symmetry-adapted configuration state functions (CSFs) Φ(γ p P JM J ), i.e.

Ψ(γP JM

J ) = p c p Φ(γ p P JM J ), ( 1 
)
where J is the total electronic angular momentum of the state, γ represents the electronic configuration and intermediate quantum numbers, and P stands for the parity. The mixing coefficients c p and the one-electron radial wave functions spanning the CSFs are optimized by solving the MCDHF equations iteratively until self-consistency. The latter are derived by applying the variational principle to the energy functional based on the Dirac-Coulomb Hamiltonian [START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF] 

H DC = N i=1 cα i • p i + (β i -1)c 2 + V (r i ) + N i<j 1 r ij , (2) 
where V (r i ) is the monopole part of the electron-nucleus interaction, α and β are the (4 × 4) Dirac matrices and c is the speed of light (c = 1/α in atomic units, where α is the fine-structure constant).

The mass shift of the energy levels in an atom with nuclear mass M is caused by the recoil motion of the atomic nucleus. The corresponding recoil Hamiltonian

H MS = 1 2M N i,j p i • p j - αZ r i α i + (α i • r i ) r i r 2 i • p j , (3) 
has been derived within the lowest-order relativistic approximation and to first order in m/M by Shabaev and collaborators [7,8]. Rewriting it as the sum of the normal mass shift (NMS) and specific mass shift (SMS) contributions and using the tensorial form

r 1 = rC 1 , (3) becomes 
H MS = H NMS + H SMS , (4) 
with

H NMS = 1 2M N i=1 p 2 i - αZ r i α i • p i - αZ r i α i • C 1 i C 1 i • p i , (5) 
H SMS = 1 M N i<j p i • p j - αZ r i α i • p j - αZ r i α i • C 1 i C 1 i • p j , (6) 
that, in both cases, are rewritten as a sum of three separate contributions:

H NMS ≡ H 1 NMS + H 2 NMS + H 3 NMS , (7) 
and

H SMS ≡ H 1 SMS + H 2 SMS + H 3 SMS . (8) 
Since the expectation values of the NMS and SMS operators are evaluated with the MCDHF wave functions, the expectation values H 1 NMS and H 1 SMS partly contain the relativistic contributions. Tupitsyn et al [8] pointed out that averaging the nonrelativistic recoil operator with the relativistic wave functions strongly overestimates the relativistic correction to the recoil effect such as it becomes important to use the complete form (3) when one works in the relativistic scheme.

Normal mass shift expectation value

The (mass-independent) normal mass shift parameter K NMS is defined by the following expression

K NMS M ≡ Ψ(γP JM J )|H NMS |Ψ(γP JM J ) . (9) 
By analogy with (7), we define K NMS as the sum of

K NMS = K 1 NMS + K 2 NMS + K 3 NMS .
Applying the Wigner-Eckart theorem [START_REF] Cowan | The Theory of Atomic Structure and Spectra[END_REF], the matrix element of the normal mass shift operator is M J -invariant and is proportional to the reduced matrix element (r.m.e.) ‡ Using multiconfiguration expansions (1), the reduced matrix elements of the general spherical tensor operator

K NMS M = 1 √ 2J + 1 Ψ(γP J) H NMS Ψ(γP J) = [Ψ(γP J) H NMS Ψ(γP J)] . ( 
T k q becomes Ψ(γP J) T k Ψ(γP J) = p,s c p c s Φ(γ p P J) T k Φ(γ s P J) . (11) 
The reduced matrix elements of the one-electron operator T k = i t k (i) between CSFs is expressed as a sum over single-particle reduced matrix elements

Φ(γ p P J) T k Φ(γ s P J) = a,b T ps (ab) n a κ a t k n b κ b , (12) 
where the T ps (ab) are the spin-angular coefficients arising from Racah's algebra [START_REF] Gaigalas | [END_REF][START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF][START_REF] Gaigalas | [END_REF]. Introducing the one-body normal mass shift operator associated to (5) (

H NMS = i h NMS (i)) h NMS = 1 2M p 2 - αZ r α + α • C 1 C 1 • p , (13) 
we hereafter derive the expression of its r.m.e., using relativistic central-field one-electron wave functions

ψ na,κa,ma (r, σ) = 1 r P na,κa (r)Ω κa,ma (θ, φ, σ) iQ na,κa (r)Ω -κa,ma (θ, φ, σ) . (14) 
P a and Q a are respectively the large and small components of the relativistic one-electron radial wave function a = (n a κ a ), where κ = (l -j)(2j + 1).

Introducing the notation ∂ r ≡ ∂ ∂r , the action of the operator p 2 on the large (F = P ) and the small (F = Q) component of a relativistic wave function

p 2 F n,κ (r) r Ω κ,m (θ, φ, σ) = 1 r -∂ 2 r + l(l + 1) r 2 F n,κ (r)Ω κ,m (θ, φ, σ) (15) 
is found using

p 2 = -∆ = - 1 r 2 ∂ r r 2 ∂ r + l 2 r 2 . ( 16 
)
From this expression and integrating by parts, the first term of the one-electron matrix element NMS operator (13) becomes,

n a κ a m a | p 2 2 |n b κ b m b = δ(κ a m a , κ b m b ) (17) × 1 2 ∞ 0 dr (∂ r P a ) (∂ r P b ) + (∂ r Q a ) (∂ r Q b ) + l b (l b + 1)P a P b + l b ( l b + 1)Q a Q b r 2 ,
with l = 2j -l. Building the Dirac matrices α from α = σ x ⊗ σ with

σ x = 0 1 1 0 , (18) 
one rewrites the second and the third parts of the NMS operator [START_REF] Gaigalas | [END_REF] as

-αZ 2r α • p + α • C 1 C 1 • p ≡ σ x ⊗ A = 0 A A 0 (19) with A = -αZ 2r σ • p + σ • C 1 C 1 • p . (20) 
Taking into account that (see (A.4.9) and (3.2.14) in [START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF])

σ • C 1 = σ • e r = σ r ; C 1 • p = e r • p = (-i∂ r ), (21) 
and

σ • p = -iσ r ∂ r + K + 1 r , (22) 
with

K = -(1 + σ • l), the operator A becomes A = -αZ 2r (-iσ r ) 2∂ r + K + 1 r . ( 23 
)
Acting on the one-electron relativistic wave function component, it gives

A F n,κ (r) r Ω κ,m = -αZ 2r i r 2∂ r + κ -1 r F n,κ (r)Ω -κ,m , (24) 
from which one derives, integrating by parts, the one-electron matrix element of the second and third parts of the NMS operator

n a κ a m a |σ x ⊗ A|n b κ b m b = δ(κ a m a , κ b m b ) (25) × 1 2 ∞ 0 (-2αZ) Q a ∂ r P b + Q b ∂ r P a r + (-αZ) κ b -1 r 2 (P b Q a + P a Q b ) dr
Combining [START_REF] Wigner | Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra[END_REF] and (25) to deduce the r.m.e. of the normal mass shift operator [START_REF] Gaigalas | [END_REF], we obtain the final expression

[n a κ a h NMS n b κ b ] = δ(κ a , κ b ) (26) × 1 2M ∞ 0 (∂ r P a ) (∂ r P b ) + (∂ r Q a ) (∂ r Q b ) + l b (l b + 1)P a P b + l b ( l b + 1)Q a Q b r 2 + (-2αZ) Q a ∂ r P b + Q b ∂ r P a r + (-αZ) κ b -1 r 2 (Q a P b + Q b P a ) dr.

Specific mass shift expectation value

Similarly to (10), the (mass-independent) specific mass shift parameter K SMS is defined as

K SMS M ≡ [Ψ(γP J) H SMS Ψ(γP J)] , (27) 
and K 1 SMS , K 2 SMS , K 3 SMS as its contributions according to (8). Its evaluation requires the calculation of the corresponding matrix elements in the CSF space. For the general scalar two-particle operator

G = i<j g(i, j) (28) 
with

g(i, j) = k g k (r i , r j ) T k (i) • T k (j) , (29) 
the reduction of the many-electron r.m.e. in terms of the two-electron integrals X k , also called effective interaction strengths [START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF],

[Φ(γ p P J)

i<j g(i, j) Φ(γ s P J)] = abcd k v (k) ps (abcd)X k (abcd) (30) 
can be performed using Racah's algebra [START_REF] Gaigalas | [END_REF][START_REF] Grant | Relativistic Quantum Theory of Atoms and Molecules. Theory and Computation. Atomic, Optical and Plasma Physics[END_REF][START_REF] Gaigalas | [END_REF]. For the specific mass shift Hamiltonian (6), using k = 1, all three terms have the particular form

g(i, j) = g 1 (r i )g 1 (r j ) T 1 (i) • T 1 (j) (31) 
in which the radial part g 1 (r i , r j ) of ( 29) is factorized. Adopting the covariant notation for the 3j-symbol of Wigner [START_REF] Wigner | Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra[END_REF] and using the definition of the scalar product of two irreducible tensor operators and the Wigner-Eckart theorem, the matrix element of (31) can be written as follows

ab|g(i, j)|cd = 1 q=-1 m a 1 j c j a q m c m b q j d j b 1 m d X 1 (abcd), ( 32 
)
where

X 1 (abcd) = -a g(r i )T 1 (i) c b g(r j )T 1 (j) d . (33) 
From the structure of ( 8), the latter has three components

X 1 (abcd) = X 1 1 (abcd) + X 1 2 (abcd) + X 1 3 (abcd) (34) 
that we analyzed hereafter separately.

2.2.1. First part: X 1 1 (abcd)

Building X 1 1 (abcd) from (33), we have g(r i )T 1 (i) = p 1 (i) ; g(r j )T 1 (j) = p 1 (j) .

Introducing the one-electron reduced matrix element

a p 1 c = -i κ a C 1 κ c V (n a κ a , n c κ c ), (36) 
where V (nκ, n κ ) is the Vinti radial integral

V (nκ, n κ ) = ∞ 0 P nκ (r) d dr - κ(κ + 1) -κ (κ + 1) 2r P n κ (r)dr (37) + ∞ 0 Q nκ (r) d dr - -κ(-κ + 1) + κ (-κ + 1) 2r Q n κ (r)dr ,
the first contribution to the effective interaction strength writes as

X 1 1 (abcd) = κ a C 1 κ c κ b C 1 κ d V (n a κ a , n c κ c )V (n b κ b , n d κ d ) , (38) 
recovering the uncorrected relativistic expression used in [5,6].

2.2.2. Second part: X 1 2 (abcd)
For the second term of the SMS operator, we identify from ( 6), ( 8), ( 33) and ( 34)

g(r i )T 1 (i) = -αZ r σ x ⊗ σ 1 (i) ; g(r j )T 1 (j) = p 1 (j) . (39) 
Introducing the matrix element

a|r -1 σ x ⊗ σ 1 q |c = i ∞ 0 dr r -Q a P c -κ a m a |σ 1 q |κ c m c + Q c P a κ a m a |σ 1 q | -κ c m c , (40) 
and using the r.m.e. (36), the corresponding contribution to the effective interaction strength is

X 1 2 (abcd) = -κ b C 1 κ d V (n b κ b , n d κ d ) × ∞ 0 dr -αZ r -Q a P c -κ a σ 1 κ c + Q c P a κ a σ 1 -κ c . (41) 2.2.3. Third part: X 1 3 (abcd)
Similarly, the two components of the third term of the SMS operator are

g(r i )T 1 (i) = -αZ r σ x ⊗ (σ r (i)C 1 (i)) ; g(r j )T 1 (j) = p 1 (j) . ( 42 
)
Using the matrix element

a|r -1 σ x ⊗ (σ r C 1 q ) |c = i ∞ 0 dr r Q a P c -κ a m a |C 1 q | -κ c m c -Q c P a κ a m a |C 1 q |κ c m c , (43) 
and the r.m.e. (36), the third contribution to the effective interaction strength takes the form

X 1 3 (abcd) = -κ b C 1 κ d κ a C 1 κ c V (n b κ b , n d κ d ) × ∞ 0 dr -αZ r (Q a P c -Q c P a ) , (44) 
where we take advantage of

-κ a C k -κ c = κ a C k κ c .

Useful one-electron reduced matrix elements

Equations ( 26), ( 38), ( 41) and (44) are the final key expressions of the relativistic mass shift one-electron r.m.e. that involve the following three reduced angular one-electron matrix elements

κ a C 1 κ c = (-1) ja+1/2 [j a , j c ] j a 1 j c 1/2 0 -1/2 π (l a , l c , 1) , (45) -κ a σ 1 κ c = δ( l a , l c )(-1) la+1/2+ja+1 6[j a , j c ] 1/2 j a l a j c 1/2 1 ,(46) κ a σ 1 -κ c = δ(l a , l c )(-1) la+1/2+ja+1 6[j a , j c ] 1/2 j a l a j c 1/2 1 , (47) 
where π (l a , l c , 1) is defined by :

π (l a , l c , 1) = 1 if l a + 1 + l c even, 0 otherwise. ( 48 
)

Applications

We wrote a new program, hereafter referred as rms2, for estimating the expectation values of the relativistic nuclear recoil operators using MCDHF wave functions calculated with the grasp2K package [10]. This code is based on the previous program sms92 [6] in which

• for the NMS, the one-electron radial integrals (expression (39) of the original paper [6]) are replaced by the corresponding relativistic expression (26),

• for the SMS, the first contribution X 1 1 (abcd) (expression (40) of the original paper [6]) is corrected by adding the relativistic contributions ( 41) and (44).

It is important to notice that the program sms92 calculates the uncorrected NMS as the expectation value i T i , where T i is the Dirac kinetic energy operator

T i = c α i • p i + (β i -1 ) c 2 associated to electron i, while the program rms2 uses more accurately H 1 NMS = i p 2 i /2M
, which is consistent with section 2.1. An equivalent version has been written for the code mcdf-gme.

In the present work, we evaluate the NMS and SMS parameters ( 9) and ( 27) for some low-lying levels of neutral lithium, boron-like argon and two medium-Z carbon-like ions (Ca XV and Sc XVI) to investigate the importance of the relativistic corrections. The nuclear charge distribution is described by a Fermi model. Nuclear masses (M N ) are calculated by taking away the mass of the electrons and the binding energy from the atomic mass (M A ), using the formula:

M N (A, Z) = M A (A, Z) -Zm e + B el (Z) ( 49 
)
where the total binding energy of the electrons (expressed in eV) is estimated using [START_REF] Huang | [END_REF]19] B el (Z) = 14.4381 Z 2.39 + 1.55468

• 10 -6 Z 5.35 . ( 50 
)
The atomic and nuclear masses relevant to the present work are reported in Tables 1. When discussing a transition mass isotope shift, one needs to consider the variation of the mass parameter from one level to another. The line k frequency isotope shift,

δν A 1 ,A 2 k = (δE A 1 ,A 2 j -δE A 1 ,A 2 i
)/h, between the isotopes A 1 and A 2 , of nuclear masses M 1 and M 2 respectively, is usually written as the sum of the normal mass shift (NMS), specific mass shift (SMS) and field shift (FS) contributions :

δν A 1 ,A 2 k = δν A 1 ,A 2 k,NMS + δν A 1 ,A 2 k,SMS δν A 1 ,A 2 k,MS +δν A 1 ,A 2 k,FS , (51) 
with

δν A 1 ,A 2 k,MS = M 2 -M 1 M 1 M 2 ∆K MS h = M 2 -M 1 M 1 M 2 ∆ K MS , (52) 
where ∆K MS is the difference of the K MS parameters of the levels involved in transition k. As far as conversion factors are concerned, we use § ∆ K MS [GHz u] = 3609.4824 ∆K MS [m e E h ]. Note that thanks to the separability enhanced in (4), (52) can be applied to both the mass contributions NMS and SMS, separately.

Hydrogen-like selenium

Below we present some relevant calculations of the expression ( 26) for a heavy oneelectron ion (Se XXXIV, Z = 34). This choice is motivated by the interesting comparison with the unpublished work of Kozlov [22]. The normal mass shift values calculated with the operators H 1 NMS and (H 2 NMS + H 3 NMS ), using the rms2 program, are reported in Table 2. In the second and third column respectively, comparison is made with the numerical results of Kozlov together with our analytical values. The latter are based on analytical hydrogenic wave functions [START_REF] Johnson | Atomic Structure Theory: Lectures on Atomic Physics[END_REF] and are in complete agreement with the values of the analytical formulas derived for hydrogenic systems in [7]. Note that these formulas show that the relativistic corrections arising from the nonrelativistic and § This conversion factor is calculated as (m e /u)2R ∞ c × 1.10 -9 = 3609.4824 using the 2006 CODATA recommended values of the fundamental physical constants [START_REF] Mohr | [END_REF].

The values reported in Tables 2 and3 are based on α -1 = 137.035989500 adopted in grasp2K. For 1s 1/2 , the analytical result for K NMS becomes 656.358886872 if adopting the α -1 = 137.035999679 2006 CODATA value [START_REF] Mohr | [END_REF] .

relativistic recoil operators contain similar terms which, being rapidly growing when Z increases, cancel each other as discussed in [START_REF] Artemyev | [END_REF] for Li-like ions. 

Lithium-like systems using Dirac one-electron wave functions

The SMS parameters for Li-like iron (Z = 26) and selenium (Z = 34) are calculated in the single configuration approximation using three-electron wave functions built on unscreened Dirac solutions. The results are reported in Table 3 and compared with independent estimations using an adapted version of mcdf-gme [START_REF] Indelicato | Mcdfgme, a multiconfiguration dirac-fock and general matrix elements program[END_REF]25] and with the analytical results. The three sets are consistent with each other but sensitively different from Kozlov's values [22] reported in the last column of the table. Note that the comparison is somewhat unfair to Kozlov since the grid parameters used for the discrete representation of orbital wave functions have been adapted in both programs (rms2 and mcdf-gme) to achieve a better accuracy. 

Neutral lithium in the MCDHF approach

The MCDHF active space method consists in writing the total wavefunction as a configuration state function expansion built on a set of active one-electron orbitals. To investigate the convergence of the property, the orbital set is systematically expanded up to n = 10, but imposing the angular restriction l max = 6 (i orbitals). The sequence of CSFs Active Spaces (AS) is resumed as follows where the (nl)-notation implies the relativistic shell structure j = l ± 1/2. The configuration space is increased progressively, by adding at each step a new layer of variational orbitals, keeping the previous ones frozen from the (n -1) calculation.

AS 0 = 1s 2 2s, AS 2 = AS 0 + {2p} , AS 3 = AS 2 + {3s,
The MCDHF expansions are based on single and double (SD) excitations from the configuration reference. Triple excitations are investigated through SDT-configuration interaction (CI) calculations. Tables 4 and5 present the evolution of the NMS and the SMS parameter, respectively. In each table both the uncorrected (K 1 MS ) and corrected (K MS ) values are reported. Comparing the SD and SDT calculations, we observe that the influence of the triple excitations reaches more than 1 % for the SMS while it is one order of magnitude smaller (0.1%) for the NMS.

In Table 6 the individual contributions to the mass shift ∆ K MS (= ∆K MS /h) parameters are reported for the 2p 4 and5. Although many robust theoretical studies on the resonance line transition isotope shifts are available (see Table 7 and discussion below), the comparison with other theoretical works presented in Table 6 is limited to the recent large-scale configuration-interaction Dirac-Fock-Sturm calculations of Kozhedub et al [26] since these authors precisely focus on the estimation of the relativistic nuclear recoil corrections. Kozhedub et al 's values are very consistent with our results: They report ∆( K 2 NMS + K 3 NMS ) = 0.33 and 0.38 GHz u for the D 1 and D 2 transitions respectively. However, the uncorrected NMS contribution and therefore, the total NMS values, sensitively differ from each other by around 1.6 GHz u. This latter discrepancy is not understood yet and clearly deserves further investigations.

The uncorrected contribution of the SMS is also compared with the non-relativistic result of Godefroid et al [27] using the multiconfiguration Hartree-Fock method. More interesting is the comparison with the recent SMS values of Kozhedub et al [26] investigating the relativistic recoil corrections and using the same NMS and SMS partition according to ( 5) and (6). As for the NMS, the relativistic corrections are in very nice agreement (they report ∆( K 2 SMS + K 3 SMS ) = 0.12 and 0.06 GHz u for the D 1 and D 2 lines ) but the uncorrected forms do differ substantially with our estimation (they report for instance for the D 1 line, ∆ K 1 SMS = -198.78, against our value of -198.164 GHz u).

The comparison with observation for the individual mass contributions is also limited. There are a few reasons for this. First, as illustrated by (51), the field shift contribution should be properly subtracted from the observed transition frequency before trying to extract the mass contribution. But this is usually the other way round that makes the theoretical calculation of mass shifts interesting: for a fewelectron atomic systems like lithium indeed, the difference between the mass contribution calculated by elaborate ab initio calculations and the observed transition IS allows to extract the change in the mean square charge radius of the nuclear charge distributions for all isotopes, as illustrated by the very recent and complete work of Nörtershäuser et al [28]. Another good reason is that once the FS "eliminated", a clean separation of the NMS and SMS contributions could be criticized, as pointed out by Palmer [4]. However, remembering that for lithium, the FS is roughly 10 4 times smaller than the MS, it is worthwhile to neglect it for trying the mass separation exercise. There is indeed one experimental work by Radziemski et al [29] discussing the NMS and SMS separation in this line but as we will observe later (see Table 7), the corresponding experimental transition IS values are not aligned with most of the other observed values. In their work, these authors separate the two mass shift contributions from the experimental transition IS in 6,7 Li, neglecting the field shift contribution and approximating the Bohr mass shift by the experimental observed level energy, as suggested by Mårtensson and Salomonson [30],

∆ BMS = - m e M E B M - m e M E exp . ( 53 
)
From the same expression, we build the transition Bohr mass shift for the 6,7 Li isotope pair

δE BMS m e M ( 6 Li) - m e M ( 7 Li) ∆E exp (54) 
from the obserbed transition energy. Combining ( 52) and (54), one finds

∆ K NMS m e ∆E exp h = m e ν exp ( 55 
)
from which we estimate the "observed" NMS values reported in Table 6, using the most recent absolute frequency measurements of Das and Natarajan [31]. The corresponding "observed" ∆ K SMS values are calculated by substracting the so-estimated NMS contribution from the experimental IS line shifts (-443.9490( 16) GHz u and -443.9126(29) GHz u, for D 1 and D 2 , respectively). Note that we did not take the liberty of reporting the frequency uncertainties estimated by Das and Natarajan on the separate contributions, the separability of NMS and SMS being by itself questionable. Cleaner and in principle less problematic should be the comparison of the total mass shifts, as reported in Table 7. On the theoretical side, we refer to the study of Korol and Kozlov [32] treating electron correlation with configuration interaction (CI) and many-body perturbation theory (MBPT) methods with Dirac-Fock orbitals, to the calculations of Kozhedub et al [26] using large-scale configuration-interaction Dirac-Fock-Sturm method and to the Yan et al [33] calculations estimating the mass corrections from highly correlated non-relativistic wave functions expressed in Hylleraas coordinates ¶. From all these elaborate results, we only kept the mass contributions, systematically excluding the contributions from the nuclear size corrections. We already noticed the differences between Kozhedub et al 's results and ours appearing in the separate NMS and SMS contributions. As commented above, these differences do not arise from the relativistic corrections (K 2 + K 3 ), but rather from the "uncorrected"K 1 values, and should be further investigated. Our results seem to be of higher quality than ¶ The values of Yan et al reported in the Kozhedub's paper [26] suggest that the atomic mass has been used in order to evaluate the mass shift parameter. In table 7, the Yan et al 's values have been reevaluated using the nuclear mass.

the CI+MBPT results of Korol and Kozlov. As far as the differences with Yan et al 's results are concerned, we should keep in mind i) that our orbital active set is truncated to l max = 6, ii) that the layer approach adopted in the SD-MCDHF optimization could be a limiting factor and iii) that the convergence of the ∆ K MS parameter as a function of the size of the active set is slow and not yet achieved at n = 10, as illustrated by the comparison of the two n = 9 and n = 10 sets of results reported in the Table 7.

On the experimental side, we display in the same Table 7, the experimental isotope shift values somewhat abusively converted in ∆ K MS parameters, ie. neglecting the FS contribution and inverting (52), ∆ K MS = δν k (M 1 M 2 )/(M 2 -M 1 ). As already mentioned, this conversion is unfair to physicists who do some huge efforts to extract the nuclear charge radii from the FS [28], but has the merit of illustrating where the present modest contribution lies in the distribution of experimental values. From this not exhaustive chronological list ([34, 29, 35, 36, 37, 38, 31]), it is clear that Radziemski et al 's results lie a bit outside the experimental distribution. a inverting (52), ie. using ∆ K MS = δν(M 1 M 2 )/(M 2 -M 1 ) (see text)

B-like argon

Large-scale calculations are performed for 1s 2 2s 2 2p 2 P o 1/2,3/2 of B-like argon (Z = 18). The radial orbital basis is obtained from SD-MCDHF calculations, including single and double excitations from all shells of the {1s 2 2s 2 2p, 1s 2 2p 3 } complex to increasing orbital active sets, up to the {10s9p8d7f 6g3h1i}. Subsequently to this layer-by-layer SD-MCDHF orbital optimization, RCI calculations are performed including the Breit and QED effects in a space generated by SD excitations from the extended {1s 2 2s 2 2p, 1s 2 2p 3 , 1s 2 2s2p3d, 1s 2 2p3d 2 } multireference set to the full orbital set. The expansion for the two J values includes more than 200 000 relativistic CSFs. This computational strategy has been developed by Rynkun et al [START_REF] Rynkun | At. Data Nucl. Data Tables[END_REF] for the evaluation of transition rates in boron-like ions, from N III to Zn XXVI.

Table 8 illustrates the convergence of the NMS and SMS contributions with the increasing of the active set. In Table 9, the isotope shifts of the forbidden transitions 36,40 Ar are presented and compared with the mass shift results of Tupitsyn et al [8]. In their work, the CI Dirac-Fock method was used to solve the Dirac-Coulomb-Breit equation and to calculate the energies and the isotope shifts. The CSFs expansions were generated including "all single and double excitations and some part of triple excitations". The nuclear charge distribution is described by a Fermi model and is therefore consistent with the present work. For the purpose of our mass study, we deduced the field shift from these and the Tupitsyn calculations.

Table 9 shows the individual contributions of operators ( 5) and ( 6) to the wavenumber mass shift. A good agreement is observed between the two sets of values, the total wavenumber mass shift values differing by less than 0.8%. This example beautifully confirms the importance of the relativistic corrections to the recoil operator: the total wavenumber mass shift would be indeed 50% smaller if estimated from the uncorrected form of the mass Hamiltonian H 1 NMS + H 1 SMS . Orts et al [START_REF] Soria Orts | [END_REF] succeeded to detect experimentally the IS of the transition with high precision and found a wonderful agreement with their theoretical predictions. The corresponding results are reported in Table 10 and compared with our values. The nice agreement is a good sign of reliability for the tensorial form derivation of the nuclear recoil Hamiltonian of section 2. 

C-like ions calculations

As another illustration of the importance of the relativistic corrections to the recoil operator, the values of the SMS, NMS and total level mass shift parameters are reported in Table 11 for the levels arising from the ground configuration 1s 2 2s 2 2p 2 in Ca XV and Sc XVI. As far as the calculations are concerned, the orbitals are obtained by SD-MCDHF calculations, considering single and double excitations from all shells of the {1s 2 2s 2 2p 2 , 1s 2 2p 4 } Layzer complex to the {8s7p6d5f 4g2h} active set. These MCDHF calculations are followed by relativistic configuration interaction (RCI) calculations, including the Breit interaction and the QED corrections, using the enlarged multireference {1s 2 2s 2 2p 2 , 1s 2 2p 4 , 1s 2 2s2p 2 3d, 1s 2 2s 2 3d 2 } set. The size of the expansions is around 350 000 relativistic CSFs. This computational method has been used by Jönsson et al [START_REF] Jönsson | At. Data Nucl. Data Tables[END_REF] to calculate transition rates, hyperfine structures and Landé g factors for all carbon-like ions between F IV and Ni XXIII.

On the absolute scale of level shift parameters, one observes that the relativistic corrections (K 2 NMS + K 3 NMS ) to the NMS have the same order of magnitude than the uncorrected SMS contribution. Transition isotope shifts are more interesting properties since they are the real observables if the resolution is good enough. These are monitored by the differential effects on the level IS. It is interesting to infer from Table 11 the possible mass isotope shifts on the intraconfiguration (M1/E2) transition frequencies. Considering for example the Ca XV 3 P 1 → 3 P 2 transition, the uncorrected total mass shift change is enlarged by a factor two when including the (K 2 MS + K 3 MS ) relativistic corrections. For the 3 P 1 → 1 D 2 transition, a similar increase of the mass shift is predicted but of "only" 20%. Some reduction could occur: this is the case of 3 P 2 → 1 S 0 (13%). For the 3 P 0 → 1 D 2 transition, the relativistic recoil corrections reach 48%.

Conclusion and outlook

The irreducible tensorial form of the nuclear recoil Hamiltonian is derived in the present work, opening interesting perspectives for calculating isotope shifts in the multiconfiguration Dirac-Hartree-Fock framework. We implemented the formalism in the relativistic package grasp2K by writing a dedicated code (rms2) for estimating the expectation values of the relativistic nuclear recoil operators. The comparison with other works is satisfactory and the results are promising, although not achieving the accuracy of the state-of-the-art methodology available for a few-electron systems. Electron correlation remains the major problem that might be solved in our schema with the use of "localized pair-correlation functions interaction method", as proposed by Verdebout et al [START_REF] Verdebout | [END_REF]. The present work enhances the fact that the relativistic corrections to the nuclear recoil are definitively necessary for getting reliable isotope shift calculations. The new computational tool, that we developed on the basis of the irreducible tensorial operator techniques, will hopefully provide valuable mass isotope shift data for large systems for which there are reliable theoretical or experimental 

  10) ‡ The two definitions of r.m.e are related to each other through γJ O k γJ = √ 2J + 1 [γJ O γJ].

Table 1 .

 1 Atomic masses (M A ) [20] and nuclear masses (M N ) (in u) calculated from (49) and (50) for lithium and argon isotopes.

	Isotope	M A	M N
	6 Li	6.015122795(16)	6.01386737
	7 Li	7.01600455(8)	7.01474907
	36 Ar	35.967545106(29) 35.9576862
	40 Ar	39.9623831225(29) 39.9525242

Table 2 .

 2 Contributions to the normal mass shift K NMS parameters (in m e E h ) for hydrogen-like selenium (Z = 34).

		rms2	Kozlov [22]	Analytic
			K 1 NMS	
	1s 1/2	656.3589797	656.3589	656.358899684
	2p 1/2	154.8937900	154.8938	154.893789883
	2p 3/2	147.5192507	147.5192	147.519250700
			K 2 NMS + K 3 NMS	
	1s 1/2	-78.3588949	-78.3589 -78.3588996839
	2p 1/2	-8.0987869	-8.0988	-8.0987868710
	2p 3/2	-3.0192507	-3.0193	-3.0192506997

Table 3 .

 3 Contributions to the specific mass shift K SMS (in m e E h ) parameters for Li-like iron (Z = 26) and selenium (Z = 34) using unscreened Dirac one-electron wave functions.

			rms2	mcdf-gme	Analytic Kozlov [22]
	Li-like iron			K 1 SMS		
	1s 2 2p 1/2	2 P o 1/2	-55.24725067 -55.24725061 -55.247250683	-55.2474
	1s 2 2p 3/2	2 P o 3/2	-53.26443137 -53.26443136 -53.264431362	-53.2645
				K 2 SMS + K 3 SMS	
	1s 2 2p 1/2	2 P o 1/2	3.48269304	3.48269307	3.482693070	3.4278
	1s 2 2p 3/2	2 P o 3/2	1.20278262	1.20278262	1.202782617	1.1960
	Li-like selenium		K 1 SMS		
	1s 2 2p 1/2	2 P o 1/2	-97.71464163 -97.71464140 -97.714641685	-97.7150
	1s 2 2p 3/2	2 P o 3/2	-91.70637651 -91.70637651 -91.706376511	-91.7069
				K 2 SMS + K 3 SMS	
	1s 2 2p 1/2	2 P o 1/2	10.53884731	10.5388474	10.53884746	10.2546
	1s 2 2p 3/2	2 P o 3/2	3.55081371	3.5508137	3.55081372	3.5164

Table 4 .

 4 Uncorrected (K 1 NMS ) and corrected (K NMS ) normal mass shift parameters (in m e E h ) for Li I.

	AS n	SD		SDT
		K 1 NMS	K NMS	K 1 NMS	K NMS
		1s 2 2s 2 S 1/2		
	n=5	7.479955285 7.473188966	7.480387512 7.473620714
	n=6	7.480757179 7.473989593	7.481294538 7.474526401
	n=7	7.480843823 7.474076167	7.481413156 7.474644913
	n=8	7.482617678 7.475849092	7.483709525 7.476940080
	n=9	7.482764972 7.475996085	7.483865298 7.477095534
	n=10 7.482767804 7.475998981	7.483872626 7.477102933
		1s 2 2p 2 P o 1/2		
	n=5	7.411878601 7.405201316	7.412125687 7.405448151
	n=6	7.412307495 7.405629843	7.412599631 7.405921698
	n=7	7.412593434 7.405916172	7.413034981 7.406357367
	n=8	7.414193990 7.407516244	7.415203718 7.408525555
	n=9	7.414351543 7.407673608	7.415377292 7.408698936
	n=10 7.414365017 7.407687009	7.415402512 7.408724081
		1s 2 2p 2 P o 3/2		
	n=5	7.411871260 7.405208436	7.412118064 7.405455006
	n=6	7.412300503 7.405637317	7.412592555 7.405929108
	n=7	7.412584979 7.405922413	7.413026010 7.406363146
	n=8	7.414185599 7.407522728	7.415193271 7.408530126
	n=9	7.414343399 7.407680348	7.415366987 7.408703663
	n=10 7.414356793 7.407693666	7.415392260 7.408728857

  S 1/2 (D 2 line) transitions in lithium. Values are calculated with the SD and SDT n = 10 active space final results of Tables

	1/2	2 P o 1/2 -2s 2 S 1/2 (D 1 line) and 2p 3/2	2 P o 3/2 -
	2s 2		

Table 5 .

 5 Uncorrected (K 1 SMS ) and corrected (K SMS ) specific mass shift parameters (in m e E h ) for Li I.

	AS n	SD		SDT
		K 1 SMS	K SMS	K 1 SMS	K SMS
		1s 2 2s 2 S 1/2		
	n=5	0.3010343291 0.3008225633	0.3013767853 0.3011648528
	n=6	0.3010361585 0.3008243666	0.3014579841 0.3012459847
	n=7	0.3019544951 0.3017423943	0.3024396569 0.3022273237
	n=8	0.3018617523 0.3016497153	0.3024115843 0.3021992791
	n=9	0.3017987398 0.3015867742	0.3023512554 0.3021390203
	n=10 0.3018561821 0.3016442119	0.3024141615 0.3022019200
		1s 2 2p 2 P o 1/2		
	n=5	0.2489342617 0.2487564343	0.2490604867 0.2488826064
	n=6	0.2482881614 0.2481107089	0.2484282378 0.2482507247
	n=7	0.2482993836 0.2481222326	0.2484107486 0.2482335819
	n=8	0.2476015693 0.2474248242	0.2474557225 0.2472791143
	n=9	0.2475207029 0.2473440589	0.2473719731 0.2471954806
	n=10 0.2476566450 0.2474799659	0.2475131224 0.2473365865
		1s 2 2p 2 P o 3/2		
	n=5	0.2489331884 0.2487377216	0.2490592224 0.2488636586
	n=6	0.2482892038 0.2480941432	0.2484289962 0.2482338261
	n=7	0.2483022860 0.2481070388	0.2484139538 0.2482185782
	n=8	0.2476039924 0.2474089620	0.2474585594 0.2472634414
	n=9	0.2475233735 0.2473284034	0.2473750253 0.2471799634
	n=10 0.2476606363 0.2474656360	0.2475176569 0.2473225644

Table 6 .

 6 Individual contributions to the mass shift ∆ K MS (GHz u) parameters for the 2p 2 P o 1/2 -2s 2 S 1/2 and 2p 2 P o 3/2 -2s 2 S 1/2 transitions in lithium

	2 P o 1/2 -2 S 1/2	2 P o 3/2 -2 S 1/2

a CI Dirac-Fock-Sturm calculation of Kozhedub et al

[26]

. b NMS values deduced from the transition frequencies

[31] 

using (55) (see text). c Non-relativistic MCHF calculations

[27]

. d SMS values obtained by subtracting the "observed" NMS (see footnote b above) from the IS measured by Das and Natarajan

[31]

.

Table 7 .

 7 Mass shift ∆ K MS (GHz u) for the 2p 1/2 2 P o 1/2 -2s 2 S 1/2 and 2p 3/2 2 P o 3/2 -2s 2 S 1/2 transitions in lithium, compared with experimental IS.

		2 P o 1/2 -2 S 1/2	2 P o 3/2 -2 S 1/2	Ref.
	n = 9	-445.1941	-445.2330	This work
	n = 10	-444.8442	-444.8808	This work
	Other theory -447(12)	-447(12)	Korol and Kozlov [32]
		-443.81(20)	-443.82(20)	Kozhedub et al [26]
		-443.860337(253) -443.876984(253) Yan et al [33]
	Experiment a -443.89(3)	-443.91(2)	Sansonetti et al [34]
		-443.46(63)	-443.59(63)	Radziemski et al [29]
		-443.9033(63)	-443.9791(63)	Scherf et al [35]
		-443.9045(29)		Bushawet al [36]
		-443.951(5)		Walls et al [37]
		-443.941(3)	-443.948(4)	Noble et al [38]
		-443.9490(16)	-443.9126(29)	Das and Natarajan [31]

Table 8 .

 8 NMS and SMS parameters (in m e E h ) values for the states 1s 2 2s 2 2p 2 P o

	1/2

Table 9 .

 9 Individual contributions to the wavenumber mass shift δσ (cm -1 ) for the forbidden transition 1s 2 2s 2 2p 2 P o 1/2 -2 P o 3/2 in boron-like36,40 Ar.

			δσ			
		H 1 NMS	H 2 NMS + H 3 NMS	H 1 SMS	H 2 SMS + H 3 SMS	Total
	This work	0.1054	-0.0821	-0.0745	0.1155	0.0644
	Tupitsyn et al [8]	0.1053	-0.0822	-0.0742	0.1151	0.0640

Table 10 .

 10 Wavelength mass shift δλ (nm, air) for the forbidden transition 1s 2 2s 2 2p 2 P o 1/2 -2 P o 3/2 in boron-like36,40 Ar.

		λ ( 40 Ar)	δλ ( 36,40 Ar)
	This work	441.01	0.00125
	Orts et al [40] th.	441.16(27)	0.00123(5)
	obs. 441.2556(1) 0.00123(6)

Table 11 .

 11 Specific mass shift K SMS , normal mass shift K NMS , total mass shifts K MS parameters (all in m e E h ) for 2s 2 2p 2 levels of Ca XV and Sc XVI from multireference RCI calculations. K = K 1 + K 2 + K 3 .

				SMS	NMS		Total	
	Level	J	K 1 SMS	K SMS	K 1 NMS	K NMS	K 1 MS	K MS	K 2 MS + K 3 MS
					Ca XV				
	2s 2 2p 2 3 P 0 -41.993 -40.659	558.358 538.033	516.364 497.374	-18.990
		1 -41.736 -40.741	558.070 537.983	516.334 497.242	-19.092
		2 -41.588 -40.821	557.854 537.929	516.266 497.108	-19.158
	2s 2 2p 2 1 D 2 -41.451 -40.756	557.479 537.607	516.028 496.851	-19.177
	2s 2 2p 2 1 S	0 -41.862 -41.199	557.000 537.200	515.138 496.001	-19.137
					Sc XVI				
	2s 2 2p 2 3 P 0 -47.460 -45.771	621.221 596.303	573.761 550.532	-23.229
		1 -47.117 -45.874	620.842 596.236	573.725 550.362	-23.363
		2 -46.950 -45.964	620.592 596.169	573.642 549.219	-24.423
	2s 2 2p 2 1 D 2 -46.765 -45.922	620.145 595.826	573.380 549.904	-23.476
	2s 2 2p 2 1 S	0 -47.229 -46.421	619.624 595.390	572.395 548.969	-23.426
	values.								
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