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PROJECTION-LIKE RETRACTIONS ON MATRIX MANIFOLDS∗

P.-A. ABSIL† AND JÉRÔME MALICK‡

Abstract. This paper deals with constructing retractions, a key step when applying optimization
algorithms on matrix manifolds. For submanifolds of Euclidean spaces, we show that the operation
consisting of taking a tangent step in the embedding Euclidean space followed by a projection onto
the submanifold, is a retraction. We also show that the operation remains a retraction if the pro-
jection is generalized to a projection-like procedure that consists of coming back to the submanifold
along “admissible” directions, and we give a sufficient condition on the admissible directions for the
generated retraction to be second order. This theory offers a framework in which previously-proposed
retractions can be analyzed, as well as a toolbox for constructing new ones. Illustrations are given for
projection-like procedures on some specific manifolds for which we have an explicit, easy-to-compute
expression.

Key words. equality-constrained optimization, matrix manifold, feasible optimization method,
retraction, projection, fixed-rank matrices, Stiefel manifold, spectral manifold
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1. Introduction. Computational problems abound that can be formulated as
finding an optimal point of a smooth real-valued function defined on a manifold; see,
e.g., [2, 3] and the references therein. Following on the work of Luenberger [24] and
Gabay [11], much of the early interest focused on manifold-based optimization meth-
ods that exploit the underlying geometry of those optimization problems by relying
almost exclusively on mainstream differential-geometric concepts; major references
include [13, 31, 32, 25, 10]. For example, Smith’s Riemannian Newton method [32,
Alg. 4.3] makes use of the Levi-Civita connection to define the Hessian of the cost
function, and on geodesics (specifically, the Riemannian exponential) to produce the
update along the computed Newton vector. In the case of Lie groups and homoge-
neous spaces, a similar inclination for classical differential-geometric objects can be
observed in [25].

However, it became increasingly clear that it could be beneficial to work in a
broader context that offers leeway for replacing classical differential-geometric objects
with certain approximations, resulting in faster and possibly more robust algorithms.
These ideas, which can be seen burgeoning in [32, Remark 4.9] and [10, §3.5.1], blos-
somed in the early 2000s [4, 27]. In particular, relaxing the Riemannian exponential
update led to the concept of retraction [4, §3], which can be traced back to [30]. The
key property of a retraction R on a submanifold M of a Euclidean space is that, for
every tangent vector u at a point x of M, one has (see Proposition 2.2)

dist(Γ(t, x, u), R(x, tu)) = O(t2), (1.1)

where t 7→ Γ(t, x, u) is the geodesic of M with initial position-velocity (x, u). Re-
tractions thus generate approximations of geodesics that are first-order accurate. A
retraction R can also be viewed as providing “locally rigid” mappings from the tangent
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spaces TM(x) into M; such mappings come useful notably in trust-region methods [1]
to obtain local models of the objective function that live on flat spaces.

Note that, if the right-hand side of (1.1) is replaced by O(t), then R is just a topo-
logical retraction [14]. Condition (1.1) as stated characterizes first-order retractions,
simply called retractions throughout this paper. A crucial reason for considering (first-
order) retractions is the following: if, in Smith’s Riemannian Newton method [32,
Alg. 4.3], the exponential update is replaced by any (first-order) retraction, then local
quadratic convergence is preserved [4, 2].

In this paper, we pursue the effort of [4, 2] and others to develop a toolbox for
building retractions on manifolds. We focus on the case of d-dimensional submanifolds
of n-dimensional Euclidean spaces. This is a mild restriction since, by virtue of
Whitney’s embedding theorem, every d-dimensional manifold can be embedded into
Rn with n = 2d; however, whether this fact leads to tractable retractions depend on
the tractability of the embedding. In any case, several important manifolds admit
well-known expressions as submanifolds of Euclidean spaces, and more specifically, of
matrix spaces; see the examples presented in this paper.

Here is the outline of this paper. Our notation and the precise definition of a
retraction are presented in Section 2. Though we use the language and notions of
differential geometry, the developments in Section 2 and in most of the rest of the
paper do not require any prior differential-geometric background. For a submanifold
M of a Euclidean space, we show in Section 3 that the operation that consists of
moving along the tangent vector and then projecting onto M, is a retraction. We
work out easy-to-compute formulas for this projection on various specific manifolds,
insisting in particular on spectral manifolds. In Section 4, we generalize this pro-
jective retraction by defining R(x, u) to be the point of M closest to x + u along
an (n − d)-dimensional subspace D(x, u) of “admissible directions”, where D(x, u)
depends smoothly on (x, u). If the subspace D(x, 0) has a trivial intersection with
TM(x), a generic situation, then we show that R is a bona-fide retraction. Moreover,
if the subspace D(x, 0) is the orthogonal complement of TM(x), then R is a second-
order retraction, which means that dist(Exp(x, tu), R(x, tu)) = O(t3). We show that
some choices of D yield well-known retractions. In particular, the implicit defini-
tion D(x, u) = (TM(R(x, u))⊥ yields the projective retraction, from which it follows
directly that the retraction is second-order, whereas the choice D(x, u) = (TM(x))⊥

yields a second-order retraction that relates to the tangential parameterization defined
in [28, §3]. We provide examples for particular manifolds.

We conclude this introduction by mentioning that these projective and projective-
like retractions relate to ideas from nonsmooth optimization. The so-called U-Newton
method for convex optimization [21] uses indeed a correction step to identify an under-
lying structure that can be interpreted as a projection to implicit smooth constraints.
The picture is even clearer in [28] which presents such a “projected” U-Newton for min-
imizing nonsmooth functions involving the maximal eigenvalue of symmetric matrix,
using the projection onto fixed-rank matrix manifolds. A first attempt at connecting
the scientific community of “nonsmooth optimization”, the one of “constrained op-
timization”, and the one of “optimization on manifolds” was made in [26, 7], where
it was explained how the U-Newton methods relate to Riemannian Newton methods
and to SQP methods. The present paper aims at clarifying the role of projections
in optimization algorithms by keeping the parameter-free, geometrical viewpoint of
optimization on manifolds.
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2. Retractions on submanifolds. This section presents the notation, and then
recalls the notion of retraction with a few of its properties. Some of these properties
are well known, some are less, and all are basic. In particular, we describe how paths
defined by retractions relate to geodesics.

2.1. Background and notation. We start by recalling elementary facts about
manifolds; for more information, see, e.g., [6].

Submanifolds. Our work space is a Euclidean space E of dimension n. In all the
examples considered here, E is the matrix space Rn×m endowed with the standard
(i.e., Frobenius) inner product. Throughout the paper, M stands for a submanifold
of E of class Ck (k ≥ 2) and of dimension d, unless otherwise stated explicitly. By
this, we mean that M is locally a coordinate slice, that is, for all x̄ ∈M, there exists
a neighborhood UE of x̄ in E and a Ck diffeomorphism φ on UE into Rn such that

M∩UE = {x ∈ UE : φd+1(x) = · · · = φn(x) = 0}.

We denote the tangent and normal spaces of M at x ∈ M by TM(x) and NM(x),
respectively. Since M is embedded in the Euclidean space E , we can identify TM(x)
as a linear subspace of E , and likewise for NM(x); we will then consider for example
sums x + v with x ∈ M and v ∈ NM(x). The orthogonal projection onto TM(x) is
denoted by PTM(x).

Bundles. We will need a few more sophisticated properties of (sub)manifolds.
The tangent bundle of M is defined by

TM = {(x, u) ∈ E × E : x ∈M, u ∈ TM(x)};

it is a Ck−1 submanifold of E × E of dimension 2d. We will also consider the normal
bundle

NM = {(x, v) ∈ E × E : x ∈M, v ∈ NM(x)},

as well as the so-called Whitney sums of such bundle manifolds, as for example, the
tangent-normal bundle

BM = TM⊕NM =
{
(x, u, v) ∈ E3 : x ∈M, u ∈ TM(x), v ∈ NM(x)

}
.

The bundles NM and BM are manifolds of class Ck−1, of dimension n and n + d,
respectively.

Geodesics. A geodesic on M is a curve on M that locally minimizes the arc
length, hence generalizing straight lines in vector spaces. Equivalently, the geodesics
on M are the curves γ on M that satisfy γ

′′
(t) ∈ NM(γ(t)) for all t, where γ

′′
denotes

the second derivative of γ viewed as a curve in the Euclidean space E . The exponential
of a tangent vector u at x, denoted by Exp(x, u), is defined to be Γ(1, x, u), where
t 7→ Γ(t, x, u) is the geodesic that satisfies

Γ(0, x, u) = x and
d
dt

Γ(0, x, u)
∣∣∣∣
t=0

= u.

The exponential map is a smooth map from the tangent bundle TM into M. More-
over, it is easy to check that Exp(x, tu) = Γ(1, x, tu) = Γ(t, x, u). These results can
be found, e.g., in [6, §VII].
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2.2. Newton’s method on manifolds and retractions. As mentioned in the
introduction, the notion of retraction was introduced in [4] (see also the precursor [30])
in the context of Newton’s method on submanifolds, which we recall briefly here to
set the framework.

The Newton method on M to find a zero of a smooth function F : M → E
proceeds as follows. At a current iterate x ∈ M, the Newton equation yields the
update vector

ηx := −DF (x)−1F (x) ∈ TM(x),

assuming that DF (x) is invertible. When M is a linear manifold, the natural next
iterate is x+ := x + ηx. When M is nonlinear, it is still possible to give a meaningful
definition to x+ηx by viewing x and ηx as elements of the Euclidean space E , but x+ηx

does in general not belong toM. A remedy, considered, e.g., in [32, 33], is to define the
next iterate to be x+ := Exp(x, ηx). However, in general, computing the exponential
updates requires solving the ordinary differential equation that defines the geodesics,
which is computationally expensive. Even on those manifolds where the geodesic
admits a simple closed-form solution, the exponential update could advantageously
be replaced (see e.g. [10, §3.5.1] and [27]) by certain approximations that reduce the
computational burden per step without hurting the convergence properties of the
iteration. The concept of retraction was introduced to provide a framework for these
approximations to the exponential update [4].

In a nutshell, a retraction is any smooth map from the tangent bundle of M into
M that approximates the exponential map to the first order. This idea is formalized
in the next definition.

Definition 2.1 (Retraction). Let M be a submanifold of E of class Ck (k ≥ 2).
A mapping R from the tangent bundle TM into M is said to be a retraction on M
around x̄ ∈M if there exists a neighborhood U of (x̄, 0) in TM such that:

1. We have U ⊆ dom(R) and the restriction R : U →M is of class Ck−1;
2. R(x, 0) = x for all (x, 0) ∈ U , where 0 denotes the zero element of TM(x);
3. DR(x, ·)(0) = idTM(x) for all (x, 0) ∈ U .

If R is a retraction on M around every point x ∈ M, then we say that R is a
retraction on M.

This above definition of a retraction for a Ck-submanifold is adapted from Defi-
nition 4.1.1 in [2]. We insist here on two points:

• Local smoothness: Even tough the mapping R may be defined from the
whole TM to M, its smoothness is required only locally around some point
x̄. This is sufficient to preserve important properties of algorithms built with
this mapping. In particular, when x̄ is a nondegenerate minimizer of the
objective function, Newton’s method on manifolds has the usual quadratic
local convergence property, regardless of the retraction utilized to apply the
Newton update vector [4, 2].

• Accurate smoothness: We emphasize that ifM is of class Ck, then the retrac-
tion is of class Ck−1. The smoothness of the retraction is thus “maximal”:
the tangent bundle TM is of class Ck−1, so a differentiable function defined
on TM cannot be smoother than Ck−1.

The next result shows that the retractions are those maps that agree with the
Riemannian exponential up to and including the first order. In particular, the Rie-
mannian exponential is a retraction.

Proposition 2.2 (Retractions as collections of curves). Let M be a submanifold
of E of class Ck (k ≥ 2), and let R be a Ck−1-mapping on U , a neighborhood of (x̄, 0)
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in the tangent bundle TM, into M. For any (x, u) ∈ U fixed, we define the curve on
M

t → γ(x, u, t) := R(x, tu).

Then R is a retraction on M around x̄ if and only if, for all (x, u) ∈ U ,

γ(x, u, 0) = x and γ(x, u, ·)′(0) = u.

Moreover, the retractions give birth to paths on M that agree with geodesics up
to the second-order: for any u ∈ TM(x),

R(x, tu) = Γ(x, u, t) + o(t) as t → 0. (2.1)

If we require k ≥ 3, then we even have

R(x, tu) = Γ(x, u, t) + O(t2) as t → 0, (2.2)

The converse is also true: if R satisfies property (2.1), then R is a retraction around
x̄.

Proof. This proof of the first point is easy since the involved objects have the
right smoothness properties: we just have to use the chain rule to write

γ(x, u, ·)′(t) = DR(x, tu)(u)

that allows to conclude. The last result follows from Taylor’s theorem on t 7→ R(x, tu)
and t 7→ Γ(x, u, t) viewed as curves in E .

We finish this preliminary section with a last definition. When k ≥ 3, a second-
order retraction on the submanifold M is a retraction R on M that satisfies, for all
(x, u) ∈ TM,

d2

dt2
R(x, tu)|t=0 ∈ NM(x); (2.3)

or equivalently, PTM(x)( d2

dt2 R(x, tu)|t=0) = 0.
The next result shows that the second-order retractions are those maps that agree

with the Riemannian exponential up to and including the second order. In particular,
the Riemannian exponential is a second-order retraction.

Proposition 2.3 (Second-order retractions). Let M be a submanifold of E of
class Ck (k ≥ 3), and let R be a (first-order) Ck−1-retraction on M. Then R is a
second-order retraction if and only if, for all x ∈M and all u ∈ TM(x),

R(x, tu) = Γ(x, u, t) + o(t2) as t → 0. (2.4)

If we require k ≥ 4, then we even have

R(x, tu) = Γ(x, u, t) + O(t3) as t → 0. (2.5)

Proof. The condition is sufficient. From (2.4), we have that d2

dt2 Γ(x, u, t)
∣∣∣
t=0

=

d2

dt2 R(x, tu)|t=0, and it is known that d2

dt2 Γ(x, u, t)
∣∣∣
t=0

∈ NM(x) (see definitions VII.5.1

and VII.2.2 in [6]).
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The condition is necessary. For all t sufficiently close to zero, we can write

R(x, tu) = x + h(t) + v(h(t)), (2.6)

where h(t) ∈ TM(x) and v : TM(x) → NM(x) is the function mentioned in Lemma 4.7
(or see [28, Th. 3.4]) satisfying Dv(0) = 0. Differentiating (2.6), we have d

dtR(x, tu) =
h′(t) + Dv(h(t))(h′(t)), where the first term is in TM(x) and the second in NM(x).
Since d

dtR(x, tu)|t=0 = u ∈ TM(x), it follows that h′(0) = u. Differentiating (2.6)
again, we have

d2

dt2
R(x, tu) = h′′(t) + D2v(h(t))(h′(t), h′(t)) + Dv(h(t))(h′′(t))

and thus

d2

dt2
R(x, tu)|t=0 = h′′(0) + D2v(0)(u, u) + Dv(0)(h′′(0)) = h′′(0) + D2v(0)(u, u),

where again the first term is in TM(x) and the second in NM(x). Since R is assumed to
be second order, i.e., (2.3), we have finally d2

dt2 R(x, tu)|t=0 = D2v(0)(u, u), where h no
longer appears. The same reasoning applies to Γ(x, u, t) and yields d2

dt2 Γ(x, u, t)|t=0 =
D2v(0)(u, u). Hence d2

dt2 R(x, tu)|t=0 = d2

dt2 Γ(x, u, t)|t=0. Thus the functions t 7→
R(x, tu) and t 7→ Γ(x, u, t) coincide up to and including the second order at t = 0,
that is, (2.4) holds. Property (2.5) follows from Taylor’s theorem.

3. Projective retractions. In this section, we analyze a particular retraction,
based on the projection onto M. This retraction will then be generalized in Section 4.

3.1. Projection, smoothness and retraction. The projection of a point x ∈
E onto a set M ⊂ E is the set of points of E that minimize the distance of x to M ,
that is

PM (x) := argmin{‖x− y‖ : y ∈ M}. (3.1)

If the set M is closed, then the so-defined projection of x ∈ E exists (PM (x) 6= ∅);
but it may not reduce to one element. If M is closed and convex, then the projection
of any x ∈ E exists and is unique [17], and this property characterizes closed convex
sets (this is known as Motzkin’s characterization of closed convex sets, see, e.g., [36,
§7.5]).

In our situation M = M is a Ck-submanifold of E , and if we assume furthermore
that M is the boundary of a closed convex set, then the projection is thus uniquely
defined by (3.1) for x exterior to this convex set. In this case, we have moreover that
the mapping PM is of class Ck (see e.g. [19] and [16]).

For a general manifold M, existence, uniqueness and smoothness still hold locally
without any further assumption. The local existence is natural since a manifold is
always locally closed. The local uniqueness and the smoothness without the convexity
assumption have also a geometric appeal. This is stated in the following well-known
lemma (which is proved in, e.g., [23]); we give here a different proof which is shorter
and that will be generalized later. Note that, if p ∈ PM(x), then p satisfies the
(necessary) optimality conditions of the minimization problem of (3.1), namely

p ∈M, x− p ∈ NM(p). (3.2)
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Lemma 3.1 (Projection onto a manifold). Let M be a submanifold of E of class
Ck around x̄ ∈ M, and let PM be the projection onto M (3.1). Then PM is a well-
defined function PM : E →M around x̄. Moreover, this function PM is of class Ck−1

around x̄ and

DPM(x̄) = PTM(x̄).

Proof. We first notice that the tangent space at (x̄, 0) of the manifold NM is

TNM(x̄, 0) = TM(x̄)×NM(x̄). (3.3)

Here is a quick proof of this fact. Let t 7→ (x(t), v(t)) be a smooth curve in NM
with x(0) = x̄ and v(0) = 0. One has v(t) = PNM(x(t))v(t). Note that the orthogonal
projection onto NM(x) can be viewed as a matrix-valued function of class Ck−1.
Differentiating both sides at t = 0 and using the product rule yields that v′(0) =
PNM(x̄)v

′(0), hence v′(0) ∈ NM(x̄). The relation (3.3) follows.
So we start the core of the proof of the lemma, by considering

F :

{
NM −→ E

(x, v) 7−→ x + v

which is of class Ck−1 (as is NM). Its derivative at (x̄, 0) ∈ NM is

DF (x̄, 0) :

{
TM(x̄)×NM(x̄) −→ E

(u, v) 7−→ u + v.

This derivative is invertible with

∀h ∈ E , [DF (x̄, 0)]−1(h) =
(
PTM(x̄)(h),PNM(x̄)(h)

)
.

Then the local inverse theorem for manifolds yields that there are two neighborhoods
(U of (x̄, 0) in NM and V of F (x̄, 0) = x̄ in E) such that F : U → V is a Ck−1

diffeomorphism, and

∀h ∈ E , DF−1(x̄)(h) =
(
PTM(x̄)(h),PNM(x̄)(h)

)
.

We show that the projection exists locally. Specifically, we show that, for all
x̄ ∈ M, there exists δe > 0 such that, for all x ∈ B(x̄, δe), PM(x) is nonempty.
Since M is a submanifold of E , it can be shown that there exists δe > 0 such that
M∩B̄(x̄, 2δe) is compact. Hence, for all x ∈ B(x̄, δe), PM(x) = PM∩B̄(x̄,2δe)(x), which
is nonempty as the projection onto a compact set.

We show that the projection is locally unique. Specifically, we show that, for
all x̄ ∈ M, there exists δu > 0 such that, for all x ∈ B(x̄, δu), PM(x) contains no
more than one point. Choose ε1 > 0 and ε2 > 0 such that U ′ := {(y, u) ∈ NM : y ∈
B(x̄, ε1) ∩M, ‖u‖ < ε2} ⊂ U . Let V ′ = F (U ′). Observe that F is a bijection from
U ′ to V ′, and is thus injective on U ′. Choose δu > 0 such that B(x̄, 3δu) ⊂ V ′, with
2δu < ε1 and 3δu < ε2. Let x ∈ B(x̄, δu) and, for contradiction, assume that there
exist two different points p1 and p2 in PM(x). Then p1 ∈ B(x̄, 2δu) ⊂ B(x̄, ε1), and
‖x − p1‖ ≤ ‖x − x̄‖ + ‖x̄ − p1‖ ≤ δu + 2δu = 3δu < ε2. Thus (p1, x − p1) ∈ U ′, and
moreover F (p1, x − p1) = p1 + (x − p1) = x. The same reasoning leads to the same
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conclusion for p2. Thus, we have F (p1, x − p1) = F (p2, x − p2), (p1, x − p1) ∈ U ′,
(p2, x−p2) ∈ U ′, and p1 6= p2, in contradiction with the fact that F is injective on U ′.

Finally, we show the differential properties of PM. Let δ = min{δe, δu}. Observe
that, for all x ∈ B(x̄, δ), PM(x) is characterized by (PM(x), x− PM(x)) ∈ U ⊂ NM.
Therefore (PM(x), x− PM(x)) = F−1(x). Introducing the Ck−1 function π : NM→
M, (x, v) 7→ x, we have that PM = π ◦ F−1 is Ck−1 on B(x̄, δ), and that

DPM(x̄) = Dπ(x̄, 0) ◦DF−1(x̄) = PTM(x̄) ,

which completes the proof.
We note that even if the above proof resembles the one of proposition 4.1.2 in [2],

the formulation of that proposition is not suitable for tackling Lemma 3.1. The next
proposition defines the projective retraction.

Proposition 3.2 (Projective retraction). Let M be a submanifold of E of class
Ck around x̄ ∈M. Then the function R

R :

{
TM −→ M

(x, u) 7−→ PM(x + u)
(3.4)

is a retraction around x̄.
Proof. Consider the Ck mapping

G :

{
TM −→ E

(x, u) 7−→ x + u.

Then R = PM ◦G, and Lemma 3.1 yields that R has the desired smoothness property.
Moreover using the chain rule, we get for all u ∈ TM(x),

DR(x, ·)(0)u = DPM(x)u = PTM(x)u = u,

where the first equality comes from (3.4), the second from Lemma 3.1, and the third
by the fact that u is already in TM(x).

The retraction defined in Proposition 3.2 is moreover a second-order retraction,
as it will be established from general results in Section 4.

Thus the projection onto M is in theory locally well-defined and smooth, and
gives rise to a retraction on M. It is also computable in many cases, especially for
some matrix manifolds. We finish the section with a few examples of such matrix
manifolds. Though some results of Sections 3.2 and 3.3 are known, we deliberately
give some details because, first, we are not aware of precise references on them, and
second, the arguments are generalized to prove the new reults of Section 3.4.

3.2. Projection onto fixed-rank matrices. Routine calculations show that
the set of matrices with fixed rank r,

Rr = {X ∈ Rn×m : rank(X) = r},

is a smooth submanifold of Rn×m (see the proof of the special case of symmetric
matrices in [13, Ch. 5, Prop. 1.1]). Recall that a singular value decomposition of X ∈
Rn×m is written

X = UΣV>, (3.5)
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where the two matrices U = [u1, u2, . . . , un] and V = [v1, v2, . . . , vm] are orthogonal
matrices, and the only non-zeros entries in the matrix Σ are on the diagonal (the
singular values of X) written in the nonincreasing order

σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin{n,m}(X) ≥ 0.

We now equip the space Rn×m with the inner product associated to the canonical
basis. Its associated norm is the Frobenius norm, given by

‖X‖2 =
∑
i,j

Xij
2 = trace(X>X) =

min{n,m}∑
i=1

σi(X)2. (3.6)

It is well-known (see [20]) that the singular value decomposition gives an easy way
to project a matrix X ∈ Rn×m onto the (closed) set of matrices with rank less than
or equal to r (which is an algebraic set). Specifically, a nearest matrix with rank no
more than r is

X̂ =
r∑

i=1

σi(X)uivi
>; (3.7)

this is the Eckart-Young result (see [9], or [20, §7.4.1]). It turns out that this expression
also locally gives the expression of the projection onto the set Rr of the matrices
with rank equal to r. We formalize this easy result in the next proposition. By
Proposition 3.2, this gives an easy-to-compute retraction on Rr.

Proposition 3.3 (Projection onto the manifold of fixed-rank matrices). Let
X̄ ∈ Rr; for any X such that ‖X − X̄‖ < σr(X̄)/2, the projection of X onto Rr

exists, is unique, and has the expression

PRr
(X) =

r∑
i=1

σi(X)uivi
>,

given by a singular value decomposition (3.5) of X.
Proof. The result comes easily from the projection (3.7) onto the set of matrices

with rank lower or equal than r. Let X be such that ‖X − X̄‖ < σr(X̄) ; we just
have to prove that X̂ = PRr (X) in this situation, and that the projection is unique.
We start by noting that [20, 7.3.8] yields |σi(X̄)− σi(X)| ≤ ‖X − X̄‖ < σr(X̄)/2 for
all i, and then in particular

σr+1(X) < σr(X̄)/2 < σr(X). (3.8)

Evoking uniqueness of the singular values, observe now that

σi(X̂) =
{

σi(X) if i ≤ r
0 otherwise.

From (3.8), we have σr(X) > 0 and therefore X̂ is of rank r. Thus we have

‖X̂ −X‖ ≥ min
Y ∈Rr

‖Y −X‖ ≥ min
rank(Y )≤r

‖Y −X‖ = ‖X̂ −X‖.

This shows that we have equalities in the above expression, and thus X̂ ∈ PRr (X).
Finally, uniqueness comes from the uniqueness of the projection onto rank(Y ) ≤ r
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(see [13, §5.1 Cor. 1.17] or [18]) under the condition σr(X) > σr+1(X) which is here
guaranteed by (3.8).

Since, as mentioned in the introduction, the concept of retraction was introduced
to formalize the use of computationally efficient approximations of the Riemannian
exponential, it is worth checking if the projective retraction (3.4) offers a computa-
tional advantage. In the case of the manifoldRr, the advantage is clear: the retraction
by projection admits a closed-form expression based on the truncated singular value
decomposition, whereas the Riemannian exponential, with respect to the Riemannian
metric inherited from the embedding of Rr in the Euclidean space Rn×m, involves an
ODE for which we do not have an analytical solution in general, even if we restrict
to symmetric matrices; see [34, §3]. That being said, in the symmetric case, it has
recently been shown that a closed-form expression for the exponential can be obtained
for at least one choice of the Riemannian metric; see [35] for details.

3.3. Projection onto Stiefel manifolds. The manifold of orthonormal m-
frames in Rn (m ≤ n), introduced by Eduard Stiefel in 1935 to solve a topological
problem (see e.g. [12, Chap.IV]), is defined by

Vn,m :=
{
X ∈ Rn×m : X>X = Im

}
.

For example, the manifold Vn,n is simply the group of orthogonal matrices of size n.
The projection onto Vn,m turns out to be explicit through the singular value

decomposition as well. This result is mentioned without proof in [15, §4]; we formalize
it in the following proposition. By Proposition 3.2, this gives an easy-to-compute
retraction on Vn,m.

Proposition 3.4 (Projection onto Stiefel manifolds). Let X̄ ∈ Vn,m; for any X
such that ‖X − X̄‖ < σm(X̄), the projection of X onto Vn,m exists, is unique, and
has the expression

PRr (X) =
m∑

i=1

uivi
>,

given by a singular value decomposition (3.5) of X. In other words, it is the W
of the polar decomposition X = WS (the product of W ∈ Vn,m and a symmetric
positive-definite matrix S ∈ Rm×m).

Proof. The proof comes following the same lines as [20, 7.4.6]. For all Y ∈ Vn,m,
we have ‖X − Y ‖2 = ‖X‖2 + m2 − 2 trace(Y>X) and we can bound the last term,
as follows. Note that Vn,m is invariant by pre- and post-multiplication by orthogonal
matrices, so we can write

max
Y ∈Vn,m

trace(Y>X) = max
Y ∈Vn,m

trace
(
(U>Y V )

>
Σ

)
= max

Y ∈Vn,m

trace(Y>Σ) = max
Y ∈Vn,m

m∑
i=1

Yiiσi ≤
m∑

i=1

σi.

The inequality comes from the fact that the columns of Y are of norm 1 which implies
Yii ≤ 1. Moreover the bound is attained by Y = UV>, so this matrix is a projection.
Finally the same arguments as in the beginning of the proof of Proposition 3.3 give
that X is full rank, so the polar form is unique [20, 7.3.2], and so is the projection.

Is the projective retraction a valuable alternative to the Riemannian exponential
on Stiefel manifolds? Here again, the projection is based on the singular value decom-
positon. As for the Riemannian exponential with respect to the metric inherited from
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the embedding of Vn,m in Rn×m, its expression given in [10, §2.2.2] (or see [2, exam-
ple 5.4.2]) requires the computation of an m×m matrix exponential, a 2m×2m matrix
exponential, and matrix multiplications, the most expensive one being an n×2m ma-
trix multiplied by a 2m × 2m matrix. If n � m � 1, the dominant term in the flop
count for the Riemannian exponential is 2n(2m)2 = 8nm2, due to the most expensive
matrix multiplication; whereas for the projective retraction, the dominant term in the
flop count, which comes from the computation of the singular value decompositon of
a matrix A ∈ Rn×m, can be as low as 2nm2 + 2nm2 = 4nm2, where one of the terms
is the cost of forming AT A, and the other term comes from a multiplication of the
form AV to recover the U factor of the singular value decompositon. However, other
algorithms, more costly but more robust, can be preferred to compute the singular
value decompositon. Moreover, the assumption n � m � 1 may not be in force.
Finally, when comparing two retractions, one must keep in mind that the choice of
the retraction in a retraction-based algorithm (such as Newton [4] or trust region [1])
may affect the number of iterates needed to reach a certain accuracy; in this respect,
the Riemannian exponential need not be the best choice. Hence there is no clear and
systematic winner between the exponential retraction and the projective retraction
in the case of the Stiefel manifold, but it is worth keeping in mind the existence of
the projective retraction as a potentially more efficient alternative to the exponential
retraction.

3.4. Projection onto spectral manifolds. We study in this section a class
of matrix manifolds for which the projection admits an explicit expression. Those
submanifolds of the space of symmetric matrices are called “spectral” since they are
defined by properties of the eigenvalues of the matrix. The projection onto spectral
manifolds comes through an eigendecomposition of the matrix to project, in a same
way as in previous sections, the projections came through singular value decomposi-
tion.

We start with some notation. By Sn, On, Σn and Rn
↓ , we denote respectively

the space of n × n symmetric matrices, the group of n × n orthogonal matrices, its
subgroup of permutation matrices, and the subset of Rn such that

x = (x1, . . . , xn) ∈ Rn
↓ ⇐⇒ x1 ≥ x2 ≥ · · · ≥ xn.

For X ∈ Sn, by λ(X) ∈ Rn
↓ we denote the vector of eigenvalues of X in nonincreasing

order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

As for (3.6), we now equip the space Sn with the usual Frobenius inner product
〈X, Y 〉 = trace(XY ), whose associated norm, termed the Frobenius norm, is given by

‖X‖2 =
n∑

i,j=1

Xij
2 = trace(X2) =

n∑
i=1

λi(X)2.

For simplicity, we keep the same symbol ‖ · ‖ for both the Frobenius norm in Sn and
the Euclidean norm in Rn; thus there holds

‖λ(X)‖ = ‖X‖. (3.9)

The important inequality involving the two inner products is the following (see [22]
for example): for all X and Y in Sn

〈X, Y 〉 = trace(XY ) ≤ λ(X)>λ(Y ). (3.10)
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This implies in particular that the mapping λ : Sn → Rn
↓ is 1-lipschitz, namely there

holds

‖λ(X)− λ(Y )‖ ≤ ‖X − Y ‖. (3.11)

Notice also that there are two invariance properties for the norms: for any X ∈ Sn

and U ∈ On, we have

‖X‖ = ‖UXU>‖; (3.12)

besides for any x ∈ Rn and P ∈ Σn, we have

‖x‖ = ‖Px‖. (3.13)

We consider the so-called spectral sets of Sn. These are the sets of symmetric
matrices defined by properties of their eigenvalues: a spectral set can be written

λ−1(M) =
{

X ∈ Sn : λ(X) ∈ M
}

=
{

U Diag(x)U> : U ∈ On, x ∈ M
}

(3.14)

for an associated subset M ⊂ Rn
↓ . When the underlying subset of Rn is a smooth man-

ifold with some local symmetry, the associated spectral set inherits this smoothness.
This is the content of the main result of [8], that we partly recall here.

Theorem 3.5 (spectral manifolds). Let M be a submanifold of Rn of class Ck

with k = 2 or ∞. Consider the spectral set S = λ−1(M∩ Rn
↓ ) ⊂ Sn, let X̄ ∈ S and

set x̄ = λ(X̄) ∈M. Assume that there exists δ > 0 such that M∩B(x̄, δ) is strongly
locally symmetric: for any x ∈ M ∩ B(x̄, δ) and for any permutation P ∈ Σn such
that Px = x, there holds

P
(
M∩ B(x̄, δ)

)
= M∩ B(x̄, δ). (3.15)

Then S is a submanifold of Sn around X̄ of class Ck, whose dimension is related to
the one of M.

Example 3.6 (Largest eigenvalue). Let Mp = {x ∈ Rn : x1 = · · · = xp >
xj for all j ≥ p + 1}. Observe that Mp is a submanifold of Rn of class C∞, and that
the set λ−1(Mp ∩ Rn

↓ ) is the subset of symmetric matrices whose largest eigenvalue
is of multiplicity p. Moreover, the whole manifold Mp is strongly locally symmetric
(i.e., for all x ∈ Mp and all P ∈ Σn such that Px = x, we have PMp = Mp). It
then follows from Theorem 3.5 that λ−1(Mp ∩ Rn

↓ ) is a submanifold of Sn. �
These spectral manifolds often appear in applications, in particular when using

alternating projection methods (see references in the introduction of [23]). It turns
out indeed that we have an explicit expression of the projection onto these matrix
manifolds using eigendecomposition and the projection onto the underlying manifold
M. This projection property is in fact even more general for spectral sets. Below
we state the projection result onto the spectral sets in Lemma 3.7, then we formalize
an intermediate result about permutations (Lemma 3.8) that is used to prove a par-
ticular projection result for spectral manifolds (Theorem 3.9). Some of these results
generalize or make more explicit those of the appendix of [23].

Lemma 3.7 (Projection onto spectral sets). Let M be a closed subset of Rn
↓ , and

X ∈ Sn with an eigendecomposition X = U Diag λ(X)U> with U ∈ On. Then we
have

U Diag(z) U> ∈ Pλ−1(M)(X) ⇐⇒ z ∈ PM (λ(X)).
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Proof. We start by proving the implication “⇐”. Let z ∈ PM (λ(X)) and set

X̂ = U Diag(z)U>

which lies in λ−1(M). We write the following inequalities:

minY ∈λ−1(M) ‖Y −X‖2

≥ minY ∈λ−1(M) ‖λ(Y )− λ(X)‖2

≥ miny∈M ‖y − λ(X)‖2

= ‖z − λ(X)‖2

= ‖U Diag(z)U> − U Diag(λ(X))U>‖2

= ‖X̂ −X‖2

≥ minY ∈λ−1(M) ‖Y −X‖2

[by (3.11)]

[by (3.14)]

[by definition of z]

[by (3.12)]

[by definition of U and X̂]

[since X̂ ∈ λ−1(M)]

These inequalities thus turn out to be all equalities. We have in particular

‖X̂ −X‖2 = min
Y ∈λ−1(M)

‖Y −X‖2 = min
y∈M

‖y − λ(X)‖2 = ‖z − λ(X)‖2 (3.16)

which gives the implication “⇐”. The reverse implication “⇒” also follows easily
from (3.16). Let z̄ such that X̄ = U Diag(z̄)U> ∈ Pλ−1(M)(X). For any X ∈ λ−1(M),
we have by (3.11) and (3.16)

‖z̄ − λ(X)‖2 ≤ ‖X̄ −X‖2 = min
Y ∈λ−1(M)

‖Y −X‖2 = min
y∈M

‖y − λ(X)‖2

which proves that z̄ ∈ PM (λ(X)).
Lemma 3.8. Let x̄ ∈ Rn

↓ . Then for all δ > 0 small enough, we have that, for any
y ∈ B(x̄, δ) and x ∈ Rn

↓ ∩ B(x̄, δ), the maximum of the inner product x>Py over the
permutations that fix x̄,

max
P∈Σn, P x̄=x̄

x>Py,

is attained when Py ∈ Rn
↓ .

Proof. We define

δ̄ :=
1
3

min
{

x̄i − x̄i+1 : i = 1, . . . , n , such that x̄i − x̄i+1 > 0
}

.

and we set 0 < δ ≤ δ̄. For any z ∈ Rn such that ‖x̄− z‖ ≤ δ (and then |x̄i − zi| ≤ δ
for all i ), observe that

x̄i > x̄i+1 =⇒ ∀ i1 ≤ i, ∀ i2 ≥ i + 1, zi1 > zi2 . (3.17)

Assume now that the maximum of x>Py is attained at Py 6∈ Rn
↓ . We just need to

show that the maximum is also attained at Py ∈ Rn
↓ . This means that there exist

indexes i ≤ j such that

(Py)i < (Py)j ( and xi ≥ xj).



14 P.-A. ABSIL AND JÉRÔME MALICK

Apply (3.17) with z = Py; we can do this since

‖z − x̄‖ = ‖Py − x̄‖ = ‖Py − Px̄‖ = ‖y − x̄‖

by (3.13). This yields x̄i = x̄j , and thus the permutation Pij that permutes i and j and
leaves the other indexes invariant fixes x̄ as well. We also have x>Py ≤ x>(PijP )y,
since

xi(Py)j + xj(Py)i −
(
xi(Py)i + xj(Py)j

)
= (xi − xj)((Py)j − (Py)i) ≥ 0

In other words we do not reduce x>Py by permuting (Py)i and (Py)j . A finite
number of such exchanges leads to a nonincreasing order of the Py, which shows that
the maximum is also attained when Py ∈ Rn

↓ , and the proof is complete.
Theorem 3.9 (Projection onto spectral manifolds). Assume the assumptions of

Theorem 3.5 are in force. The projection onto the manifold S of a matrix X such
that ‖X − X̄‖ ≤ δ/2 is

PS(X) = U Diag
(
PM(λ(X))

)
U>

where U ∈ On is such that X = U Diag(λ(X))U>.
Proof. Consider X̄ ∈ λ−1(M) and set x̄ = λ(X̄) ∈ Rn

↓ . Let X ∈ λ−1(M) ∩
B(X̄, δ/2), write the spectral decomposition X = U Diag(x)U> with x = λ(X). Note
that we have ‖x − x̄‖ ≤ δ/2 by (3.11). Restricting δ if necessary, we assume that
Lemma 3.1 is enforced. Lemma 3.7 then gives:

PS(X) = U Diag
(
PM∩Rn

↓
(λ(X))

)
U>.

We are going to establish

PM(x) = PM∩B(x̄,δ)(x) = PM∩B(x̄,δ)∩Rn
↓
(x) = PM∩Rn

↓
(x) (3.18)

which will allow us to conclude. We note that the first and third equalities are
straightforward. For both M = M and M = M∩Rn

↓ , we have indeed PM (x) ∈ B(x̄, δ),
which yields

min
y∈M

‖x− y‖ = min
y∈M∩B(x̄,δ)

‖x− y‖. (3.19)

To see this, note that ‖PM (x)− x‖ ≤ ‖x̄− x‖ by definition of PM (x), which allows to
write

‖PM (x)− x̄‖ ≤ ‖PM (x)− x‖+ ‖x− x̄‖ ≤ 2‖x− x̄‖ ≤ δ,

and therefore (3.19). We now prove that

min
y∈M∩B(x̄,δ)

‖x− y‖ = min
y∈M∩B(x̄,δ)∩Rn

↓

‖x− y‖. (3.20)

To do so, we exploit (partly) the symmetry property of M of Theorem 3.5: notice
indeed that in particular for any P ∈ Σn such that Px̄ = x̄, we have

P
(
M∩ B(x̄, δ)

)
= M∩ B(x̄, δ). (3.21)
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Then we can develop the following equalities

miny∈M∩B(x̄,δ) ‖y − x‖2
= miny∈M∩B(x̄,δ), P∈Σn, P x̄=x̄ ‖Py − x‖2 [by (3.21)]

= miny∈M∩B(x̄,δ), P∈Σn, P x̄=x̄(‖Py‖2 + ‖x‖2 − 2x>Py)
= miny∈M∩B(x̄,δ)(‖y‖2 + ‖x‖2 − 2 maxP∈Σn, P x̄=x̄ x>Py) [by (3.13)]

= minz∈M∩B(x̄,δ)∩Rn
↓
(‖P−1z‖2 + ‖x‖2 − 2x>z) [by Lemma 3.8 and z = Py]

= minz∈M∩B(x̄,δ)∩Rn
↓
‖z − x‖2 [by (3.13)]

Putting together (3.19) and (3.20) proves (3.18). Lemma 3.7 then allows us to
conclude.

Example 3.10 (Projection onto largest eigenvalue). We continue Example 3.6.
We can see that the projection x̂ of a vector x ∈ Rn

↓ onto Mp∩Rn
↓ ∩B(x̄, δ) is defined

by x̂i = xi if i > p and

x̂i = α :=
1
p

p∑
`=1

x`

Thus the projection of X close to X̄ onto λ−1(Mp) is

Pλ−1(Mp)(X) = U Diag(α, . . . , α, xp+1, . . . , xn)U>.

This completes the partial result of [29, Th. 13]. �
We are not aware of efficient ways of computing the Riemannian exponential

on general spectral manifolds, hence the projective retraction comes as a valuable
alternative.

4. Projection-like retractions. Inspired by the projective retractions of the
previous section, we define and study here new retractions constructed from projection-
like operations. These operations use a retractor prescribing admissible directions to
get back to the manifold. We show that moving tangentially and then along these ad-
missible directions produces a retraction, and even a second-order retraction if some
orthogonality holds.

4.1. Retraction by retractors. As before, we consider a d-dimensional sub-
manifold M of an n-dimensional Euclidean space E . Let Gr(n−d, E) denote the set of
all (n− d)-dimensional linear subspaces of E . This set of subspaces admits a natural
differentiable structure, endowed with which it is termed the Grassmann manifold of
(n− d)-planes in E ; see e.g. [6, 2] for details. Recall that two subspaces of dimension
d and n − d of E are transverse if their intersection is trivial, or equivalently, if E is
their direct sum. The next definition is illustrated on Figure 4.1.

Definition 4.1 (Retractor). Let M be a d-dimensional submanifold of class Ck

(with k ≥ 2) of an n-dimensional Euclidean space E. A retractor on M is a Ck−1

mapping D from the tangent bundle TM into the Grassmann manifold Gr(n− d, E),
whose domain contains a neighborhood of the zero section of TM, and such that, for
all x ∈M, D(x, 0) is transverse to TM(x).

The choice of the term retractor in the above definition is justified by the result
below, whose proof is given in Section 4.2.

Theorem 4.2 (Retractors give retractions). Let D be a retractor as defined
above and, for all (x, u) ∈ dom(D), define the affine space D(x, u) = x + u + D(x, u).
Consider the point-to-set function R : dom(D) ⇒ M such that R(x, u) is the set of
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ux

D(x, u)

M

R(x, u)

Fig. 4.1. Illustration of the concept of a retractor.

points of M∩D(x, u) nearest to x + u. Then R is a retraction on M. (In particular,
for all x̄ ∈M, there is a neighborhood of (x̄, 0) in TM on which R maps to singletons.)
The retraction R thus defined is called the retraction induced by the retractor D.

Example 4.3 (Orthographic retractor). A simple and important example of
retractor is the constant mapping defined for (x, u) ∈ TM by

D(x, u) = NM(x). (4.1)

Theorem 4.2 implies that this retractor does induce a retraction. We call this re-
traction the orthographic retraction, since on a sphere it relates to the orthographic
projection known in cartography. �

Remark 4.4. In [28, §3], a particular family of parameterizations of M is in-
troduced and called tangential parameterization. Tangential parameterizations yield
the orthographic retraction through the procedure given in [2, §4.1.3]. The result [28,
Th. 3.4] implies that properties 2 and 3 of retractions (see Definition 2.1) hold for the
orthographic retraction, but it does not imply the smoothness property 1, whereas
Theorem 4.2 does. More precisely, Lemma 4.7, which is Theorem 4.2 for the partic-
ular case (4.1), goes beyond [28, Th. 3.4] by showing that v is a Ck−1 function, not
only with respect to its u variable but with respect to (x, u). The core difficulty is
that, whereas u 7→ v(x, u) is a function between two vector spaces, (x, u) 7→ v(x, u) is
a function between nonlinear manifolds. �

Example 4.5 (Projective retractor). The projective retraction (3.4), given by
R(x, u) = PM(x+u), fits in the framework of retractors: it is induced by the projective
retractor defined implicitly, for (x, u) ∈ TM, by

D(x, u) = NM(PM(x + u)). (4.2)

The mapping D is a bona-fide retractor since, for small u, this mapping is smooth in
view of Lemma 3.1, and moreover we have D(x, 0) = NM(PM(x)) = NM(x) transverse
to TM(x). �

Example 4.6 (Sphere and manifolds of co-dimension 1). When M is a sphere,
these results on retractors show that several types of cartographic projections lead to
retractions: the gnomonic projection (which is the classical, nearest-point projection
on the sphere), the orthographic projection, the stereographic projection. Roughly
speaking, all projections into the tangent plane with a point of perspective (possibly at
infinity) lead to retractions, provided that the point of perspective changes smoothly
with the reference point and that it does not belong to the tangent space. In a way,
retractors generalize to general manifolds these cartographic retractions, initially quite
specific to the sphere and to submanifolds of co-dimension one. �
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4.2. Proof of the main result. To prove Theorem 4.2, we proceed in two
steps. We first prove the theorem for the normal case D(x, u) = NM(x) (Lemma 4.7),
then we deduce the general case by smoothly “straightening” the space D(x, u) onto
NM(x) (Lemma 4.8).

Lemma 4.7 (Special case D(x, u) = NM(x)). Let M be a submanifold of class
Ck (k ≥ 2) of an n-dimensional Euclidean space E. For all x̄ ∈ M, there exists a
neighborhood UTM of (x̄, 0) in TM such that, for all (x, u) ∈ UTM, there is one and
only one smallest v ∈ NM(x) such that x + u + v ∈M. Call it v(x, u) and define

R(x, u) = x + u + v(x, u).

We have Duv(x, 0) = 0 and thus R defines a retraction around x̄. Since the expression
of R does not depend on x̄ or UTM, R defines a retraction on M.

Establishing this result consists essentially in applying the implicit function theo-
rem, but to prove it rigorously we have to use charts and resort to technicalities. We
do not skip any argument since a similar rationale will be used in the forthcoming
proof of Theorem 4.2.

Proof. Let x̄ ∈ M and let Φ : UΦ → Rn−d of class Ck be a local equation of M
around x̄, i.e., UΦ is a neighborhood of x̄ in E and

Φ(x) = 0 ⇐⇒ x ∈M∩ UΦ,

with DΦ(x) of full rank n− d for all x ∈ UΦ. Define

Ψ : BM→ Rn−d : (x, u, v) 7→ Φ(x + u + v).

We have that DvΨ(x̄, 0, 0) = DΦ(x̄) is surjective on NM(x̄) onto Rn−d. Thus we
would be ready to apply the implicit function theorem, if only Ψ was defined on the
Cartesian product of an “(x, u)” space and a “v” space. To remedy this, we read Ψ in
a chart. Specifically, let θ : UM → Rd be a chart of M. Then a chart of BM around
(x̄, 0, 0) is given by

Θ : TUM⊕NUM → Rd×Rd×Rn−d : (x, u, v) 7→ (θ(x),Dθ(x)u, DΦ(x)v) =: (x̂, û, v̂),

where TUM ⊕ NUM ⊆ BM denotes the Whitney sum {(x, u, v) : x ∈ UM, u ∈
TUM(x), v ∈ NUM(x)}. Choose UTM ⊆ TUM ⊆ TM neighborhood of (x̄, 0) and
U3 ⊆ Rn−d sufficiently small that for all (x, u) ∈ UTM and all v̂ ∈ U3, we have
x + u + v ∈ UΦ. Let also ÛTM = {(x̂, û) ∈ Rd × Rd : (x, u) ∈ UTM}. Then the chart
expression Ψ̂ of Ψ is given by

Ψ̂ : ÛTM × U3 → Rn−d : (x̂, û, v̂) 7→ Ψ̂(x̂, û, v̂) := Ψ(x, u, v),

where, in keeping with our notation, (x, u, v) = Θ−1(x̂, û, v̂). Note that Ψ̂ is of class
Ck−1 since BM is of class Ck−1. Moreover, we have Ψ̂(ˆ̄x, 0, 0) = 0 and D3Ψ̂(ˆ̄x, 0, 0) =
D3Ψ(x̄, 0, 0)DΦ(x̄)−1 = DΦ(x̄)DΦ(x̄)−1 which, being the identity, is invertible. By
the implicit function theorem, shrinking further ÛTM around (ˆ̄x, 0) if necessary, there
exists a unique continuous function v̂ : ÛTM → Rn−d such that v̂(ˆ̄x, 0) = 0 and that,
for all (x̂, û) ∈ ÛTM, Ψ̂(x̂, û, v̂(x̂, û)) = 0. The function v̂ is of class Ck−1 and, locally
around (ˆ̄x, 0, 0), Ψ̂(x̂, û, v̂) = 0 if and only if v̂ = v̂(x̂, û). This means that there exists
a neighborhood UTM of (x̄, 0) in TM for which there exists a unique continuous
function v : UTM → NM such that (i) v(x, u) ∈ NM(x) for all (x, u) ∈ UTM and (ii)
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v(x̄, 0) = 0 and (iii) Ψ(x, u, v(x, u)) = 0 for all (x, u) ∈ UTM. The function v is of
class Ck−1 and, locally around (x̄, 0, 0) in BM,

Ψ(x, u, v) = 0 ⇐⇒ v = v(x, u). (4.3)

Note that the “only if” part of (4.3) is not longer guaranteed if “locally around (x̄, 0, 0)
in BM” is replaced by “locally around (x̄, 0) in TM”. To relax the locality condition
on the v variable, one can observe that, locally around (x̄, 0) in TM, v(x, u) is the
unique smallest v that satisfies x + u + v ∈ M. Indeed, otherwise the “only if” part
of (4.3) would not hold locally around (x̄, 0, 0) in BM. Finally, Duv(x, 0) = 0 follows
from

Duv(x, 0) = −[DvΨ(x, 0, 0)]−1[DuΨ(x, 0, 0)],

since DvΨ(x, 0, 0) is invertible and we have DuΨ(x, 0, 0)u = DΦ(x)u = 0 for all
u ∈ TM(x) by definition.

We now turn to the second technical result.
Lemma 4.8 (Straightening up). Let D be a retractor as defined above. Then

there exists a neighborhood UTM of the zero section in TM and a unique Ck−1 map

A :

{
UTM ⊕NM −→ TM

(x, u, v) 7−→ (x,A(x, u)v)

where A(x, u) is a linear mapping from NM(x) to TM(x) such that, for all (x, u) ∈
UTM,

D(x, u) = {v + A(x, u)v, v ∈ NM(x)}.

Proof. We pick once and for all an orthonormal basis of E , which turns E into
Rn endowed with the standard inner product. Let x̄ ∈ M, (UE , φ) be a coordinate
slice of M containing x̄, UM = UE ∩ M, and On denote the group of all n × n
orthogonal matrices. Then, from the coordinate slice, it is possible to construct a
function B : UM → On of class Ck−1 such that, for all x ∈ UM, the first d columns
BT (x) of B(x) are in TM(x) (and thus form an orthonormal basis of TM(x)) and the
other n−d columns BN (x) of B(x) are in NM(x) (and thus form an orthonormal basis
of NM(x)). Hence we have for all z ∈ Rn the decomposition

z = BT (x)BT (x)>z + BN (x)BN (x)>z.

Let Vn,n−d denote the (Stiefel) manifold of all orthonormal (n − d)-frames in
Rn. From a smooth local section in the quotient Gr(n− d, n) = Vn,n−d/On−d around
D(x̄, 0), it is possible to find a neighborhood ŪTM of (x̄, 0) in TM and a Ck−1 function
D : ŪTM → Vn,n−d such that, for all (x, u) ∈ ŪTM, D(x, u) is an orthonormal basis of
D(x, u). Taking ŪTM sufficiently small, we have, for all (x, u) ∈ ŪTM, that

D(x, u) ∩ TM(x) = {0}

and then by dimension reasons, the two subspaces (considered as linear subspaces of
Rn) are in direct sum. This implies that if η ∈ Rn−d is such that BN (x)>D(x, u)η = 0,
i.e., D(x, u)η ∈ TM(x), then η = 0; this means that BN (x)>D(x, u) is invertible.
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The idea is now to decompose D(x, u) into the normal and tangent spaces and to
show that the tangent part can be expressed with the help of the normal part. We
write

D(x, u) =
{
D(x, u)η : η ∈ Rn−d

}
=

{
BN (x)BN (x)>D(x, u)η + BT (x)BT (x)>D(x, u)η : η ∈ Rn−d

}
=

{
BN (x)η̃ + BT (x)BT (x)>D(x, u)[BN (x)>D(x, u)]−1η̃ : η̃ ∈ Rn−d

}
=

{
BN (x)η̃ + BT (x)BT (x)>D(x, u)[BN (x)>D(x, u)]−1BN (x)>BN (x)η̃ : η̃ ∈ Rn−d

}
where we use first the change of variable in Rn−d given by BN (x)>D(x, u), and second
the fact that BN (x)>BN (x) is the identity. We set

A(x, u) := BT (x)BT (x)>D(x, u)[BN (x)>D(x, u)]−1BN (x)>

and we have

D(x, u) =
{
BN (x)η̃ + A(x, u)BN (x)η̃ : η̃ ∈ Rn−d

}
,

which is the desired property. Thus A exists and is Ck−1 on ŪTM ⊕ NM. Its
uniqueness is straightforward. Moreover, this rationale holds for every x̄ ∈M. Hence
A is well defined and Ck−1 on a neighborhood of the zero section in TM. Finally,
the smoothness of the function comes by construction.

We are in position to prove Theorem 4.2.

Proof. (of Theorem 4.2) Let x̄ ∈M, let UTM be a neighborhood of (x̄, 0) in TM
chosen sufficiently small that it fits in the two eponymous neighborhoods defined in
Lemmas 4.7 and 4.8, and let v be defined as in Lemma 4.7. Let UM = {x+u+v(x, u) :
(x, u) ∈ UTM}, and observe that UM is a neighborhood of x̄ in M. For (x, u) ∈ UTM,
consider

z ∈ UM ∩ (x + u + D(x, u)).

Then z is characterized by the following two equations. On the one hand, since
z ∈ (x + u + D(x, u)), there exists a normal vector ṽ(x, u) ∈ NM(x) (by Lemma 4.8)
such that

z = x + u + ṽ(x, u) + A(x, u)ṽ(x, u). (4.4)

On the other hand, since z ∈ UM, there exists a tangent vector ũ(x, u) ∈ TM(x) (by
Lemma 4.7) such that

z = x + ũ(x, u) + v(x, ũ(x, u)). (4.5)

Combining (4.4) and (4.5) and decomposing on the tangent and normal spaces, we
get {

ũ(x, u) = u + A(x, u)ṽ(x, u)
v(x, ũ(x, u)) = ṽ(x, u),

which yields u = A(x, u)v(x, ũ(x, u)) + ũ(x, u). Introduce now the function

F :

{
UTM ⊕ UTM −→ TM

(x, u, ũ) 7−→ (x,A(x, u)v(x, ũ) + ũ− u),
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such that

ũ = ũ(x, u) ⇐⇒ F (x, u, ũ) ∈ 0TM,

where 0TM stands for the zero section in TM. Much as in the proof of Lemma 4.7, we
work in a chart and use the hat diacritic to denote coordinate expressions. Consider
F̂2 : (Rd)3 → Rd that consists in the projection of F̂ onto the last d elements (the
subscript “2” indicates that the last d components are extracted), so that the condition
F (x, u, ũ) ∈ 0TM becomes F̂2(x̂, û, ˆ̃u) = 0. Since Duv(x, 0) = 0, we obtain that
D3F̂2(ˆ̄x, 0, 0) = I. Therefore, as in the proof of Lemma 4.7, by the implicit function
theorem, ũ is locally well defined as a Ck−1 function of (x, u), and thus the intersection
R(x, u) := UM∩(x+u+D(x, u)) is locally well defined as a smooth function of (x, u) ∈
TM. This shows in particular that R(x̄, u) is a singleton for all u in a neighborhood
of 0. An expression of R that does not involve the neighborhood UM is obtained by
observing that locally around (x̄, 0), R(x, u) is the element of M∩ (x + u + D(x, u))
nearest to x + u. (In other words, R(x, u) is the point of M where the correction—or
restoration step—from x + u along D(x, u) is the smallest.) Since this rationale is
valid for every x̄ ∈ M, R is well-defined and Ck−1 on a neighborhood of the zero
section in TM.

It is straightforward that the consistency condition R(x, 0) = x holds. There is
just left to show the first order rigidity condition DR(x, ·)(0) = idTM(x). In view
of (4.5) and since D2v(x, 0) = 0, it is sufficient to show that D2ũ(x, 0) = id. We have

D2ũ(x, u) = −(D3F2(x, u, ũ(x, u)))−1D2F2(x, u, ũ(x, u)). (4.6)

This yields that D2ũ(x, 0) = id.

4.3. Retractors and second-order retractions. Recall from (2.3) that a
second-order retraction is a retraction that satisfies d2

dt2 R(x, tu)|t=0 ∈ NM(x). The
next result gives an easy-to-check sufficient condition for a retraction induced by a
retractor to be second order.

Theorem 4.9 (Retractors and second-order retractions). Let D be a retractor
(Definition 4.1), and assume that, for all x̄ ∈M, there holds D(x̄, 0) = NM(x). Then
R defined in Theorem 4.2 is a second-order retraction on M.

Proof. With the notation of the proof of Theorem 4.2, we want to compute
PTM(x)D22z(x, 0) = D22ũ(x, 0), for (x, u) 7→ z as in (4.5). To lighten the notation,
we omit to specify that the functions are evaluated at u = 0 and ũ = 0. We perform
usual calculations with total derivatives:

D22ũ = (D3F2)−1(D23F2 + D33F2 id)(D3F2)−1D2F2 − (D22F2 + D32F2 id),
D23F2 = Du(AD2v + I) = D2AD2v + AD22v = 0,

D33F2 = Dũ(AD2v + I) = AD22v = 0,

D22F2 = D22Av = 0,

D32F2 = Dũ(D2Av − I) = D2AD2v = 0,

where we used (4.5), (4.6), D2ũ(x, 0) = id, D2v(x, 0) = 0, A(x, 0) = 0 (since D(x̄, 0) =
NM(x)), and v(x, 0) = 0. In conclusion, PTM(x)D22z(x, 0) = 0, which means that R
is a second-order retraction.

Example 4.10 (Orthographic and projective retractions). In view of Theo-
rem 4.9, the orthographic retraction (Example 4.3) and the projective retraction (Ex-
ample 4.5) are second-order retractions. �
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4.4. Orthographic retraction on fixed-rank matrices. Let us come back
to the example of Section 3.2, i.e., Rr = {X ∈ Rn×m : rank(X) = r}. Consider the
singular-value decomposition of X ∈ Rr,

X = U

[
Σ0 0
0 0

]
V T , (4.7)

with Σ0 ∈ Rr×r the diagonal matrix of non-zero singular values. An element Z ∈
TRr (X) can be decomposed as

Z = U

[
A C
B 0

]
V>. (4.8)

In other words,

TRr (X) =
{
H ∈ Rn×m : ui

>Hvj = 0, for all r < i ≤ n, r < j ≤ m
}

.

Proposition 4.11 (orthographic retraction on the set of fixed-rank matrices).
The orthographic retraction R on the set Rr = {X ∈ Rn×m : rank(X) = r} is given
by

R(X, Z) = U

[
Σ0 + A C

B B(Σ0 + A)−1C

]
V T (4.9)

= U

[
Σ0 + A

B

] [
I (Σ0 + A)−1C

]
V T ,

where U , V , Σ0, A, B, and C are obtained from (4.7) and (4.8).
Proof. The the normal space is

NRr
(X) =

{
U

[
0 0
0 D

]
V> : D ∈ R(n−r)×(m−r)

}
.

To obtain the orthographic retraction on Rr, we want to find the smallest Y =
U [ 0 0

0 D ]V> ∈ NRr (X) such that

X + Z + Y = U

[
Σ0 + A C

B D

]
V T (4.10)

belongs to Rr. There is a neighborhood of the origin in TRr
(X) such that, if Z

belongs to that neighborhood, then A is small enough to make Σ0+A invertible, which
guarantees that (4.10) has at least rank r. It thus remains to choose D such that the
matrix has rank exactly r. This is equivalent to demanding that each of the last m−r
columns of

[
Σ0+A C

B D

]
be a linear combination of the first r columns. Equivalently, we

need to solve
[

Σ0+A C
B D

]
[ E

I ] = [ 0
0 ] for E ∈ Rr×(m−r) and D ∈ R(n−r)×(m−r), which

yields D = B(Σ0 + A)−1C.
What is the computational cost of the orthographic retraction compared to the

one of projective retraction discussed in Section 3.2? The projective retraction requires
the computation of PRr (X + Z), where the rank of X + Z can be at most 2r in view
of (4.7) and (4.8). The matrices involved reduce to small 2r × 2r if one works in
appropriate left and right bases. These bases are readily computed if X and Z are
available in the form X = NMT and Z = N∆T

r +∆lM
T , where N , M , ∆r and ∆l are

all matrices with r columns: the span of the left basis is the span of the columns of N
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and ∆l, and the span of the right basis is the span of the columns of M and ∆r. Using
the same technique, the computations needed to compute the orthographic retraction
also reduce to operations on matrices of size 2r × 2r or less. The computational
cost is thus comparable when r � n, m. Note however that the computation of
the orthographic retraction R(X, Z) only requires matrix multiplications and a small
matrix inversion once the SVD of X is known.

4.5. Orthographic retraction on Stiefel manifolds and on orthogonal
matrices. This section works out the examples of matrix manifolds introduced in
Section 3.3. We show first that the orthographic retraction on the Stiefel manifold
leads to a Riccati equation. This result is not new; it is mentioned in [12, (9.10)]. We
present it in the formalism of this paper, and derive a closed-form expression of the
orthographic projection for the special case of the orthogonal group.

The tangent and normal spaces to Vn,m, seen as subspaces of Rn×m, are given by

TVn,m(X) = {Z ∈ Rn×m : X>Z + Z>X = 0}
= {XΩ + X⊥K : Ω skew-sym,K ∈ R(n−m)×m}

NVn,m(X) = {XS : S sym}

where the columns of X⊥ ∈ Rn×(n−m) complete those of X to make an orthogonal
basis of Rm. The orthographic retraction is thus given by

R(X, XΩ + X⊥K) = X + XΩ + X⊥K + XS ∈ Vn,m, (4.11)

where S is the smallest possible symmetric matrix. Theorem 4.2 guarantees that
this smallest S exists and is unique for all XΩ + X⊥K sufficiently small. Condition
R(X, XΩ + X⊥K) ∈ Vn,m reads

(X + XΩ + X⊥K + XS)T (X + XΩ + X⊥K + XS) = I (4.12)

which, taking all the assumptions into account, is equivalent to

S2 + (I + ΩT )S + S(I + Ω) + ΩT Ω + KT K = 0, (4.13)

where the unknown S is symmetric and Ω is skew-symmetric. This is a continuous-
time algebraic Riccati equation, which can be solved by various means; see, e.g., [5].
When n � m, the dominant cost is in forming KT K and XS, which is O(nm2), and
thus comparable with the cost of the projective retraction discussed in Section 3.3.

The case when m = n (and thus K = 0) leads to a closed-form solution as
established in Proposition 4.12 below. This closed-form uses the square root of a
symmetric positive-semidefinite matrix A, defined for an eigenvalue decomposition
A = U Diag(λ1, . . . , λn)U> by

√
A = U Diag

(√
λ1, . . . ,

√
λn

)
U>.

So again, computing the retraction essentially amounts to computing the eigenvalues
of a matrix.

Proposition 4.12 (orthographic retraction on On). The orthographic retraction
on the orthogonal group On is given for X ∈ On by

R(X, XΩ) = X
(
Ω +

√
I − ΩT Ω

)
.
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Proof. For n = m, (4.13) gives

S2 + 2S + ΩT Ω = 0,

that we reformulate as

(S + I)2 = I − ΩT Ω. (4.14)

Note that this yields that I − ΩT Ω is positive semidefinite. The solutions of (4.14)
are then

S+ = −I +
√

I − Ω>Ω and S− = −I −
√

I − Ω>Ω,

given a squared root of I−Ω>Ω. Given the eigendecomposition Ω>Ω = U Diag(λ1, . . . , λn)U>,
we have

S± = U Diag
(
− 1±

√
1− λ1, . . . , 1±

√
1− λn

)
U>,

to get the associated norms

‖S±‖2 =
n∑

i=1

(−1±
√

1− λi)2.

Between both, the one with smallest norm is S+, and then (4.11) gives the result.
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[33] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, vol. 297 of
Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.

[34] B. Vandereycken, P.-A. Absil, and S. Vandewalle, Embedded geometry of the set of sym-
metric positive semidefinite matrices of fixed rank, in Proceedings of the IEEE 15th Work-
shop on Statistical Signal Processing, 2009, pp. 389–392.

[35] , A Riemannian geometry with complete geodesics for the set of positive semidefinite ma-
trices of fixed rank, 2010. http://people.cs.kuleuven.be/∼bart.vandereycken/papers/
TW572 final.pdf.

[36] R. Webster, Convexity, Oxford Science Publications, The Clarendon Press Oxford University
Press, New York, 1994.

http://people.cs.kuleuven.be/~bart.vandereycken/papers/TW572_final.pdf
http://people.cs.kuleuven.be/~bart.vandereycken/papers/TW572_final.pdf

