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Existence of a fixed point of a nonsmooth function

arising in numerical mechanics

Florent Cadoux Jérôme Malick

January 18, 2010

This paper is dedicated to Jean-Baptiste Hiriart-Urruty on the occasion of his 60th birthday.
Merci Jean-Baptiste pour ton soutien constant et pour nous avoir fait partager tes connaissances
en analyse variationnelle - et ton sens de l’humour !

Abstract

A recent work [ACML10] introduces a formulation as a nonsmooth fixed-point problem
of a basic problem in numerical mechanics (namely the dynamical Coulomb friction problem
in finite dimension with discretized time). Using this new formulation, the existence of a
solution to the problem and its numerical resolution are then guaranteed under a strong
assumption on the data of this problem.

In this paper, we show that the fixed point problem admits solution under a natural,
weaker assumption. This existence proof uses a perturbation argument combined with con-
tinuity properties of a set-valued mapping associated with the constraints of the problem.
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1 Introduction, motivation, notation

1.1 Presentation of the problem

As shown by the seminal work of Jean-Jacques Moreau, nonsmooth analysis and mechanics
have nice interplays. For instance, contact mechanics make a fundamental use of nonsmooth
objects for modeling and numerical simulation, as for example convex cones to express friction.
The recent paper [ACML10] focuses on the numerical problem arising when discretizing the
dynamics of mechanical system with contact and friction. It formulates the incremental problem
as a nonsmooth fixed-point problem, and uses this new formulation to get a basic result of
existence of solutions together with a new way to compute them. The sections 1.3 and 1.4 sketch
the context of numerical mechanics and briefly review the existence result and its consequences.

In this paper, we show that there exists a solution to the above fixed-point theorem under a
natural assumption - weaker that the assumption used in [ACML10]. The proof of the existence
of a fixed point under the weak assumtion relies on the application of the standard Brouwer
fixed-point theorem, but to get the boundeness and continuity properties of the function we use
nonstandard arguments from set-valued analysis and sensitivity analysis in optimization.

The function that we study in this paper is defined by the forthcoming (1.19) using the
solution of a conic optimization problem. The remainder of this introduction presents the basic
definitions of second-order conic optimization (Subsection 1.2), details the notation by sketching
the mechanical context (Subsection 1.3), then recalls the existing results and precises the goal of
this paper (Subsection 1.4).

1.2 Second-order cone programming

The function F we consider in this paper is defined using the solution of an optimization
problem with second-order cone constraints (see forthcoming (1.14)). Second-order cone con-
straints indeed appear naturally in mechanics in the Coulomb friction law (see Section 1.3).
Here we only introduce the notation that we need; and we refer to [AG03] and [BV04] for more
on second-order cone programming.

Given a vector x ∈ R
d, the subscripts “N” and “T” indicate normal and tangential compo-

nents of a vector with respect to a given unit vector e ∈ R
d. In other words,

xN := x⊤e ∈ R and xT := x − xNe ∈ R
d. (1.1)

The so-called second-order cone Ke,µ directed by the unit vector e ∈ R
k and of parameter

µ ∈ [0,+∞[ is defined by the closed and convex cone

Ke,µ :=
{

x ∈ R
d : ‖xT ‖ ≤ µxN

}

.

Note the two extreme cases

Ke,0 :=
{

x ∈ R
d : xT = 0, xN ≥ 0} and by definition Ke,∞ :=

{

x ∈ R
d : xN ≥ 0

}

.

It is easy to see that the dual cone of the second-order cone Ke,µ (with µ ∈]0,∞[) is also a
second-order cone:

K∗
e,µ :=

{

s ∈ R
d : x⊤s ≥ 0 for all x ∈ Ke,µ

}

= Ke, 1

µ
.

This also holds for µ = 0 and µ = ∞, with the convention that 1/0 = ∞ and 1/∞ = 0: we have
indeed (Ke,0)

∗ = Ke,∞ and (Ke,∞)∗ = Ke,0. For given n unit vectors and n scalars

e1, . . . , en ∈ R
d and µ1, . . . , µn ∈ [0,+∞], (1.2)
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we introduce the associated product-cone

L := Ke1,µ1 × · · · × Ken,µn ⊂ R
nd, (1.3)

whose dual cone is

L∗ = K∗

e1,µ1 × · · · × K∗
en,µn = Ke1, 1

µ1

× · · · × Ken, 1

µn
. (1.4)

We will also consider (in (1.21) below) another convex cone of the same form as above: given
the data (1.2), we consider

I :=
{

i ∈ {1, . . . , n} : µi 6= 0
}

and nI := Card I, (1.5)

and we set for all i = 1, . . . , n

K∗i :=

{

int K∗

ei,µi = int Kei, 1

µi
if i ∈ I

Kei,∞ if i 6∈ I

We can then introduce similarly to (1.4) the convex cone (included in L∗)

L∗ = K∗1 × · · · × K∗n ⊂ R
nd, (1.6)

that appears in the (strong) assumption of Theorem 3.4. Let us just mention that it is not a
dual cone (it is not closed), yet we denote it with a star, due to its ressemblance with L∗.

1.3 Mechanical context

This section briefly presents the context in numerical mechanics where appears the fixed point
problem that we consider in this paper. We refer to the introduction of [ACML10] for references
and more details. This section can be skipped in a first reading.

Simulating the dynamics of mechanical systems which involve unilateral contact between their
parts or with external objects is common in engineering (granular materials, robotics, computer
graphics,...), and have been extensively studied by the community of contacts mechanics. One
difficulty is to handle the nonregularity due to the friction between objects. The recent work
[ACML10] (see also [Cad09]) proposes a new approach by convex optimization and fixed point.
We sketch here the problem, its mathematical formulation and set the notation for the rest of
the paper.

Consider a mechanical system in R
d (in practice, d = 2 or d = 3) with several bodies

having n contacts and m degrees of freedom. Discretizing the dynamics of a mechanical system
with contact and friction has the following standard modelisation. A superscript i ∈ {1, . . . , n}
corresponds to a contact between two of the bodies of the system: the vector ei ∈ R

d gives the
normal direction of the contact, ũ := (ũ1, . . . , ũn) ∈ R

nd are the (tilted) relative velocities at
contact points, and r := (r1, . . . , rn) ∈ R

nd the discretized impulses. The nonregularity of the
problem comes from Coulomb friction law at i which expresses, for the friction coefficient at
contact iµi ∈ [0,∞[, that the couple (ũi, ri) satisfies

(Kei,µi)∗ ∋ ũi ⊥ ri ∈ Kei,µi . (1.7)

The other relations between the variables are supposed to be affine: the generalized velocities
v ∈ R

m are connected to the impulses r by a dynamical relation (see forthcoming (1.8)), and to
the relative velocities ũ by a kinematical equation (see (1.9)). To express them, we consider an
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additional tilting variable si ∈ R at each contact with friction (µi 6= 0); that is s ∈ R
nI , with

nI defined by (1.5). The formulation of the incremental discretized problem ends up with the
following conic complementarity problem (whose data is detailed right after) with respect to the
variable (v, r, ũ, s) ∈ R

m × R
nd × R

nd × R
nI

Mv + f = H⊤r (1.8)

ũ = Hv + w + Es (1.9)

L∗ ∋ ũ ⊥ r ∈ L (1.10)

si = ‖ũi
T ‖ for i ∈ I (1.11)

with L and L∗ defined by (1.3) and (1.4) respectively. Thus the data of the problem is

ei ∈ R
d, µi ∈ [0,+∞], M ∈ R

m×m, f ∈ R
m, H ∈ R

nd×m, w ∈ R
nd and E ∈ R

nd×nI . (1.12)

The mass matrix M ∈ R
m×m is assumed definite positive, but H,w and f have no properties. In

contrast, the matrix E ∈ R
nd×nI has very special structure: it is constructed by concatenating

nI columns Ei ∈ R
nd, where Ei is itself the concatenation of n vectors of R

d, all zeros except for
the i-th which is µiei. Here is an example to fix ideas: for d = 2, n = 3, e1 = e2 = e3 = [0; 1],
µ1 = 1, µ2 = 0, µ3 = 2, the matrix E is

E⊤ =

[

0 0 0 0 0 2
0 1 0 0 0 0

]

.

The construction of E gives the following property that will be useful to establish our result: for
any s and t in R

nI and i = 1, . . . , n,

(Hv + w + Et)i =

{

(Hv + w + Es)i if i 6∈ I
(Hv + w + Es)i + µi(ti − si)ei if i ∈ I.

(1.13)

1.4 Fixed point problem and previous existence result

The function that we study in this paper is defined with the solution of the following quadratic
second-order cone optimization problem parameterized by s ∈ R

nI
+

{

min 1
2v⊤Mv + f⊤v

Hv + w + Es ∈ L∗ (1.14)

with the data of (1.12). The quadratic objective function

J(v) :=
1

2
v⊤Mv + f⊤v (1.15)

is strongly convex and inf-compact (since M is assumed to be positive definite), so that, whenever
its closed convex feasible set

C̄(s) := {v ∈ R
m : Hv + w + Es ∈ L∗} (1.16)

is nonempty, (1.14) has a unique solution, that we call v(s). In other words, assuming that
C̄(s) 6= ∅, we introduce

v(s) := argmin
v∈C̄(s)

J(v) ∈ R
m . (1.17)
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As stated in the next theorem, this defines a function v : R
nI
+ → R+, which in turn yields two

more mappings

R
nI
+ ∋ s 7−→ ũ(s) := Hv(s) + w + Es ∈ R

nd (1.18)

R
nI
+ ∋ s 7−→ F (s) := (‖ũ1

T (s)‖, . . . , ‖ũn
T (s)‖) ∈ R

nd . (1.19)

We have more precisely the following result, that also connects the above-defined F with the
mechanical problem of the previous section.

Theorem 1.1 (Definition of F and connection with mechanical problem). Suppose

∃ v ∈ R
m such that Hv + w ∈ L∗ (1.20)

(that is C̄(0) 6= ∅) then C̄(s) 6= ∅ for all s ∈ R
nI
+ , so that the function F is well-defined on R

nI
+

by (1.19). Moreover, if (v∗, r∗, ũ∗, s∗) solve the system (1.8)–(1.11), then v∗ = v(s∗) and s∗ is a
fixed point of F

F (s∗) = s∗.

This result suggests a new approach to solve the mechanical system. Essentially the idea is to
isolate the convexity in (1.8)-(1.11) and to treat it by optimization. In practice we compute fixed-
point iterations on F after solving (1.14) and check if it is a solution of the system. Numerical
experiments of [Cad09] and [ACML10] shows that this gives a simple, cheap and surprisingly
robust way to tackle this problem.

This approach indeed works very often - but it may fail for two reasons: either the solution
does not exist, or the algorithm does not find it for some numerical reasons. Simple exam-
ples show indeed that F may have no fixed point and the system no solution as well (see the
adapted Painlevé counter-example in [ACML10]). So this leads to the question of the existence
of fixed-point, that was solved with the celebrated Brouwer Theorem, under a strong assumption
(involving (1.6)).

Theorem 1.2 (Continuity and existence). If there exists

v ∈ R
m such that Hv + w ∈ L∗ (1.21)

then the function F defined by (1.19) is continuous, as well as bounded, on R
nI
+ . Thus we have

the existence of a fixed-point to F .

Obviously, (1.20) is weaker than (1.21). The goal of this paper is then to prove that Theo-
rem 1.2 is still valid under the weaker assumption (1.20). This will be done in Theorem 3.5 and
this turns out to rely two ingredients

• some continuity properties of the constraint-set of (1.14) (see Section 2), and

• a perturbation argument (see Section 3.2).

2 Continuity properties of the constraint-set mapping

This section gathers the continuity properties of the multi-application C̄ : R
nI
+ ⇉ R

m defined
by (1.16) (that we also bound, see forthcoming (2.3)). We start with a few definitions and an
easy basic property regarding continuity for multi-applications (for more details, see [HUL93,
Appendix] or [RW98]).
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2.1 Generalities on continuity of set-valued mappings

The distance of a point x to a closed convex set S is defined by d(x, S) := mins∈S ‖x − s‖,
the excess of a set S1 over a set S2 by

eH(S1/S2) := sup{d(x, S2), x ∈ S1}

and the Hausdorff distance between S1 and S2 by

∆H(S1, S2) := max(eH(S1/S2), eH(S2/S1)).

A multi-application S : D ⊂ R
n

⇉ R
m is said to be outer semi-continuous at s̄ when for all ε > 0,

there exists a neighborhood N of s̄ such that for all s ∈ N

S(s) ⊂ S(s̄) + B(0, ε) or, in other words, eH(S(s)/S(s̄)) ≤ ε.

Similarly, S is said to be inner semi-continuous at s̄ when for all ε > 0, there exists a neighborhood
N of s̄ such that for all s ∈ N

S(s̄) ⊂ S(s) + B(0, ε) or, in other words, eH(S(s̄)/S(s)) ≤ ε.

Moreover S is said to be continuous at s̄ when it is both outer and inner semi-continuous at s̄.
Finally S is said to be closed when its graph is closed, that is to say

∀(sk)k ∈ D with sk → s̄, ∀(vk)k ∈ S(sk) with vk → v̄, s̄ ∈ D and v̄ ∈ S(s̄), (2.1)

and bounded when S(D) is bounded.
Let us start with an easy general result which generalizes the following lemma: if a (single-

valued) function is continuous over a compact set, then it is uniformly continuous over this set.

Lemma 2.1. Let S be a closed, inner semi-continuous and bounded multi-application defined on
a compact set C. Then S is uniformly continuous on C:

∀ ε > 0,∃ δ > 0, ∀x, y ∈ C, ‖x − y‖ ≤ δ ⇒ ∆H(S(x), S(y)) ≤ ε.

Proof. To prove this result by contradiction, assume that there exists ε > 0 such that for all k =
1, 2 . . . with δk → 0 as k → ∞, there exist xk and yk with ‖xk−yk‖ ≤ δk and ∆H(S(xk), S(yk)) >
ε. This means that, for all k: either there exists uk ∈ S(xk) such that d(uk, S(yk)) > ε; or that
there exists vk ∈ S(yk) such that d(vk, S(xk)) > ε. At least one of the two sequences uk and vk

(say uk) is infinite, and up to re-numbering the sequence one may assume that it is defined for
all k ∈ N. Hence we have

d(uk, S(yk)) > ε for all k. (2.2)

Since C is compact and S is bounded (hence uk is bounded), we can assume (up to extraction
of a subsequence) that xk → ℓ ∈ C and uk → ū. The multi-application S being closed by
assumption, we have ū ∈ S(ℓ). Since ‖xk − yk‖ → 0, we also have yk → ℓ. For k large enough,
we have d(ū, S(yk)) ≤ ε/3 (by inner semi-continuity) and we also have ‖uk − ū‖ ≤ ε/3 (since
uk → ū). Then there holds

d(uk, S(yk)) ≤ d(uk, ū) + d(ū, S(yk)) ≤
2ε

3
< ε

which is a contradiction with (2.2) and ends the proof.

Note that a closed and bounded multi-application is necessarily outer semi-continuous, as
one easily shows, therefore the multifunction S in the previous lemma is continuous.
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2.2 The bounded constraint-set mapping

Let us now focus on C̄(·), more precisely on its bounded counterpart

G :

{

R
nI
+ −→ K

s 7−→ C̄(s) ∩ K,
(2.3)

with
K := {v ∈ R

m : J(v) ≤ J(v(0))}. (2.4)

Note that K is a convex and compact set, as the sublevel set of the strongly convex quadratic
function J .

Theorem 1.1 states in particular that the set-valued functions C̄, and thus G, have nonempty
ranges on R

nI
+ . Two easy properties of G are the following.

Lemma 2.2. The graph of the multi-application G defined by (2.3) is closed and convex.

Proof. Let (s1, v1), (s2, v2) ∈ graph(G) and α ∈ [0, 1]. We have u1 := Hv1 + w + Es1 ∈ L∗ and
u2 := Hv2 + w + Es2 ∈ L∗. The convexity of L∗ implies αu1 + (1 − α)u2 ∈ L∗. Said otherwise,

H(αv1 + (1 − α) v2) + w + E(αs1 + (1 − α) s2) ∈ L∗,

so that (αv1 + (1 − α) v2) ∈ C̄(αs1 + (1 − α) s2). In addition, the convexity of K implies
(αv1 + (1 − α) v2) ∈ K, so that α(s1, v1) + (1 − α)(s2, v2) ∈ graph(G): therefore graph(G) is
convex.

Let sk ∈ R
nI
+ with sk → s̄ and vk ∈ G(sk) with vk → v̄. By definition there holds Hvk + w +

Esk ∈ L∗; using the fact that H is continuous and L∗ is closed, there holds Hv̄ + w + Es̄ ∈ L∗.
Moreover K is compact, hence v̄ ∈ K. All this gives v̄ ∈ G(s̄), therefore G is closed.

Lemma 2.3 (Monotonicity). The multi-applications C̄ and G are increasing; in other words for
s, t ∈ R

nI such that si ≤ ti for all i, we have C̄(s) ⊂ C̄(t) and G(s) ⊂ G(t).

Proof. Let s, t ∈ R
nI such that si ≤ ti and take v ∈ C̄(s), i.e. (Hv + w + Es)i ∈ K∗

ei,µi for
i = 1, . . . , n. Let us show componentwise that we also have Hv + w + Et ∈ L∗. We see from
(1.13) that (Hv + w + Et)i ∈ K∗

ei,µi if i 6∈ I. On the other hand, take i ∈ I; knowing that

ei ∈ K∗

ei,µi and µi(ti − si) ≥ 0,

µi(ti − si)ei ∈ K∗

ei,µi .

Since K∗

ei,µi is convex

z :=
1

2
(Hv + w + Es)i +

1

2
µi(ti − si)ei ∈ K∗

ei,µi .

By positive homogeneity, (Hv + w + Et)i = 2z also lies in K∗

ei,µi .

Let us now turn to the more elaborate property of inner semi-continuity of G.

Lemma 2.4. The multi-application G defined by (2.3) is inner semi-continuous on R
nI
+ .
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Proof. Let s̄ ∈ R
nI
+ and ε > 0. It suffices to show that

∃δ > 0 : ∀s ∈ R
nI
+ , ‖s − s̄‖∞ ≤ δ ⇒ G(s̄) ⊂ G(s) + B(0, ε).

If s̄ = 0, this is obvious since G is increasing (Lemma 2.3). Otherwise, let χ := mini{s̄i : s̄i >
0} > 0. Let also v̄ ∈ G(s̄) 6= ∅, and let v0 ∈ G(0) 6= ∅; we may assume that v0 6= v̄, otherwise
v̄ ∈ G(0) ⊂ G(s) for all s ≥ 0 and there is nothing to prove. We will show that

δ := min

{

χ,
χε

‖v0 − v̄‖

}

> 0

does the job; note that s̄i − δ ≥ 0 for all i such that s̄i > 0. Consider now the following convex
combination

sα := (1 − α) 0 + α s̄ = α s̄

of 0 ∈ R
m and s̄, where α ∈ [0, 1] is chosen such that sα ≤ s (hence G(sα) ⊂ G(s)) for all s ≥ 0

such that ‖s − s̄‖∞ ≤ δ (fig. 1). We set α := 1 − δ/χ ∈ [0, 1] which, given the definition of γ,

s̄

‖s − s̄‖∞ ≤ δ

δ

δ

sα := α s̄

Figure 1: Choice of α

ensures αs̄i ≤ s̄i − δ for all i such that s̄i > 0 (the i’s such that s̄i = 0 obviously satisfy αs̄i ≤ si

for all s ≥ 0, whatever the choice of α ∈ [0, 1]).
Now set vα := (1 − α) v0 + α v̄ (which is compatible with the notation v0). Due to the

convexity of graph(G) (Lemma 2.2), vα ∈ G(sα). Hence, for all s ≥ 0 such that ‖s − s̄‖∞ ≤ δ
there holds vα ∈ G(s).

Let us sum everything up; we fixed δ, then for all v̄ ∈ G(s̄), we constructed vα which belongs
to G(s) for all s ≥ 0 such that ‖s − s̄‖∞ ≤ δ. Moreover, v̄ = vα + (v̄ − vα) with

‖v̄ − vα‖ = (1 − α)‖v0 − v̄‖ =
δ

χ
‖v0 − v̄‖ ≤ ε

which ends the proof.

We conclude with the lemma we will need later on.

Lemma 2.5. The multi-application G defined by (2.3) is uniformly continuous on every compact.

Proof. By Lemmas 2.2 and 2.4, G is closed and inner semi-continuous, and it is obviously bounded
since G(s) ⊂ K for all s ∈ R

nI
+ . We conclude with Lemma 2.1.
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3 Existence of a fixed point

In this section, we prove our existence result, showing that under the assumption (1.20),
there exists a fixed point to F . We aim at applying the standard Brouwer’s fixed point theorem,
so we need two properties: boundedness and continuity of F .

3.1 Boundedness directly

The boundedness of F comes easily from the monotonicity of C̄ (Lemma 2.3).

Lemma 3.1 (Boundedness). Assume (1.20) holds, then the function v defined by (1.17) and the
function F defined by (1.19) are bounded for s ∈ R

nI
+ .

Proof. From Lemma 2.3, there holds C̄(0) ⊂ C̄(s). Then J(v(s)) ≤ J(v(0)) < +∞ so that for
all s ∈ R

n
+, v(s) ∈ K (recall (2.4)). In other words, the image of v is included in the sub-level

set of J at v(0). Since the strong convexity of the quadratic function J implies that its sublevel-
sets are bounded, we get that v is bounded. By definition of F , the boundedness of F follows
immediately.

3.2 Continuity by perturbation

We prove here the most difficult technical result: the fact that F defined by (1.19) is contin-
uous under (1.20). We will show it by a perturbation argument which allows us to get back the
stronger assumption (1.21). The key observation is the following easy result.

Lemma 3.2 (Perturbation of the weak assumption). Assume that the data of the problem (1.12)
is such that (1.20) holds. For δ > 0, set ∆ := (δ, . . . , δ) ∈ R

nI
+ , and consider the function Fδ

defined by (1.19) for the data (1.12) where w is replaced by wδ = w + E∆. Then the function Fδ

is continuous on R
nI
+ .

Proof. Assumption (1.20) (with w) means there exists v ∈ R
m such that Hv + w ∈ L∗. Observe

now that E∆ lies in the cone L∗ defined by (1.6). We will show that Hv + w + E∆ ∈ L∗

componentwise, by a very similar argument as in the proof of Lemma 2.3.
Since ∆ ∈ R

nI
+ , we see from (1.13) that (Hv + w + E∆)i ∈ K∗i if i 6∈ I. On the other hand,

take i ∈ I; knowing that ei ∈ K∗

ei,µi and µiδ ≥ 0, we have

µiδei ∈ K∗

ei,µi .

Add to (Hv + w + Es)i ∈ K∗i = int K∗

ei,µi and invoke [HUL93, lemma III.2.1.6]:

z :=
1

2
(Hv + w)i +

1

2
µiδei ∈ K∗i.

By positive homogeneity, (Hv +w+Et)i = 2z also lies in K∗i. Thus the assumption (1.21) holds
for the data (1.12) with wδ. We apply Theorem 3.4 to conclude.

We will show that (Fδ)δ converges to F uniformly with respect to s over a closed ball. We
start with a lemma to control the difference between vδ and v.

Lemma 3.3. Assume that (1.20) holds. Let v and vδ defined by (1.17) for (1.12) with respectively
w and wδ. Let D ⊂ R

nI
+ be a compact set.

∀ε > 0, ∃δ̄ > 0, ∀δ ∈ [0, δ̄], ∀s ∈ D : ‖vδ(s) − v(s)‖ ≤ ε.
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Proof. Since J is strongly convex, there exists α > 0 such that for all s ∈ R
nI
+ , for all δ > 0 and

for all v ∈ R
m

J(v) ≥ J(vδ(s)) + ∇J(vδ(s))
⊤(v − vδ(s)) + α‖v − vδ(s)‖2.

Let sδ := s + ∆. If v lies in G(s) then in G(sδ) by Lemma 2.3, we have that the optimality of
vδ(s) implies ∇J(vδ(s))

⊤(v − vδ(s)) ≥ 0. The following growth condition thus holds

ηs := α‖vδ(s) − v(s)‖2 ≤ J(v(s)) − J(vδ(s)). (3.1)

Furthermore, the quadratic function J has the Lipschitz property over the compact set K for
some Lipschitz constant κ. Let ε > 0; set

γ :=
αε2

κ
.

The uniform continuity of G over the compact set D (Lemma 2.5) implies the existence of a
δ̄ > 0 such that, for all δ ∈ [0, δ̄] and for all s ∈ D such that sδ ∈ D, there holds

G(sδ) ⊂ G(s) + B(0, γ).

Since vδ(s) ∈ G(sδ), there exists ωδ ∈ G(s) such that ‖ωδ − vδ(s)‖ ≤ γ. Let us introduce ωδ in
(3.1); we get

ηs ≤ [J(v(s)) − J(ωδ)] + [J(ωδ) − J(vδ(s))] ≤ J(ωδ) − J(vδ(s))

since J(v(s)) ≤ J(ωδ) by definition of v(s), and finally

ηs ≤ κ‖ωδ − vδ(s)‖ ≤ κγ

using the Lipschitz property. By definition of ηs, this shows that

‖vδ(s) − v(s)‖ ≤
√

κγ

α
= ε

which ends the proof.

Theorem 3.4 (Continuity of F ). Let R ≥ 0 that is such that F (s) ≤ R for all s ∈ R
nI (given

by Lemma 3.1). Then Fδ converges to F as δ → 0 uniformly with respect to s ∈ R
nI
+ ∩ B(0, R).

Therefore F is continuous on R
nI
+ ∩ B(0, R).

Proof. For any component i, we have the following inequalities

|F i
δ(s) − F i(s)| = |‖ũi

δ,T ‖ − ‖ũi
T ‖|

≤ ‖ũi
δ,T − ũi

T ‖ = ‖(ũi
δ − ũi)T ‖

≤ ‖ũi
δ − ũi‖

≤ ‖ũδ − ũ‖ = ‖Hvδ(s) + w + E(s + ∆) − (Hv(s) + w + Es)‖
≤ ‖H‖ ‖vδ(s) − v(s)‖ + ‖E‖ ‖∆‖ = ‖H‖‖vδ(s) − v(s)‖ + ‖E‖δ√n

Since vδ(·) converges to v(·) uniformly with respect to s (with ‖s‖ ≤ R) as δ goes to zero (by
Lemma 3.3), we have that Fδ converges uniformly to F . Lemma 3.2 proves that the functions
Fδ are continuous and this concludes the proof.
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3.3 Proof of the result

We are now in position to state the existence of a fixed point to F under the assumption
(1.20): the proof follows easily from the gathered previous results.

Theorem 3.5 (Existence of fixed-point). If there exists v ∈ R
m such that Hv + w lies in L∗,

then F defined by (1.19) admits a fixed point on R
nI
+ .

Proof. The function F is nonnegative and Lemma 3.1 shows that it is bounded. We introduce
R ≥ 0 such that ‖F (x)‖ ≤ R, and thus we have

F (RnI
+ ∩ B(0, R)) ⊂ R

nI
+ ∩ B(0, R).

Theorem 3.4 gives that F is continuous on R
n
+ ∩ B(0, R). So we can apply the Brouwer’s fixed

point theorem (see e.g. [Ist81] or [DS88]) to F on R
n
+ ∩ B(0, R) and we obtain the existence of

at least one fixed point of F on R
n
+ ∩ B(0, R).

This result thus generalizes the existence result of [ACML10] under the weaker, natural
assumption (1.20). The key of the proof is the continuity property (Lemma 2.5) of the set-valued
mapping corresponding the constraint set of the optimization problem (1.14) used to defined the
function F . Numerical experiments and mechanical interpretation are developped in [Cad09]
and [ACML10].
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