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Abstract—In this paper, we provide a full analysis of the
information propagation speed in bidirectional vehicular delay
tolerant networks such as roads or highways. The provided
analysis shows that a phase transition occurs concerning the in-
formation propagation speed, with respect to the vehicle densities
in each direction of the highway. We prove that under a certain
threshold, information propagates on average at vehicle speed,
while above this threshold, information propagates dramatically
faster at a speed that increases quasi-exponentially when the
vehicle density increases. We provide the exact expressions of
the threshold and of the average information propagation speed
near the threshold, in case of finite or infinite radio propagation
speed. Furthermore, we investigate in detail the way information
propagates under the threshold, and we prove that delay tolerant
routing using cars moving on both directions provides a gain in
propagation distance, which is bounded by a sub-linear power
law with respect to the elapsed time, in the referential of the
moving cars. Combining these results, we thus obtain a complete
picture of the way information propagates in vehicular networks
on roads and highways, which may help designing and evaluating
appropriate VANET routing protocols. We confirm our analytical
results using simulations carried out in several environments (The
One and Maple).

I. INTRODUCTION

The limits of the performance of multi-hop packet radio
networks have been studied for more than a decade, yielding
fundamental results such as those of Gupta and Kumar [12]
on the capacity of fixed ad hoc networks. These studies
assume that either end-to-end paths are available or packets
are dropped on the spot. Following seminal works such as
[11] evaluating the potential of mobility to increase capacity,
recent research studies focussed on the limits of the perfor-
mance beyond the end-to-end hypothesis, i.e., when end-to-end
paths may not exist and communication routes may only be
available through time and mobility. In this context nodes may
carry packets for a while until advancing further towards the
destination is possible. Such networks are generally referred as
Intermittently Connected Networks (ICNs) or Delay Tolerant
Networks (DTNs). Interest in DTN modeling and analysis has
risen as novel network protocols and architectures are being
elaborated to accommodate various forms of new, intermit-
tently connected networks, which include vehicular ad hoc
networks (VANETs), power-saving sensor networks, or even
Interplanetary Internet [7].

In this paper, we study the information propagation speed
in the typical case of bidirectional vehicular DTNs, such as
roads or highways (e.g., about 75% of the total statute miles
in the USA [18]). Our objective consists in determining the

maximum speed at which a packet (or beacon) of information
can propagate in such a bidirectional vehicular network. Our
analysis shows that a phase transition occurs concerning
information propagation speed, with respect to the vehicle
density. We prove that under a certain threshold, information
propagates on average at vehicle speed, while above this
threshold, information propagates much faster. We provide
the exact expressions of the threshold and of the average
propagation speed near the threshold.

With applications such as safety, ad hoc vehicular networks
are receiving increasing attention (see recent surveys [6], [17]).
Delay tolerant architectures have thus been considered in this
context in recent studies, and various analytical models have
been proposed. In [19], the authors study vehicle traces and
conclude that vehicles are very close to being exponentially
distributed on highways. The authors of [5] also base them-
selves on traces gathered in DieselNET (the experimental
vehicular network deployed by UMass) to elaborate and
evaluate a novel DTN routing algorithm. In [10], the authors
provide a model for critical message dissemination in vehicular
networks and derive results on the average delay in delivery of
messages with respect to vehicle density. The authors of [21]
propose an alternative model for vehicular DTNs and derived
results on node connectivity, under the hypothesis that vehicles
are exponentially distributed. The study is based on queuing
theory techniques and characterizes the relationship between
node connectivity and several parameters including speed
distribution and traffic flow. In [20], the authors model vehicles
on a highway, and study message propagation among vehicles
in the same direction, taking into account speed differences
between vehicles, while in [16] authors study message dissem-
ination among vehicles in opposing directions and conclude
that using both directions increases dissemination significantly.

Several studies focus on characterizing the packet propa-
gation delay in DTNs: [8] which models DTNs as Erdös-
Rényi random graphs to derive results concerning packet
propagation delay, [22] which uses fluid limit techniques to
derive relationships between buffer space, packet duplication
and dissemination delay. Other studies focus on information
propagation speed in DTNs. In [15] the authors show that
when a two-dimensional network is not percolated, the latency
scales linearly with the Euclidean distance between the sender
and the receiver, while in [13], the authors obtained analytical
estimates of the constant bounds on the speed at which
information can propagate in two-dimensional DTNs. Studies



such as [1], [2], [3] are the closest related work, also focusing
on information propagation speed in one-dimensional DTNs.
These studies introduce a model based on space discretization
to derive upper and lower bounds in the highway model
under the assumption that the radio propagation speed is finite.
Their bounds, although not converging, clearly indicates the
existence of a phase transition phenomenon for the information
propagation speed. Comparatively, we introduce a model based
on Poisson point process on continuous space, that allows both
infinite and finite radio propagation speed, and derive more
fine-grained results above and below the threshold (some of
the work described in the following was presented in [4]).
Using our model, we prove and explicitly characterize the
phase transition.

In this context, our contributions are as follows: (1) we
develop a new vehicule-to-vehicule model for information
propagation in bidirectional vehicular DTNs in Section II;
(2) we show the existence of a threshold (with respect to the
vehicle density), above which the information speed increases
dramatically over the vehicle speed, and below which the
information propagation speed is on average equal to the
vehicle speed, and (3) we give the exact expression of this
threshold, in Section III; (4) in Section IV, we prove that, un-
der the threshold, even though the average propagation speed
equals the vehicle speed, DTN routing using cars moving on
both directions provides a gain in the propagation distance,
and this gain follows a sub-linear power law with respect to
the elapsed time, in the referential of the moving cars; (5)
we characterize information propagation speed as increasing
quasi-exponentially with the vehicle density when the latter
becomes large above the threshold, in Section V; (6) we cover
both infinite radio propagation speed cases, then finite radio
propagation speed cases in Section VI, and (7) we validate the
provided analysis with simulations in multiple environments
(The One and Maple), in Section VII.

II. MODEL AND RESULTS

WestboundWestbound cluster

Eastbound cluster
Eastbound

Fig. 1. Model of a bidirectional vehicular network on a highway.

In the following, we consider a bidirectional vehicular net-
work, such as a road or a highway, where vehicles move in two
opposite directions (say east and west, respectively) at speed
v, as depicted in Figure 1. Let us consider eastbound vehicle
density as Poisson with intensity λe, while westbound vehicle
density is Poisson with intensity λw. We note that the Poisson
distribution is indeed a reasonable approximation of vehicles
moving on non-congested highways [19]. Furthermore, we
consider that the radio propagation speed (including store and

Fig. 2. Information propagation threshold with respect to (λe, λw). Below
the curve, the average information propagation speed is limited to the vehicle
speed (i.e., the propagation speed is 0 in the referential of the eastbound cars),
while above the curve, information propagates faster on average.

forward processing time) is infinite, and that the radio range
of each transmission in each direction is of length R.

The main result presented in this paper is that, concerning
the information propagation speed in such an environment, a
phase transition occurs when λeR and λwR coincide on the
curve y = xe−x, i.e.,

λeRe
−λeR = λwRe

−λwR. (1)

Figure 2 shows the corresponding threshold curve for R = 1
(in the following, we will always consider the case R = 1,
without loss of generality). We show that below this threshold,
the average information propagation speed is limited to the
vehicle speed, while above the curve, information propagates
faster on average.

We focus on the propagation of information in the eastbound
lane. Our aim is the evaluation of the maximum speed at
which a packet (or beacon) of information can propagate.
An information beacon propagates in the following manner,
illustrated in Figure 3: it moves toward the east jumping from
car to car until it stops because the next car is beyond radio
range. The propagation is instantaneous, since we assume that
radio routing speed is infinite. The beacon waits on the last
eastbound car until the gap is filled by westbound cars, so that
the beacon can move again to the next eastbound car.

We denote Ti the duration the beacon waits when blocked
for the ith time and Di the distance traveled by the beacon
just after. The random variables Ti and Di are dependent but,
due to the Poisson nature of vehicle traffic, the tuples in the
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Fig. 3. Eastbound information propagation: the beacon waits on the last
eastbound car (a), until the gap is bridged by westbound cars so that the
beacon can move again (b).

sequence (Ti,Di) are i.i.d.. From now on, we denote (T,D)
the independent random variable.

We denote L(t) the distance traveled by the beacon during a
time t on the eastbound lane. We consider the distance traveled
with respect to the referential of the eastbound cars. We also
define the average information propagation speed vp as:

vp = lim
t→∞

E(L(t))

t
. (2)

By virtue of the renewal processes, we have

vp =
E(D)

E(T)
. (3)

We prove that vp is well-defined because E(D) is finite, in
Section III-F. For the remainder of the paper, for x > 0, we
denote x∗ the conjugate of x with respect to the function xe−x:
x∗ is the alternate solution of the equation x∗e−x

∗
= xe−x.

Notice that x∗∗ = x and 1∗ = 1.
We prove the following theorems, concerning the informa-

tion propagation phase transition threshold (Theorem 1), the
distribution of the waiting time spent by information packets
in the phase depicted in Figure 3a (Theorem 2), and the
total propagation distance achieved (under the phase transition
threshold) because of multi-hop bridging using nodes in both
traffic directions, as depicted in Figure 3b (Theorem 3).

Theorem 1. For all (λe, λw), the information propagation
speed vp with respect to the referential of the eastbound cars
is vp <∞, and,

λe < λ∗w ⇒ vp = 0, (4)
λe > λ∗w ⇒ vp > 0. (5)

Theorem 2. When t→∞,

P (T > t) = A(λe, λw)(2vt)
− λe
λ∗w (1 + o(1)) , (6)

for some A(λe, λw), function of (λe, λw).

Notice that Theorem 1 is in fact a corollary of Theorem 2.

Theorem 3. When λ∗w > λe (case vp = 0), when t→∞,

E(L(t)) = B(λe, λw)(2vt)
λe
λ∗w +O(t

2 λe
λ∗w
−1

) . (7)

for some B(λe, λw), function of (λe, λw).

III. PHASE TRANSITION: PROOF OF THEOREM 1

A. Proof Outline

We call cluster a maximal sequence of cars such that
two consecutive cars are within radio range. A westbound
(respectively, eastbound) cluster is a cluster made exclusively
of westbound (respectively, eastbound) cars. A full cluster is
made of westbound and eastbound cars.

We define the length of the cluster as the distance be-
tween the first and last cars augmented by a radio range.
We denote Lw a westbound cluster length. We start by
proving in Section III-B that the Laplace transform of Lw:
fw(θ) = E(e−θLw) equals:

fw(θ) =
(λw + θ)e−λw−θ

θ + λwe−λw−θ
, (8)

and the exponential tail of the distribution of Lw is given by

P (Lw > x) = Θ(e−λ
∗
wx). (9)

To evaluate how information will propagate according to
Figure 3, we compute the distribution of the gap length Ge
between the cluster of eastbound cars on which the beacon is
blocked and the next cluster of eastbound cars. We show in
Section III-D that P (Ge > x) = O(e−λex).

Now, let T(x) be the time needed to meet a westbound
cluster long enough to fill a gap of length x (i.e., a westbound
cluster of length larger than x). We show in Section III-C that:

E(T(x)) = Θ(
1

vP (Lw > x)
) = Θ(eλ

∗
wx) . (10)

Therefore, the average time T to get a bridge over all possible
gaps is

E(T) =

∫ ∞
1

E(T(x))e−xλedx

=
1

2v

∫ ∞
1

Θ(exp((λ∗w − λe)x))dx . (11)

As a result, the threshold with respect to (λw, λe) where E(T)
diverges is clearly when we have:

λ∗w = λe, (12)

or, in other words, since λ∗we
−λ∗w = λwe

−λw , when we have:

λwe
−λw = λee

−λe . (13)



B. Cluster Length Distribution

Lemma 1. The Laplace transform of the westbound cluster
length fw(θ) = E(e−θLw) satisfies:

fw(θ) =
(λw + θ)e−λw−θ

θ + λwe−λw−θ
. (14)

Proof: The length of the cluster is counted from the first
car. The random variable Lw satisfies:

• Lw = 1, with probability e−λw , when the first car has no
car behind within the radio range;

• Lw = gw + Lw, with probability 1− e−λw , where gw is
the distance to the next car and gw < 1.

Translating this in terms of Laplace transforms yields:

fw(θ) = e−λw−θ + fw(θ)

∫ 1

0

λwe
−(λw+θ)xdx (15)

= e−λw−θ + fw(θ)
λw

λw + θ
(1− e−λw−θ) . (16)

In passing, we get E(Lw) = −f ′w(0) = eλw−1
λw

.

Lemma 2. We have the asymptotic formula:

P (Lw > x) =
(λw − λ∗w)eλ

∗
w−λw

(1− λ∗w)λ∗w
e−λ

∗
wx(1 + o(1)) (17)

Proof: The asymptotics on P (Lw > x) are given by
inverse Laplace transform:

P (Lw > x) = − 1

2iπ

∫ −ε+i∞
−ε−i∞

fw(θ)

θ
eθxdθ

= − 1

2iπ

∫ −ε+i∞
−ε−i∞

(λw + θ)e−λw

(θeθ + λwe−λw)θ
eθxdθ ,

for some ε > 0 small enough. For <(θ) < 0 the denominator
(θeθ + λwe

−λw) has two simple roots at θ = −λ∗w and
θ = −λw and is absolutely integrable elsewhere. The root
−λw does not lead to a singularity since it is canceled by the
numerator λw + θ. The residues theorem neutralizes the pole
at −λw, therefore for some ε > 0:

P (Lw > x) =
(λw − λ∗w)eλ

∗
w−λw

(1− λ∗w)λ∗w
e−λ

∗
wx +O(e−(λ

∗
w+ε)x) .

C. Road Length to Bridge a Gap

Now, let us assume that we want to fill a gap of length x. We
want to know the average length of westbound road until the
first cluster that has a length greater than x−1. Figure 4 depicts
a gap of length x, and the length of westbound road until a
cluster is encountered which can bridge the gap. Let fw(θ, x)
be the Laplace transform of the cluster length, under the con-
dition that it is smaller than x: fw(θ, x) = E(1(Lw<x)e

−θLw).

(starting from arbitrary cluster)

v

v

Lw1 < x − 1 Lw2 < x − 1

Unbridged gap length x

Lw3 > x − 1

R = 1

Road length to bridge gap Bw(x)

(a)

R = 1

v

v

Lw3 > x − 1

(b)

Fig. 4. Illustration of the road length Bw(x) until a gap x is bridged: (a)
smaller clusters cannot bridge the gap, (b) until a westbound cluster of length
at least x− 1 is encountered.

Lemma 3. The Laplace transform of the road length Bw(x)
to bridge a gap of length x, starting from the beginning of an
arbitrary cluster, is:

βw(θ, x) = E(e−θBw(x)) =
P (Lw > x− 1)

1− λw
λw+θfw(θ, x− 1)

, (18)

and,

E(Bw(x)) =
(
1 +O(e−εx)

) eλw
λw

(1− λ∗w)λ∗w
(λw − λ∗w)eλ

∗
w−λw

e(x−1)λ
∗
w .

(19)

Proof: Before a cluster of length greater than x appears
there is a succession of clusters L1, L2, . . . each of length
smaller than x (see Figure 4b). Several cases are possible:
• the first cluster to come is a cluster of length greater than
x, with probability P (Lw > x − 1); the road length to
this cluster is equal to 0.

• the first cluster greater than x is the second cluster; in
this case, the road length Laplace transform is equal to
fw(θ, x) λw

λw+θ , i.e., the Laplace transform of a cluster
multiplied the Laplace transform of the exponentially dis-
tributed inter-cluster distance, namely λw

λw+θ (as Laplace
transform multiplication represents the addition of the
corresponding independent random variables).

• or, in general, the first cluster greater than x is the kth
cluster; in this case, the road length Laplace transform is

equal to
(
fw(θ, x) λw

λw+θ

)k
Therefore, the Laplace transform of the road length to the
cluster of length greater than x is equal to the sum of the
Laplace transforms of the previous cases, i.e., P (Lw > x −
1)
∑∞
k=0

(
fw(θ, x) λw

λw+θ

)k
.



Thus, the average is (combining with Lemma 2):

E(Bw(x)) = − ∂

∂θ
βw(0, x)

= −
(
∂

∂θ
fw(0, x− 1)− 1

λw
fw(0, x− 1)

)
× 1

P (Lw > x− 1)

=

(
eλw

λw
+O(e−(x−1)λ

∗
w)

)
1

P (Lw > x− 1)

=
(
1 +O(e−εx)

) eλw(1− λ∗w)λ∗w
λw(λw − λ∗w)eλ

∗
w−λw

e(x−1)λ
∗
w

D. Gap Distribution

Let us call Ge an eastbound gap which is not bridged (see
Figure 5). As illustrated in Figure 6, Ge can be decomposed
into a westbound cluster length L∗w without eastbound cars,
plus a random exponentially distributed distance Ie to the next
eastbound car.

Unbridged eastbound gap Ge

Eastbound

Westbound

Bridged eastbound gap Ge

Fig. 5. Illustration of a bridged gap Ḡe, and an unbridged gap Ge.

R

Lw
*

Distance to next
eastbound car

Gap length Ge

Fig. 6. Unbridged gap Ge model; L∗
w corresponds to a westbound cluster

length without eastbound cars.

Lemma 4. The distribution of Ge satisfies

E(e−θGe) =
fw(θ + λe)

fw(λe)

λe
λe + θ

, (20)

which is defined for all <(θ) > −λe, and

E(Ge) = −f
′
w(λe)

fw(λe)
+

1

λe
. (21)

Proof: Let pw(x) be the probability density of a west-
bound cluster length Lw. The probability that a westbound
cluster has no eastbound cars is:∫ ∞

0

pw(x)e−λexdx = fw(λe). (22)

The Laplace transform of the westbound cluster length
without eastbound cars, defined for all <(θ) > λ∗w+λe, equals:

E(e−θL
∗
w) =

∫∞
0
pw(x)e−λexe−θxdx

Pr(no eastbound)
=
fw(θ + λe)

fw(λe)
. (23)

and the Laplace transform of Ge = L∗w + Ie follows, as well
as its average estimate.

Lemma 5. The probability density pe(x) of Ge is:

pe(x) =
λe

fw(λe)
e−λex(1 +O(e−εx)) . (24)

Proof: The proof comes from a straightforward singular-
ity analysis on the inverse Laplace transform.

E. Distribution of Waiting Time T

Lemma 6. We have 2vT = L∗w + Iw + Bw − 1 (where
Iw is a random exponentially distributed distance to the next
westbound car), and, therefore,

2vE(T) = E(L∗w)−1+
1

λw
+

∫ ∞
1

E(Bw(x))pe(x)dx . (25)

R = 1
Lw

*

Distance to next
westbound car

Road length to bridge gap Bw

Total distance to bridge gap: 2vT

R = 1

Fig. 7. Waiting time T: the total distance to bridge a gap is L∗
w+Iw+Bw−1.

Proof: The total distance to bridge a gap, as depicted
in Figure 7, equals the distance to the beginning of the first
westbound cluster (L∗w + Iw) plus the road length to bridge
a gap starting from an arbitrary cluster (Bw) minus 1, since
communication can start at exactly one radio range. Since the
distance is covered by cars moving in opposite directions, we
have 2vT = L∗w + Iw + Bw − 1. We complete the proof
by taking the expectations, and averaging on all possible gap
lengths x.

Corollary 1. The quantity E(T) converges when λe > λ∗w
and diverges when λe < λ∗w.

Proof: The proof comes from the leading terms of
E(Bw(x)) and pe(x).

F. Distance D Traveled after Waiting Time T

We denote Ce the distance traveled beyond the first gap. As
depicted in Figure 8, we have D = Ge + Ce.

Lemma 7. The Laplace transform E(e−θCe) is defined for all
<(θ) > −(λe + λw)∗.

Proof: The random variable Ce is smaller in probability
than a full cluster.
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Fig. 8. Total distance D traveled when a bridge is created D = Ge + Ce.

Lemma 8. The average value of Ce satisfies:

E(Ce) =
1

λe

1− fw(λe)

fw(λe)
+
f ′w(λe)

fw(λe)
. (26)

Proof: From (22), the probability that an eastbound car
is not bridged to the next eastbound car equals fw(λe). The
unconditional gap length is 1

λe
. We define Ḡe as an eastbound

gap, under the condition that the gap is bridged (see Figure 5).
Therefore, the average gap length Ḡe satisfies the following:

fw(λe)E(Ge) + (1− fw(λe))E(Ḡe) =
1

λe
, (27)

which gives E(Ḡe) = 1
λe

+
f ′w(λe)

1−fw(λe)
.

The distance Ce traveled in bridging (beyond the first gap,
and extended to the next cluster, which is eventually bridged)
satisfies:

E(Ce) = (1− fw(λe))
(
E(Ḡe) + E(Ce)

)
(28)

=
1

λe

1− fw(λe)

fw(λe)
+
f ′w(λe)

fw(λe)
. (29)

Corollary 2. The total distance De traveled including the first
gap satisfies E(De) = E(Ge) + E(Ce) = 1

λefw(λe)
, which

remains finite for all vehicle densities.

Since E(De) is finite (Corollary 2) and E(T) converges
when λe > λ∗w, and diverges when λe < λ∗w (Corollary 1),
we obtain the proof of Theorem 1.

IV. POWER LAWS: PROOF OF THEOREMS 2 AND 3

A. Waiting Time Distribution

In this section, we are interested in finding an evaluation
of the waiting time distribution P (T > y), when y → ∞, in
case λe < λ∗w, i.e., when the information propagation speed
is 0 on average.

Lemma 9. When y tends to infinity,

P (Bw > y) = A(λe, λw)y
− λe
λ∗w (1 + o(1)),

with

A(λe, λw) =
λee
−λe

λ∗wfw(λe)
Γ

(
λe
λ∗w

)
β
− λe
λ∗w ,

where Γ(.) is the Euler “Gamma” function, β =
λw(λw−λ∗w)eλ

∗
w−2λw

1−λ∗w
.

Proof: See appendix.

Lemma 10. When t→∞:

P (T > t) = A(λe, λw) (t2v)
− λe
λ∗w (1 + o(1)) . (30)

Proof: We have the relation T
2v = Gew + Bw, with

Gew = L∗w + Iw − 1. We know that Gew, in analogy with
Ge, has an exponential tail, i.e., E(e−θGew) < ∞ for all
θ > −λw. In other words P (Gew > y) = O(exp(−θy)).
The other particularity is that Gew and Bw are dependent.
First we have the inequality for all y

P (Gew +Bw > y) ≥ P (Bw > y),

therefore, we have P (T > t) ≥ A(λe, λw) (t2v)
− λe
λ∗w (1 +

o(1)). Second, we have the other inequality for all (y, z):

P (Gew +Bw > y) ≤ P (Gew > z) + P (Bw > y − z) .

Thus, by selecting z = O(log t) such that
P (Gew > z) = o(t

− λe
λ∗w ), we get P (T > t) ≤

A(λe, λw) (t−O(log t)2v)
− λe
λ∗w + o(t

− λe
λ∗w )

Therefore, we conclude the proof of Theorem 2.

B. Traveled Distance Distribution

Now, we focus on the renewal process made of the var-
ious waiting time intervals T, experienced by the informa-
tion beacon. Considering the sequence of waiting phases,
T1,T2, . . . ,Tn, . . .: the beacon moves at time T1, then at
time T1+T2, T1+T2+T3, etc. We denote n(t) the number
of phases achieved before time t:

i=n(t)∑
i=1

Ti ≤ t <
i=n(t)+1∑
i=1

Ti .

Since the Ti are independent, this is a renewal process, and
we have the identity:

P (n(t) ≤ n) = P (T1 + · · ·+ Tn ≥ t) .

We can get a precise estimate of the average number of
renewals E(n(t)) during time t.

Lemma 11. There exists b > 0 such that, when t → ∞, the
following estimate is valid:

E(n(t)) =
sin2(π λeλ∗w

)

bπ2
Γ(
λe
λ∗w

)t
λe
λ∗w +O(t

2 λe
λ∗w
−1

) . (31)

Proof: See appendix.
In parallel to the sequence of waiting intervals {Ti}i≥1,

we have the sequence {Di}i≥1 the distances traveled by the
beacon after every waiting interval Ti. Now we denote L(t) =∑i=n(t)
i=1 Di which is the total distance traveled by the beacon

until time t.

Lemma 12.
E(L(t)) = E(n(t))E(D) .

Proof: We have the identity:

E(L(t)) =
∑
n>0

E(1n(t)≥nDn), (32)



where 1n(t)≥n is the indicative function of the event n(t) ≥ n.
Since, from the definition of n(t), we have the equivalence:
n(t) ≥ n⇔ T1+· · ·+Tn−1 < t, then 1n≤n(t) and Dn are in-
dependent random variables and, therefore, E(1n(t)≥nDn) =
P (n(t) ≥ n)E(D).

Quantity E(D) has a closed expression (E(D) = 1
λefw(λe)

,
from Corollary 2. Substituting and using Lemma 11, the power
law for E(L(t)) in Theorem 3 is shown.

V. ASYMPTOTIC ESTIMATES

A. Near the Threshold

First, we investigate the case where (λe, λw) is close to the
threshold boundary.

Corollary 3. When λe → (λ∗w)+:

vp ∼ 2v
(λw − λ∗w)λw
λ2e(1− λ∗w)λ∗w

(λe − λ∗w)eλ
∗
w+λe−2λw . (33)

Proof: Using Lemma 6, we have:

2vE(T) = −f
′
w(λe)

fw(λe)
+

∫ ∞
1

E(Bw(x))pe(x)dx

∼
∫ ∞
1

eλw

λw

(1− λ∗w)λ∗w
λw − λ∗w

eλw−λ
∗
we(x−1)λ

∗
w

× λe
fw(λe)

e−λexdx .

Integrating, we obtain vp = E(D)
E(T) .

B. Large Densities

Corollary 4. When the vehicle densities become large, i.e.,
λe, λw →∞:

vp ∼ 2v
eλe+λw

1 + λw
λe

+ λe
λw

. (34)

Proof: According to Lemma 4, we have:

E(L∗w) = 1 +
λw

λe(λw + λe)
, (35)

and the expected gap length tends to 1. The average road
length to bridge such a gap tends to 1

λw
. From Lemma 6:

2vE(T) ∼ E(L∗w)− 1 +
1

λw
. (36)

From corollary 2, the average distance traveled in bridging is:

E(D) =
1

λefw(λe)
∼ eλe+λw

λe + λw
, (37)

and we obtain vp = E(D)
E(T) .

Note that the information propagation speed grows quasi-
exponentially with respect to the total vehicle density.

VI. FINITE RADIO PROPAGATION SPEED

If the radio propagation speed (including store and forward
timings) is finite and constant, equal to vr, then the average
information propagation speed becomes:

s =
E(Tw)v + E(De)

E(Tw) + 1
vr
E(De)

. (38)

But the speed vr impacts the random variables Ge and Tw. The
main impact is that, to fill an eastbound gap of length x, one
needs a westbound cluster of length at least x(1+γ)

1−γ with γ =
v
vr

, otherwise the message will be off the gap when arriving

at the end of the cluster. Thus, E(Tw(x)) = O(e
(1+γ)θw

1−γ x).
The gap length is also modified, since we must consider

1−γ
1+γL

∗
w:

E(e−θGe) =
fw( 1−γ

1+γ (θ + λe))

fw( 1−γ
1+γλe)

λe
λe + θ

. (39)

But, this does not change the exponential term e−λex in
the asymptotic expression of pe(x). Therefore, the threshold
condition becomes:

λwe
−λw =

1− γ
1 + γ

λee
− 1−γ

1+γ λe . (40)

This corresponds to a dilatation by a factor 1+γ
1−γ of the

horizontal axis in the diagram of Figure 2. Notice how the
diagram then loses its symmetry with respect to λe versus
λw, which can be observed in Figure 9.

Notice also that, when vr decreases to v, the threshold limit
tends to infinity.

Similarly, in correspondance to Theorem 3, we have
E(L(t)) = Ω(t

1−γ
1+γ

λe
λ∗w ), due to the dilatation by the factor

1+γ
1−γ .

VII. SIMULATIONS

In this section, we present simulation results obtained with
Maple on one hand, and the Opportunistic Network Environ-
ment (ONE [14]) simulator on the other hand.

A. Maple Simulations

We first compare the theoretical analysis with measure-
ments performed using Maple. In this case, the simulations
follow precisely the bidirectional highway model described
in Section II: we generate Poisson traffic of eastbound and
westbound traffic on two opposite lanes moving at constant
speed, which is set to v = 1m/s. The radio propagation range
is R = 1m, and radio transmissions are instantaneous; the
length of the highway is sufficiently large to provide a large
number of bridging operations (of order at least 103) for all
considered traffic densities.

We measure the information propagation speed which is
achieved using optimal DTN routing, by selecting a source
and destination pairs at large distances, taking the ratio of the
propagation distance over the corresponding delay, and aver-
aging over multiple iterations of randomly generated traffic.
We vary the total traffic density, and we plot the resulting



Fig. 9. Threshold zones for (λe, λw) for various γ = v
vr

, γ = 0 red,
γ = 0.1 blue, γ = 0.5 green, γ = 0.8 yellow.

information propagation speed. Figures 10 and 11 show the
evolution of the information propagation speed near the thresh-
old versus the total vehicle density, when λe = λw, in linear
and semilogarithmic plots, respectively. We can observe the
threshold at λe + λw = 2 in Figure 10, which confirms the
analysis presented previously in Section III, and corresponds
to λe = λw = 1 in Figure 2. In semilogarithmic scale
(Figure 11), we observe that the simulation measurements
quickly approach a straight line, and therefore are close to
the theoretically predicted exponential growth above the phase
transition threshold, in Section V. In Figure 12, we present a
3-dimensional plot of the eastbound information propagation
speed vp by varying the vehicle densities in both eastbound
(λe) and westbound (λw) traffic.

Finally, we perform detailed measurements of the waiting
time T that each packet of information spends in the buffer of
an eastbound car until it encounters a westbound cluster which
allows it to propagate faster to the next eastbound car. For the
measurements, we set the vehicle densities to λe = λw = 0.9;
thus the conjugate λ∗w = 1.107 . . . . In Figure 13, (i.e., below
the phase transition threshold), we plot the distribution of the
waiting time T, and we compare it to the predicted power law
in Theorem 2: P (T > t) = t

− λe
λ∗w .

B. ONE Simulations

In this section, we depart from the exact Poisson model sim-
ulations in Maple, and we present simulation results obtained
with the Opportunistic Network Environment (ONE [14]) sim-
ulator. Vehicles are distributed uniformly on the length of both
lanes of a road, and move at a constant unit speed. The total

Fig. 10. Maple simulations. Information propagation speed vp for λe = λw ,
versus the total vehicle density λe + λw .

Fig. 11. Maple simulations. Information propagation speed vp for λe = λw ,
versus the total vehicle density λe + λw , in semi-log scale, compared to the
theoretically predicted asymptotic exponential growth.



Fig. 12. Maple simulations. Eastbound information propagation speed vp
for different values of the vehicule densities, λe and λw .

Fig. 13. Maple simulations. Cumulative probability distribution P (T > t) of

the waiting time T, compared to the power law t
− λe
λ∗w , for λe = λw = 0.9.
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Fig. 14. ONE simulations. Information propagation speed for λe = λw ,
with respect to λe + λw .

number of vehicles varies from 1000 to 5000. Similarly to the
previous section, we measure the fastest possible information
propagation speed which is achieved using epidemic broadcast,
assuming that radio transmissions are instantaneous and that
there are no buffering or congestion delays, with a radio range
R = 10m. Again, we vary the vehicle densities λe and λw,
which are given in vehicles per radio range, and we perform
several simulation iterations of randomly generated traffic. As
shown in Figure 14, similarly to the Maple simulation results
and to the analysis, we observe the threshold phenomenon
at λe = λw = 1: the information propagation speed remains
almost constant below the threshold but increases dramatically
beyond it. We also observe an exponential growth above the
threshold in Figure 15.

We remark that measurements below the phase transition
threshold yield an average information propagation speed
which is slightly larger than the vehicle speed. This is due to
the finite duration of the simulations and in the computations
of the expectations. This phenomenon can also be explained
from the theoretical analysis in Section IV: even below the
threshold, DTN routing using cars moving on both directions
still provides a gain in the propagation distance, which follows
a sub-linear power law with respect to the elapsed time (in
the referential of the moving cars). Figure 16 confirms the
predicted power law tλe/λ

∗
w for E(L(t)), the average distance

traveled by information with respect to time (in Theorem 3),
which is shown in Figure 16 for λe = 1 and λw = 0.9,
therefore, a growth of order t0.903.

VIII. CONCLUDING REMARKS

In this paper, we provided a detailed analysis for in-
formation propagation in bidirectional vehicular DTNs. We
proved the existence of a threshold, concerning vehicle density,
above which information speed increases dramatically over
vehicle speed, and below which information propagation speed



 5

 10

 15

 20

 1  2  3  4

sp
ee

d

Le+Lw

Fig. 15. ONE simulations. Information propagation speed for λe = λw ,
with respect to λe + λw , in semi-log scale, compared to the theoretically
predicted asymptotic exponential growth.
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Fig. 16. ONE simulations. Average distance traveled by information with
respect to elapsed time E(L(t)), divided by the predicted power law tλe/λ

∗
w

for λe = 1 and λw = 0.9, compared to the constant value 1.80 (dash).

is on average equal to vehicle speed (in Theorem 1), and
we computed the exact expression of this threshold. We
exactly characterized the information speed near the threshold
(Corollary 3), and we showed that, above the threshold, the
information propagation speed increases quasi-exponentially
with vehicle density (Corollary 4). We also analyzed in detail
the way information propagates under the threshold, and we
showed that DTN routing using bidirectional traffic provides
a gain in the propagation distance, which follows a sub-linear
power law with respect to the elapsed time (Theorems 2 and 3).
Combining all these different situations, we obtain a complete
image of the way information propagates in vehicular networks
on roads and highways, which is useful in determining the per-

formance limits and designing appropriate routing protocols
for VANETs. All our theoretical results were validated with
simulations in several environments (The One and Maple).

Our analysis can be extended to investigate other models
of vehicle traffic and radio propagation. In future works, we
intend to provide a detailed expression of this threshold in
specific VANET models (e.g., intersections). Finally, an inter-
esting direction for further research consists in collecting large
traces of real traffic on roads and highways, and evaluating the
information propagation properties in this context.
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APPENDIX

A. Proof of Lemma 9

Proof: We want to find an evaluation of P (T > y) when
y →∞. For this we will evaluate for x given P (Bw(x) > y).
We know that

E(eθBw(x+1)) = βw(θ, x+ 1) =
λwP (Lw > x)

θ − λw(fw(θ, x+ 1)− 1)

Since P (Lw > x) = α
λ∗w
e−λ

∗
wx(1 + o(e−εx)), with α =

(λw−λ∗w)eλ
∗
w−λw

1−λ∗w
, we have

fw(θ, x) = fw(θ)− αe−λ
∗
wx

θ + λ∗w
(1 + o(e−εx)) (41)

From here we drop the o(e−εx) for simplicity, since it will
just bring an exponentially small factor. Therefore we have

βw(θ, x+ 1) =
λw
λ∗w

αe−λ
∗
wx

θ − λw(fw(θ)− 1− αe−λ
∗
wx

θ+λ∗w
)

(42)

We have

P (Bw(x+ 1) = y) =
1

2iπ

∫
βw(θ, x+ 1)eyθdθ .

Let θ(x) be the root of θ − λw(fw(θ) − 1 − αe−λ
∗
wx

θ+λ∗w
).

Straightforward analysis gives θ(x) = −βe−λ∗wx+O(e−2λ
∗
wx),

with β = λw
1−λw ∂

∂θ fw(0)
α
λ∗w

. Via singularity analysis we have

P (Bw(x+ 1) = y) =
λwαe

−λ∗wx

λ∗w

× eθ(x)y

1− λw ∂
∂θfw(θ(x))− αe−λ

∗
wx

(θ(x)+λ∗w)2

+O(e(θ(x)−ε)y)

Omitting the O( ) terms we get

P (Bw(x+ 1) = y) =
λwαe

−λ∗wx

λ∗w

e−βe
−λ∗wxy

1− λw ∂
∂θfw(0)

= βe−θx exp(−βe−λ
∗
wxy) ,

Or
P (Bw(x+ 1) > y) = exp(−βe−λ

∗
wxy) . (43)

Therefore stating P (Bw > y) =
∫
pe(x)P (Bw(x) > y)dx we

get, omitting O( ) terms

P (Bw > y) =

∫
λe

fw(λe)
e−(x+1)λe exp(−βe−λ

∗
wxy)dx .

(44)
with the change of variable u = e−λ

∗
wx we get

P (Bw > y) =

∫
λee
−λe

λ∗wfw(λe)
u
λe
λ∗w
−1

exp(−βyu)du

=
λee
−λe

λ∗wfw(λe)
Γ

(
λe
λ∗w

)
(βy)

− λe
λ∗w ,

which is in power law as claimed.

B. Proof of Lemma 11

We first prove the property for an hypothetic renewal
process based on the B′is on the real line. Let b(x) be this
renewal process at time t:

E(b(y)) = P (B1 < y) + P (B1 +B2 < y)

+ · · ·+ P (B1 + · · ·+Bn < y) + · · ·

Let us define β = 1−E(e−θBw). We also define NB(θ) =∫∞
0

E(b(y))e−yθ the Laplace transform of E(b(y)). We have:

NB(θ) =
1−B(θ)

θB(θ)
.

Lemma 13. When θ → 0, then B(θ) = b πθa

sin(πa) for some b
and a = λe

λ∗w
.

Proof: We start from

β(θ, x+ 1) =
λwP (Lw > x+ 1)

θ − λw(fw(θ, x+ 1)− 1)
,

and

B(θ) = 1−
∫ ∞
1

pe(x)β(θ, x)dx =

∫ ∞
1

pe(x)(1−β(θ, x))dx .

We denote

1− β(θ, x) =
θ

θ + θ(x)
g(θ, x) ,

with g(θ, x) bounded and uniformly integrable when <(θ)
remains in a compact set and x→∞. Indeed we have

g(θ, x) = 1 +O(θ(x))

Thus
B(θ) =

∫ ∞
1

θ

θ + θ(x)
g(θ, x)pe(x) .

By change of variable y = θ(x) we get

B(θ) =

∫ θ(1)

0

θ

θ + y
g(θ, θ−1(y))pe(θ

−1(y))(θ−1(y))′dy .

We use together the following estimates θ(x) = −βe−λ∗wx +
O(e−2λ

∗
wx), and pe(x) = λe

fw(λe)
e−λex(1 +O(e−εx)) to state

pe(θ
−1(y))(θ−1(y))′ =

λe
fw(λe)

(
y

β
)
λe
λ∗w
−1

(1 +O(yε)) ,

for some ε > 0.
Then, we use the fact that∫ ∞

0

ya−1

θ + y
dy =

πθa−1

sin(πa)
,

and, when θ → 0, ∫ ∞
θ(1)

ya−1

θ + y
dy = O(1)

Therefore, B(θ) = b πθa

sin(πa) +O(θ) for some b and a = λe
λ∗w

when θ → 0. This is also true for complex θ.
We can now prove Lemma 11 for the original renewal

process.



Proof: From the previous lemma, we have that: NB(θ) =
sin(πa)
bπ θ−a−1 +O(θ−1 + θ−2a), when θ → 0.
The inversion of the Laplace transform yields

E(b(y)) =
1

2iπ

∫ c+i∞

c−i∞
NB(θ)eθydθ .

for any c > 0. we bend the integration path so that it
resemble the path described in figure 17 with c′ < 0. Since
far from its singularities on the line −θ(x) for x > 0 (which
corresponds to the negative real axis), the functions β(θ, x) is
uniformly in 1

θ , therefore NB(θ) = O( 1
θ2 ) and the integral

on the vertical part gives a bounded contribution (in fact
exponentially decreasing in exp(c′y)).

€ 

c

€ 

ʹ′ c 

€ 

0

Fig. 17. The Flajolet-Odlyzko cranted integral path.

The cranted part of the integral, using the Flajolet Odlyzko
theorem on continuous functions [9], gives a contribution
which is

sin2(πa)

bπ2
Γ(−a)ta +O(1 + t2a−1).

Therefore, we obtain that, for y →∞:

E(b(y)) =
sin2(πa)

bπ2
Γ(−a)ya +O(1 + y2a−1).

To terminate the argument we will prove that E(n(t)) =
E(b(2vt)) + o(1). We have 2vT = Bw + Hw, where Hw =
Lw+Iw−1, and Hw ≥ 0 has distribution with an exponentially
decreasing tail. However, we stress the fact that Bw and Hw

are not independent. We denote Hi the successive values of
the Hw. We have therefore 2vTi = Bi +Hi.

Since Ti ≥ 2vBi, we already have E(n(t)) ≤ E(b(2vt)).
We also have for any t′ ∈ [0, t] and for any integer i:

P (T1 + · · ·+ Ti < t) ≥ P (B1 + · · ·+Bi < 2v(t− t′))
−P (H1 + · · ·+Hi > 2vt′) .

Using Chernoff bounds, we have for all θ > 0 such that
E(eθH) exists, ∀i ≤ k and ∀x > 0:

P (H1 + · · ·+Hi > x) ≤ E(exp(kθH − xθ))

Since logE(eθH) = θE(H) +O(θ2), it is sufficient that x
k −

E(H) > γ, to find θ > 0 such that logP (H1 + · · · + Hi >
x) < −kγθ.

On the other side, we also have ∀y > 0:∑
i≤k

P (B1+· · ·+Bi < y) = E(b(y))−
∑
i>k

P (B1+· · ·+Bi < y)

We have

P (B1 + · · ·+Bi < y) ≤ (P (B < y))
i

We use the fact that P (B > y) ≤ Ay−a for a = λe
λ∗w

and for
some A > 0 to state that

P (B1 + · · ·+Bi < y) ≤ exp(−iAy−a)

and, finally,∑
i>k

P (B1 + · · ·+Bi < y)
exp(−kAy−a)

Ay−a
.

Collecting all results yields:

E(n(t)) ≥ E(b(2v(t− t′)))−Gk(2vt, 2vt′, θ),

with

Gk(x, y, θ) =
exp(−kA(y − x)−a)

A(y − x)−a
+ kE(exp(kθH − xθ)).

If we take t′ = ta
′

with 1 > a′ > a, k = 2vt′

γ+E(H) = Ω(ta
′
,

then we have

G(k(2vt′, 2vt, θ) ≤ exp(−k(2v(t− t′))−a)

A(2v(t− t′))−α
+ k exp(−kγθ)

which is exponentially small when t→∞. Therefore,

E(n(t)) ≥ E(b(t)) + o(1) .


