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Abstract—The IEEE WAVE protocol suite is providing commu-
nications services to applications in vehicular networks, by way
of promising support for two protocol stacks: the Wave Short
Message Protocol (WSMP) and IPv6. While WSMP is developed
within the IEEE 1609 family of standards, the authors of this
paper assert, that considerations for IPv6 operation for WAVE
are less developed, and several issues are left unaddressed by
the current IEEE 1609 specifications. This paper reviews these
issues and analyzes the main challenges in providing proper IPv6
operation for WAVE networks.

I. INTRODUCTION

The IEEE is currently undertaking standardization of a

protocol suite for Wireless Access in Vehicular Environments

(WAVE), with the objective of providing vehicles and pedestri-

ans with the ability to communicate with each other and with

road-side infrastructure. Possible applications hereof include

emergency warning systems, cooperative cruise control and

collision warning, as well as toll and parking fee collection.

This protocol suite is developed in the IEEE 1609 working

group, documented in [1], [2], [3], [4], [5], [6] and intended

for operation over Dedicated Short-Range Communications

(DSRC) – a set of wireless communications channels, ded-

icated for vehicular networking at 5.9GHz.

WAVE is providing communications services to applica-

tions, by way of promising support for two protocol stacks, the

Wave Short Message Protocol (WSMP) and IPv6, as shown

in figure 1. While WSMP is developed within the IEEE

1609 family of standards [4], considerations for operation of

IPv6 for WAVE are less developed. The WAVE architecture

specification [1] makes reference to the IETF1 specification of

IPv6 [7] and makes minimal observations regarding the use of

IPv6 addresses, but no further specific recommendations as to

IPv6 operation for WAVE are provided.

The authors of this paper assert that, while the IEEE 1609

family of specifications provides a set of necessary consid-

erations for IPv6 operation over WAVE, these considerations

are not sufficient for proper and correct IPv6 operation in this

environment. This paper thus provides an analysis of IPv6

operation, as described in the IEEE 1609 family of specifi-

cations for WAVE networks, identifies where IPv6 operation

for WAVE networks is underspecified, and presents a set of

1http://www.ietf.org

additional recommendations enabling proper IPv6 operation

for WAVE networks.

While IPv6, as defined in [7], principally concerns the data

frame layout (header format, header extensibility, rules govern-

ing header construction and processing etc.), IPv6 operation

implies operation of a set of basic protocols at the network

layer, including NDP [8], stateless address autoconfiguration

[9]. The IPv6 protocol stack provides additional protocols

at other layers, such as the transport layer and the appli-

cation layer. Most of these protocols make certain assump-

tions about properties of an underlying link model for their

proper operation, and assume certain relationships between

assigned IP addresses and communications ability across the

underlying data link layer. This is discussed in details in

section II, elaborating on the link-model presented by a WAVE

system, and presenting IPv6 network layer considerations

for WAVE, resulting from the properties of that link-model.

This paper , then, in section III presents additional issues

for WAVE operation in an IP networking context, including

”pseudonymity”, transport and application layer challenges.

This paper is concluded in section IV.

Figure 1. Dual stack, IPv6 and WAVE.



II. WAVE NETWORK LAYER CHALLENGES WITH THE

IPV6 PROTOCOL STACK

IPv6 operation is, beyond the use of the IPv6 frame format

[7] on the network layer, generally understood to also imply

assumptions of a specific and well-defined link-model reflected

in a well-defined addressing model [10], and operation of a

set of supporting protocols [8], [9].

The IPv6 addressing model defines different address fam-

ilies (e.g., Link Local or Global addresses), with associated

properties. This enables applications or protocols to have

certain expectations of communication abilities, corresponding

to the addresses they use. For example, an application using a

Global address as destination address expects the network to

be able to ensure multi-hop communication to that destination

address. The network, then, expects such addresses to be

assigned in a way such that by inspection of the address, it

can be determined if the destination is reachable directly, or

reachable only via a (and, in that case, also via which) router.

In an IPv6 network, the supporting Neighbor Discovery

Protocol for stateless autoconfiguration (of addresses, default

routers etc) and duplicate address detection [8], [9], is assumed

to be running – and that protocol expects specific link model

and addressing model.

Thus, IPv6 operation entails (i) using the IPv6 frame format,

(ii) certain assumptions of a well-defined link-model, reflected

in an (iii) address model, and (iv) proper operation of NDP.

This is detailed further in the following sections.

A. IPv6 Link Model

[11] points out that network protocols and applications are

designed with specific assumptions on the nature of an IP link,

illustrated in figure 2 and summarized as follows:

• all hosts (H) with network interfaces configured with

addresses from within the same prefix p::, and with

the same prefix p:: assigned to the interfaces, can

communicate directly with one another; i.e.:

– IPv6 datagrams are not forwarded at the network

layer when communicating between interfaces which

are configured with addresses from the same prefix;

hence

– hop-limit in IPv6 datagrams are not decremented

when communicating between interfaces which are

configured with addresses from within the same

prefix, and;

H
p::1

H
p::3

H
p::2

Classic IP link with
Subnet Prefix p::

R

Figure 2. IP Link Model: hosts (H) connected to the same link have assigned
IP addresses from a common prefix, possibly assigned by a router (R).

– multicast/broadcast IPv6 datagrams with a hop-limit

of 1 are delivered to all interfaces within the same

subnet (assuming the scheduled datagram transmis-

sion succeeds).

• link-local multicasts and broadcasts are received by all

interfaces configured with addresses from within the same

prefix without forwarding.

The IPv6 Link Model, in figure 2, axiomatically assumes

that neighbor relationships are symmetric: if communication

from air interface A to air interface B is possible in one hop,

then communication in the reverse direction is also possible

– in other words, connectivity between neighbor interfaces is

assumed symmetric.

An even shorter summary of the IPv6 link model is to say

that an IPv6 link looks like an Ethernet.

B. IPv6 Addressing Model, Address Scopes and Uniqueness

As described in section II-A, the notion of an ”IPv6 link”

is tied with that of an IPv6 subnet prefix: all interfaces which

are configured with the same subnet prefix are considered to

be on the same IP link and, thus, for communication between

nodes on the same subnet, no forwarding is required and no

decrement of TTL/hop-limit is performed. In addition to this

relationship between link and prefix, IPv6 introduces address

scopes – Link-Local and Global – and mechanisms by which

addresses are constructed using Interface IDs.

A Link-Local address is valid for communication with a

device on the same link: an IPv6 datagram with a Link-Local

source or destination address is not to be forwarded on the

network layer, but is to be received by a destination on the

same link – or not received at all. The only requirement

for an unicast Link-Local address to be useful is, thus, that

it is unique on the local link; the same Link-Local address

may well be in use on another, disjoint, link, however as

IPv6 datagrams with Link-Local addresses are never to be

forwarded, no ambiguities exist.

A Global address is valid for communication beyond the

local link: an IPv6 datagram with a Global source and des-

tination address can be forwarded on the network layer and,

thus, be received by a destination on the same or on a different

link – or not received at all. For an unicast Global address to

be useful, it must, thus, be unique across the entire network.

It is important that these address uniqueness requirements

are universally satisfied. This is ensured in IPv6 by having

an interface detect when it connects to a link (typically, by

way of a discrete link-layer trigger), upon which it constructs

a Link-Local IPv6 address by concatenating the Link-Local

Prefix (FE80::/10) with an Interface ID, typically derived

from the MAC address of that interface. Duplicate Address

Detection (DAD) [9] is then performed, to verify that this

address is not already in use on the link. DAD employs Link-

Local Multicast, interrogating all other interfaces on the link as

to if they are already using that address, by way of Neighbor

Solicitation (NS) messages. Absent a reply to this interrogation

– by way of Neighbor Advertisement (NA) messages – the

address is assumed unique on the link and henceforth used. As



all Link-Local addresses share the same Prefix (FE80::/10),

this DAD procedure in reality verifies that the chosen Interface

ID is unique across the link.

Global addresses are constructed by concatenating the

Global prefix of a link with the Interface ID of an interface,

verified to be unique during the configuration procedure for

Link-Local addresses. The Global Prefix is obtained from a

router on the link2, by way of Router Solicitation / Router

Advertisement messages [8]. It follows that uniqueness of a

Global address for an interface relies on (i) the Interface ID

being unique on the link to which the interface is connected,

and (ii) unique prefixes being delegated to routers. It follows,

then, that a Global address is valid only as long as that

interface is connected to the link on which the router providing

the Global prefix is present.

An interface must also detect when it disconnects from a

link (typically also by way of a discrete link-layer trigger),

upon which it must cease to use the previously configured

addresses. Thus, in IPv6, a link describes a well-determined

set of network interfaces, all able to communicate directly

with each other without forwarding, and with all interfaces in

a single (link-local multicast) transmission be able to reach all

other interfaces on the same link. This set of network interfaces

is maintained by way of explicit and discrete signals, allowing

an interface to detect its connection to a given link.

A summary description of the IP addressing model is

therefore, that (i) addresses are of a specific validity scopes,

global or local, where (ii) within validity scope of an address,

it must be used by no more than one interface, and (iii) an

address of global validity scope assigned to an interface must

be topologically correct, i.e., it must match the Global prefix

provided by the router on the IP link to which the interface

connects.

C. IPv6 Network Layer Considerations Regarding WAVE

As indicated in section I, the IEEE 1609 family of specifi-

cations present a minimal set of considerations for IPv6 opera-

tion for vehicular networks. Devices in vehicular networks are

separated into On-Board Units (OBUs) and Road-Side Units

(RSUs), with the latter providing, as needed, infrastructure

and configuration support for the former. With respect to

IPv6 operation in such networks, the IEEE 1609 family of

specifications simply state that:

• IPv6 is provided as a data plane protocol, and that the

”standard IPv6 protocol” is used;

• IP configuration parameters (global prefixes, ...) are

provided in the WAVE Routing Advertisement (WRA)

messages;

• OBUs advertising services to other OBUs do so using

Link-Local addresses: OBUs provide services to direct

(1-hop) neighbors only, and therefore acquiring and main-

taining topologically correct Global addresses is wasteful;

• RSUs are identified by either Link-Local or Global ad-

dresses;

2Global addresses are only relevant in case the network can provide multi-
hop communication, i.e. a router is present on the link.

• Link-Local addresses are derived by the device, are not

globally unique and are not usable for routing;

• NDP [8], otherwise used for populating the neighbor

cache, is asserted to generate a substantial and unaccept-

able amount of traffic, and thus other means for popu-

lating the neighbor cache are employed (using ICMPv6

packets for instance);

• NDP is, however, not excluded for ”cases where it might

be needed”.

D. WAVE air Interface ”Link Model”

The air interfaces of a WAVE system, and the ”links” to

which they attach, have different characteristics from those

described in section II-A, and are therefore detailed in this

section. The resulting ”WAVE link model” does not provide for

a direct mapping to the IPv6 link model, thus considerations

for operating IPv6 over this ”WAVE link model” are detailed

in section II-E.

Symmetric to the IPv6 Link Model in figure 2, figure 3 illus-

trates the relationship between WAVE air interfaces, and serve

for elaborating the ”WAVE link model” in the discussions in

this section.

N1 N2 N3 N4 N5 N6N0

Figure 3. Nodes (N) with air interfaces. The light grey area indicates
the coverage area of each air interface. The dark grey circle indicates the
interference area of the air interface of N3.

Each air interface is a (radio) broadcast interface, able to

establish a direct link layer communication with air interfaces

which are within its coverage area. In figure 3, this coverage

area is approximated by a simple disc of fixed radius (light

gray discs) – in the real world, both the shape and size of

the coverage area is variable as a function of the interface,

interference from the environment etc. Referring to figure 3

if, e.g., if N3 transmits, then this transmission may be received

by N2 and N4, but not by N1 and N5. This implies that, e.g.,

N3 and N4 – despite being neighbors and on the same ”link” –

do not share the same view of which other nodes are neighbors

and on the same ”link”: N3 considers that it is on the same

”link” as N2 and N4, whereas N4 considers itself to be on the

same ”link” as N3 and N5.

Thus, a set of air interfaces within a region – even if

using the same channels and modulation – may not all

be able to communicate to all other air interfaces, without

intermediate relaying. A link-local multicast transmission from

one air interface may not (even disregarding losses) be able



to be received by all other air interfaces; indeed, a multicast

transmission from one air interface may not be able to reach

the same set of air interfaces as would a multicast transmission

from its closest neighbor air interface. This is the case in

figure 3, where no two air interfaces can directly transmit to

the same set of other air interfaces.

An air interface has an ”interference area” which may

be greater than its coverage area, i.e. a transmission by N3

in figure 3 will, as indicated above, be correctly received

by the interfaces N2 and N4. At the same time, however,

this transmission may be propagating to interfaces of N1

and N5 where, while the transmission can not be correctly

decoded, it can be detected, and cause interference with other

transmissions which could otherwise be correctly received

over the air interfaces of N1 and N5 (such as transmissions

from N0 and N6).

N1 N2

Figure 4. Neighbor asymmetry.

Figure 4 illustrates a situation where, for some reason (pow-

erful transmitter, environmental interference, large antenna,

...), the air interface of N1 has a large enough coverage area

for its transmissions to be received and correctly decoded by

the air interface N2. The air interface of N2, on the other hand,

has a much smaller coverage radius, such that transmissions

from the air interface of N2 can not be received and correctly

decoded at the air interface of N1. Thus asymmetric – or

more precisely, unidirectional – connectivity between the air

interface of N1 and the air interface of N2 exists: N2 sees

N1 as a neighbor (since the air interface N2 can receive

transmissions from the air interface of N1), whereas N1 does

not see N2 as a neighbor (since the air interface of N1 can

not receive transmissions from the air interface of N2).

A vehicular network, naturally, represents a dynamic topol-

ogy: OBUs move relatively to each other and to RSUs.

The resulting network is a highly dynamic graph, where the

neighborhood of an air interface is also dynamic and varies

over time – due to mobility, and due to changing environmental

factors: two air interfaces which were not in communications

range a moment ago may become neighbors, and vice-versa.

Thus, neighboring air interfaces may experience distinctly

different neighborhoods, may not even agree on if they are or

are not neighbors, and may at any time become, or cease to

be, neighbors.

Finally, as the set of air interfaces ”on a link” are commu-

nicating via radio waves rather than electrical wires, there are

no implicit physical signals, allowing an air interface to detect

its association or disassociation with a given set of other air

interfaces ”on the same link”. And the set of air interfaces

”on a link” may be subject to constant and rapid change. In a

certain way, it is tempting to add ”this is just as well”, as the

other ”on a link” properties expected in the IPv6 Link Model

do not hold, as described above.

E. Considerations for IPv6-over-WAVE

Considering the differences between the IPv6 link model,

described in section II-A, and the WAVE link model, described

in section II-D, verbatim use of the standard IPv6 protocol

stack, as the IEEE 1609 family of specifications stipulate, is

not sufficient.

1) Air Interface Addresses: addresses for OBUs are speci-

fied to be link-local in [1]; it is further stated that configuring

air interfaces of OBUs with Global Addresses is undesired

due to the need to maintain topological correctness of such

Global Addresses. This is necessary, but not sufficient, for

these interfaces to be configured with ”valid” addresses. Link

Local addresses assigned to interfaces should in addition be

globally unique, i.e., must be derived from some globally

unique token. The reason for this is, as vehicles – and so

their OBUs – may move, any two OBU air interfaces may

at some point in the future become direct neighbors. On

the other hand, since there is no guarantee that an arbitrary

pair of air interfaces of OBUs will always remain neighbors,

no IPv6 subnet prefix can be configured on an interface:

vehicle movement may render such two air interfaces unable

to communicate, requiring reconfiguration of the on-link IPv6

subnet prefix to respect the IPv6 Link Model assumption that

”two interfaces with the same subnet prefix can communicate

directly”, as described in section II-A. The recently published

RFC5889 [12] describes an IP addressing model for ad-hoc

networks; the considerations described herein apply equally

to air interfaces in WAVE networks, notably:

• An IP address configured on an air interface should be

unique, at least within the routing domain (in this case,

the vehicular network at large), and

• No on-link subnet prefix is configured on this air inter-

face.

.

2) Supporting Protocols Employing Link-Local-Multicast:

protocols such as DHCP, NDP and Stateless Address Auto-

configuration, assume the multicast characteristics of the IPv6

Link Model; as stated, these do not hold for the WAVE Link

Model. NDP basic mechanisms such as Neighbor Solicitation

(NS) do not operate as expected: the set of air interfaces which

will receive such a NS is the set of air interfaces which, at

the time of emission of the NS, happen to be within radio

range. Thus, e.g., Duplicate Address Detection (DAD) will not

ensure the desired uniqueness properties of IPv6 Link Local

Addresses.

3) Discrete Link Layer Association Triggers: such triggers,

otherwise used for initiating IPv6 interface configuration, are

absent on the WAVE Link Model. Thus, protocols, including



[8], [9], and the address configuration assumption that an

interface can detect when it ”disconnects” and thus should

cease using previously used addresses, can not rely on such.

Information can thus not be ”solicited when events happen”

but must be beaconed, and protocols adopted accordingly.

4) Communications Bidirectionality: link bidirectionality

cannot be assumed. Experience with air interfaces show that if

a device A hears service advertisements from another device B

(OBU or RSU), this does not guarantee that device B can hear

any service request sent by device A – i.e., it is not uncommon

that links are unidirectional. Thus any alternative mechanism

to be developed should at least verify link bidirectionality

before relying on it.

III. OTHER CHALLENGES WITH WAVE USING THE IPV6

PROTOCOL STACK

The IPv6 protocol stack includes various additional proto-

cols, above the network layer protocols described in section II.

Regardless of how the described network layer issues are

resolved, attention must be paid to operation of the transport

and the application layers. This section briefly overviews some

of these additional considerations.

A. Transport

At the transport layer, the IPv6 protocol stack proposes two

types of protocols: TCP, a reliable, rate-adapting mechanism

enabling end-to-end transport of application data across several

IP hops and requiring bi-directional communication between

the peers for acknowledgements etc. The second IPv6 transport

protocol is UDP, a much simpler protocol providing no rate-

adapting or reliability mechanism and so no signaling from

the destination to the sender in a traffic flow.

It is worth noting that TCP is often very inefficient in

wireless ad hoc environments [13], especially when faced with

mobility: TCP was designed to interpret packet loss as traffic

congestion and to diminish sending rates in this case, whereas

in wireless networks, packet loss may have causes that are

other than traffic congestion, such as interfaces moving out

of reach, collisions or interference. Also, if a TCP connec-

tion is established between two air-interfaces, subsequently

moving out of range before the connection is terminated,

connection-state remains for timing out (and possibly causing

extraneous transmissions), not cleared up by the usual end-of-

connection signaling. Therefore, TCP is usually not employed

in VANETs, which leaves UDP as the only viable alternative

within the standard IPv6 stack. [1] recommends the use of

UDP, however the reasons given (in section 6.4.3 of [1])

relate to the matching of ”the connectionless nature of WAVE

transmissions” only. The authors submit that there are also

technical reasons for why TCP might be a lesser appropriate

choice for this environment.

Applications requiring rate-adapting or end to end transport

reliability services may not be satisfied with what the standard

IPv6 protocol stack has to offer.

B. Pseudonimity

The IEEE 1609 family of specifications also promise to

support MAC address changes to provide pseudonymity, i.e.,

to ensure that a device’s non-temporary identity, and its long-

term patterns of behavior, cannot be deduced from its network

traffic and are only available to authorized parties.

However, IEEE 1609 specifications do not provide a way to

generate or assign pools of globally unique network addresses,

aside of basic ”random” local generation which is likely to

provide duplicate network addresses if devices change their

network addresses too frequently. Note that the specifications

do not define how frequently MAC address changes should

take place in order to provide pseudonymity. Nevertheless,

it is doubtful that pseudonymity can be achieved without a

significant probability of duplicate network addresses using

the current IEEE 1609 specifications.

In the same vein, in order to provide pseudonymity at layers

above the network layer (which may be necessary to provide

user pseudonymity in the end), similar issues are bound to arise

if devices must change their IP addresses frequently. More

generally, providing pools of globally unique IDs, dynamically

and in a distributed manner, becomes a hard problem if the

number of possible IDs is not extremely large.

Therefore, applications’ requirements concerning

pseudonymity may not be entirely satisfied with what

the standard WAVE and IPv6 specifications have to offer

so far, and thus, it is presently left to these applications

to provide such services (if at all possible). Moreover, one

should note that, as quickly mentioned in the IEEE 1609

specifications, frequent MAC or IP address changes will

disrupt most applications.

IV. CONCLUSION

This paper has provided an overview of the issues con-

cerning IPv6 use over WAVE, the protocol suite for wireless

access in vehicular environments currently developed by the

IEEE. While WAVE promises communications services to

applications via IPv6 stack support – defined in the IEEE

1609 family of standards – this paper has shown that this

support underspecified, and described the issues that are so far

left unaddressed concerning IPv6 operation for WAVE. This

paper has also analyzed the challenges in designing solutions

to overcome these issues, and provided guidelines regarding

the design of appropriate solutions.
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