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o Abstract

N 'We show how one may analytically compute the stationaryitensthe distribution of molecular constituents in poptidas of
cells in the presence of noise arising from either burstiagdgcription or translation, or noise in degradation ratésng from low
numbers of molecules. We have compared our results with alysis of the same model systems (either inducible or rejfirkes
operons) in the absence of any stochadfieats, and shown the correspondence between behaviourdetiéeninistic system and
- the stochastic analogs. We have identified key dimensisplasameters that control the appearance of one or two stz in
O the deterministic case, or unimodal and bimodal densiti¢ke stochastic systems, and detailed the analytic regeints for the
"= occurrence of dierent behaviours. This approach provides, in some situstan alternative to computationally intensive stochas-
1 tic simulations. Our results indicate that, within the @xtof the simple models we have examined, bursting and datoa noise
IEcannot be distinguished analytically when present alone.

MN]
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o 1. Introduction Typically, the discussion seems to focus on whether fluc-
tuations can be considered as extrinsic to the system under

In neurobiology, when it became clear that some of the flucgonsideration (Shahrezaei et bl_,di_&_O_cnab_MaLHMZ
" tuations seen in whole nerve recording, and later in sinelle ¢ 2010), or whether they are an intrinsic part of the fundamen-

recordings, were not simply measurement noise but actual flu @/ Processes they arefecting (e.g. bursting, see below).
tuations in the system being studied, researchers verklguic n€ dichotomy is rarely so sharp however, . tal.
— started wondering to what extent these fluctuations agtuall ) have used an elegant experimental technique to dis-

=" 'played a role in the operation of the nervous system. tinguish between the two, see also Raser. (2004),
= play p y while [Swain et al.[(2002) arld Scott ef 4l (2006) have laid the

Much the same pattern of development has occurred in ce dwork f th tical derati f thi "
lular and molecular biology as experimental technique$havgr°ur? work Tor a theoretical consideration ot this questio
One issue that is raised persistently in considerationhef t

allowed investigators to probe temporal behaviour at ever fi . o .
levels, even to the level of individual molecules. Expenirtad- role of fluctuations or noise in the operation of gene requiat
' networks is whether or not they are “benefici it al.

ists and theoreticians alike who are interested in the etigul . .
- - : 2006) or “detrimental”|(Fraser etlal., 2004) to the operat
of gene networks are increasingly focussed on trying tosar,ce&he si/stem under consideration. This is 3)f coursepa st

the role of various types of fluctuations on the operation an o . .
fidelity of both simple and complex gene regulatory Systemsof definition and not one that we will be further concernecdhwit

Recent reviewd (Kaern etldl., 2( ardef®"®:

2008;| Shahrezaei and Swain, 2008b) give an interesting per- Here, we consider in detail the density of the molecular

spective on some of the issues confronting both experirientadistributions in generic bacterial operons in the presesfce

ists and modelers. ‘bursting’ (commonly known as intrinsic noise in the bio-
logical literature) as well as inherent (extrinsic) noisgng

an analytical approach. Our work is motivated by the well
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Raj et al.,| 2006/ Sigal et all, 2006; Yu et al., 2006), and fol-permease, and thiogalactoside transacetylase respeciive
lows other contributions by, for example, Kepler and Elstonenzymeg-galactosidase is active in the conversion of lactose
(2001), | Friedman et al. (2006), Bobrowski et al. (2007) andnto allolactose and then the conversion of allolactose g
'Shahrezaei and Swain (2008a). cose. Thdac permease is a membrane protein responsible for
In Sectior 2 we develop the concept of the operon and tredhe transport of extracellular lactose to the interior & tell.
simple models of the classic inducible and repressibleamper (Only the transacetylase plays no apparent role in the aegul
Sectiorl 4 considers thdfects of bursting alone in an ensemble tion of this system.) The regulatory gelael, which is part of
of single cells. Sectiohl5 then examines the situation inctvhi a different operon, codes for thec repressor, which is trans-
there are continuous white noise fluctuations in the dontinarformed to an inactive form when bound with allolactose, so in
species degradation rate in the absence of bursting. this system allolactose functions as ttigeetor molecule.

. 2.2. The transcription rate function
2. Generic operons

In this section we examine the molecular dynamics of both
2.1. The operon concept the classical inducible and repressible operon to deripeesx

The so-called ‘central dogma’ of molecular biology is sim- Sions for the dependence of the transcription rate féector
ple to state in principle, but complicated in its detail. Neiyn levels. (When the transcrlpthn rate is cqnstant and indepe
through the process ofanscriptionof DNA, messenger RNA d_ent Qf the &ector levels we will refer to this as the no control
(MRNA, M) is produced and, in turn, through the process ofSituation.)
translation of the mRNA proteins (intermediatek) are pro-
duced. There is often feedback in the sense that molecules (e2.2.1. Inducible regulation
zymes,E) whose production is controlled by these proteins can For a typical inducible regulatory situation (such as lge
modulate the translation afmt transcription processes. In what operon), in thgresencef the efector molecule the repressor
follows we will refer to these molecules agectors We now s inactive (is unable to bind to the operator region preceding
consider both the transcription and translation processdre  the structural genes), and thus DNA transcription can moce
detail. Let R denote the repressdt, the dfector molecule, an® the

In the transcription process an amino acid sequence in theperator. The fector is known to bind with the active forR
DNA is copied by the enzyme RNA polymerase (RNAP) to of the repressor. We assume that this reaction is of the form
produce a complementary copy of the DNA segment encoded

in the resulting RNA. Thus this is the first step in the transfe R+ nE Q RE, Ky = E 1)
of the information encoded in the DNA. The process by which R-E"
this occurs is as follows. wheren is the dfective number of molecules offfector re-

When the DNA is in a double stranded configuration, theqired to inactivate the repress@r Furthermore, the operator
RNAP is able to recognize and bind to the promoter region oty gng repressaR are assumed to interact according to
the DNA. (The RNARdouble stranded DNA complex is known

as the closed complex.) Through the action of the RNAP, the
DNA is unwound in the vicinity of the RNABDNA promoter
site, and becomes single stranded. (The RIdA&®Rle stranded
DNA is called the open complex.) Once in the single stranded-€t the total operator b8

configuration, the transcription of the DNA into mRNA com- Ot = O+ OR= O+ K20 R = O(1 + K2R).
mences.

In prokaryotes, translation of the newly formed mRNA com-
mences with the binding of a ribosome to the mRNA. The
functlor} of the ribosome is to ‘read’ the mRNA in triplets of Rot = R+ KiR-E"+ K0 - R
nucleotide sequences (codons). Then through a complex se-
quence of events, initiation and elongation factors briagsfer  The fraction of operators not bound by repressor (and thezef
RNA (tRNA) into contact with the ribosome-mRNA complexto free to synthesize mRNA) is given by
match the codon in the mRNA to the anti-codon in the tRNA.

The elongating peptide chain consists of these linked amino f(E) = o 1

. : T T . . (B)= — = .
acids, and it starts folding into its final conformation. 3fold- Ot 1+KsR
ing continues until the process is complete and the polypept
chain that results is the mature protein.

The lactoseléc) operon in bacteria is the paradigmatic ex-
ample of this concept and this much studied system condists o
three structural genes namledtZ, lacY, andlacA These three o
genes contain the code for the ultimate production, thrahgh Rt
translation of mMRNA, of the intermediatgsgalactosidasdac R= 1+ K EW

OR

Kz
R= OR = —.
O+ (@] Ko OR

and the total level of repressor Bgy:

If the amount of repressdt bound to the operatdd is small

Rot = R+ KiR- E" = R(1+ K{E")



and consequently parameter inducible repressible
1+ KiE" 1+ KiE"
(O 5~ e ) A K =1+KzRot 1
+ ZRtot + K]_E K + K]_E
. . B Kl K= Kl + KZRtOt
whereK = 1 + KyRor. There will be maximal repression when B K
E = 0 but even then there will still be a basal level of mMRNA A ?1 K
production proportional td&~! (which we call the fractional
leakage).
If the maximal DNA transcription rate ign, (in units of in- A=A K 1
verse time) then, under the assumption that the rate ofdrigas
tion ¢ in the entire population is proportional to the fractibn A = BK-1 1 KK-1
of unbound operators, the variatigrof the DNA transcription ! !
rate with the &ector level is given by = o f, or K A kg K—1 ki Ki—K
0=—[1-—]| = —-
_ 1+ K4E" nA( A) K >0 n K <0
(B) = Pme—er 3)
P = oM K e

Table 1: Definitions of the parameteksB, A, A andd. See the text and Section

2.2.2. Repressible regulation .2 for more detal.

In the classic example of a repressible system (such dagxthe
operon) in thepresencef the d@fector molecule the repressoris 2.3. Deterministic operon dynamics in a population of cells
active(able to bind to the operator region), and thus block DNA  The reader may wish to consult Polynikis et al. (2009) for an
transcription. We use the same notation as before, but ntsv nojnteresting survey of techniques applicable to this apgtoa
that the &ector binds with the inactive foriR of the repressor We first consider a |arge popu|ati0n of cells, each of which
so it becomes active. We assume that this reaction is of the sa contains one copy of a particular operon, and Mt I E) de-
form as in Equatiof]1. The fierence now is that the operator note mRNA, intermediate protein, andfector levels respec-

O and repressdr are assumed to interact according to tively in the population Then for a generic operon with a max-
« ORE, imal level of transcriptiorby (in concentration units), we have
O+R-E" = ORE, Ky= —————. dynamics described by the systelm (@it [1968%Jo; Othmer,
O-R-Ey 11976; Selgrade, 1979)
The total operator is now given by dM -
at = baemf(E) — ymM, (6)
Ot = 0+ ORE, =0+ K;0-R-E"=0(1+ K;R-E"), di
- o — =AM -yl (7)
so the fraction of operators not bound by repressor is given b ddé

@) 1 at =Bel —yeE. (8)

fB)= — =7+ 5=
Ot 1+KR-E Here we assume that the rate of mMRNA production is propor-

Again assuming that the amount of represBdround to the tional to the fraction of time the operator region is actiaad

operatorO is small we have that the rates of intermediate and enzyme production anggim
proportional to the amount of mMRNA and intermediate respec-

F(E) = 1+ KE" _ 1+ KiE" tively. All three of the components\, I, E) are subject to ran-

1+ (Ky+ KoRo)E" 1+ KE"’ dom loss. The functiof is calculated in the previous section.

It will greatly simplify matters to rewrite Equations[6-8 by

whereK = Kj + KoRior. Now there will be maximal repression qefining dimensionless concentrations. To this end we first
whenE is large, but even at maximal repression there will still (g rite Equatiofils in the form

be a basal level of MRNA production proportionakgk 1 <
1. The variation of the DNA transcription rate wittifector w(e) = pmf(e), 9
level is given byy = ¢y f or

wheregp, (dimensionless) is defined by

_ 1+ KED
¢(E) = "OmTKlE“' (4) _ mBEP) 1+¢€"

= and f(e) = ———,
o YMYEY! © A+ Ae"

(10)

Both (3) and[(#) are special cases of the function

A andA are defined in Tablegl 1, and we have defined a dimen-
n . .
S(E) = G ;++KBlllen _ Gt (E). ) sionless &ector concentratioref through

. 1
whereA, B > 0 are given in TablEl1. E=ne with n= VG



Further defining dimensionless intermediate §nd mRNA
concentrationsnf) through

I=i;7y—E and MzmnH

Be BeBi’

Equation§ 598 can be written in the equivalent form

dm

Tt = wlkaf(@ -,

di .

at n(m-i),

de .

at ye(i-e),

where B
by
kg = bgem and by=— (112)

n

Figure 1: Schematic illustration of the possibility of orte/o or three solu-
are dimensionless constants. tions of Equatiof 15 for varying values &f with inducible regulation. The
. . .. . . monotone increasing graph is the functibrof Equatio 10, and the straight
For notational simplicity, henceforth we denote dimension jines correspond ta/q for (in a clockwise directionkg € [0, kg_), kg = kg
less concentrations bym(i,€) = (X1, X2, X3), and SubscriptS  «q € (kd-, «d+), kd = kd+, andkgy < kqg. This figure was constructed with= 4

(M, 1,E) = (1,2,3). Thus we have andK = 10 for whichkg- = 3.01 andkg; = 5.91 as computed froni_(18). See
the text for further details.

dX]_

— = f - 12 . .

dt valkaxs) =], (12) 2.3.2. Inducible regulation

d_Xz — o(X — %) (13) Single versus multiple steady stateg-or an inducible operon
dt ’ with f given by Equatiof2, there may be on¢ (or X;), two
dx _ Ya(Xa - X3). (14) (X, X5 = X5 0r X; = X5, X3), or three Kj,X;, X3) steady
dt states, with the ordering & X < Xj < Xj, corresponding

) _ _ to the possible solutions of Equatibnl 15 (cf. Figlte 1). The
In each equatiory; fori = 1,2, 3 denotes a net loss rate (units gmgler steady stat&{) is typically referred to as an uninduced
of inverse time), and thus Equationsi[I2-14 are not in dimenggate while the largest steady staxe)(is called the induced
sionless form. state. The steady state valuesafre easily obtained frorfi (IL5)
The dynamics of this classic operon model can be fully anafor given parameter values, and the dependenag tor n = 4
lyzed. LetX = (X, X2, X3) and denote by;(X) the flow gener-  and a variety of values ok is shown in Figuréll. Figurél 2

ated by the systeri (11 2)-(114). For both inducible and refpless  shows a graph of the steady statesersuskq for various val-
operons, for all initial conditionX® = (X, 3, X3) € R} the flow  yes of the leakage parameter

Si(X°) e R} fort > 0. Analytic conditions for the existence of one or more steady
Steady states of the systeIm|(12)}(14) are in a one to one costates can be obtained by using Equdiidn 15 in conjunctiti wi
respondence with solutions of the equation the observation that the delineation points are marked by th
values ofky at which x/kq4 is tangent tof (x) (see Figurdll).
X _ f(X) (15)  Simple diferentiation of[(Ib) yields the second condition
Kd
1 X1

and for each solutiox* of EquatiorIb there is a steady state xkgn(K — 1) - (K + xn)2’ (16)

X* = (X, X5, X5) of - iven b
(4.2 %) of (D-(I9) g Y From equation$(15) and([16) we obtain the valuesatfwhich
— tangency will occur:

K+1

+ 4/N2=2n
* K-1

Whether there is a single steady stXteor there are multiple X, =4 K-1 [n _Kk+1
steady states will depend on whether we are considering a re- 2 K-1
pressible or inducible operon.

+ 1}. (17)

The two corresponding values qf at which a tangency occurs

are given by
K+ x2
2.3.1. .No control . _ Ko = X7 = (18)
In this casef(x) = 1, and there is a single steady state= Xz
kq that is globally asymptotically stable. (Note the deliberate use &f as opposed ta..)



10

4 d
3 - g induced i
2 -
6, |
X Kyq
1 J bistable
4,
0.5 - 2r uninduced
L L L L O L L L
1 2 3 4 5 6 7 8 91 0 5 10 15 20
Kd K
Figure 2: Full logarithmic plot of the steady state valuesxofversuskqg Figure 3: In this figure we present a parametric plot ¢(for 4) of the bifur-
for an inducible system, obtained from Equatlod 15, for= 4 andK = cation diagram in K, xg) parameter space delineating one from three steady
2,5,10,and 15 (left to right) illustrating the dependence of theusmence of states in a deterministic inducible operon as obtained fEamationd_I5 and
bistability onK. See the text for details. [Id. The upper (lower) branch correspondskio (xq:), and for all values

of (K, kq) in the interior of the cone there are two locally stable dyestates
X1, X3, while outside there is only one. The tip of the cone occuKatq) =

A necessary condition for the existence of two or more steady(5/3)%. (5/3)V5/3) as given by Equatiofis L9 ad 20. ok [0, (5/3)?) there
states is obtained by requiring that the square roofih (£7) b's butasingle steady state.
non-negative, or
n+1

K> (—)2 (19)

of the production rates to the product of the degradation
rates must always be greater than 1 for bistability to occur,
and the lower the degree of cooperativity the larger the
ratio must be.

n-1
From this a second necessary condition follows, namely

n+1.n+1 4. Ifn, K andxy satisfy these necessary conditions then bista-
ka2 =\ (20) bility is only possible ifq € [«q-, ka.] (c.f. Figurel3).

5. The locations of the minimék_) and maximal(x,) values
Further, from Equatioris 15 ahd]16 we can delineate the bound-  of x bounding the bistable region are independenizof
aries in K, kq) space in which there are one or three locally 6. Finally
stable steady states as shown in Figure 3. There, we hawe give (@) (x, —x_)is a decreasing function of increasing n for
a parametric plotx is the parameter) ofy versusK, using constantg, K
N (b) (x, — x.) is an increasing function of increasing K
XX+ (n+1)] for constant ng.

(n-1)x" -1

[K() +x7?

K() = 1K) - 1]

and «q(X) =
_ _ _ Local and global stability. The local stability of a steady state
for n = 4 obtained from Equatios 15 ahd 16. As is clear fromx* is determined by the solutions of the eigenvalue equation
the figure, when leakage is appreciable (sriale.g forn = 4, inldirim et al J;o_o_h)

K < (5/3)?) then the possibility of bistable behaviour is lost.
(A+y1)@+7y2)(A+7y3) —yryaysafl =0, £ = f'(X). (21)

Remark 1. Some general observations on the influence of n,
K, andkg on the appearance of bistability in the deterministic Set

case are in order. 3 3 3
1. The degree of cooperativiy) in the binding of gector & = ;7“ %= i;lﬁyi’ % = (1- ko)) l:l[yi’
to the repressor plays a significant role. Indeed; i is a - = -
necessary condition for bistability. so [21) can be written as

2. If n > 1 then a second necessary condition for bistability
is that K satisfies Equatidn 119 so the fractional leakage
(K1) is syficiently small. By Descartes’s rule of signd,_(22) will have either no pwsiti

3. Furthermore,xq must satisfy Equation 20 which is quite roots for f/ € [0, Kal) or one positive root otherwise. With
instructive. Namely for > oo the limiting lower limitis  this information and using the notation SN to denote a lgcall
k4 > 1 while for n — 1 the minimal value oky becomes stable node, HS a half or neutrally stable steady state, &d U
quite large. This simply tells us that the ratio of the protluc an unstable steady state (saddle point), then there will be:

5

/13 + a]_/lz +apd+az=0. (22)



criterion to the eigenvalue equatidn{22). The steady s@ite
responding tax* will be locally stable (i.e. have eigenvalues
with negative real parts) if and only & > 0 (always the case)
and

aya, —ag > 0. (23)

The well known relation between the arithmetic and geormetri

means
1 n n 1/n
n Z)’i 2 [H Yi] )
i=1

i=1
when applied to both; anda, gives, in conjunction with Equa-

tion[23,

3
a1ay —az = (8+de*’)l_[’yi > 0.
i=1

0 02 04 06 08 i 12 14 16 18 2 Thus aslong a§, > —8/«q, the steady state correspondingto
will be locally stable. Once conditiof (R3) is violated, sty
Figure 4: Schematic illustration that there is only a sirgitution of Equation ~ Of X* is lost via a supercritical Hopf bifurcation and a limit cgcl
[I5 for all values ofkg with repressible regulation. The monotone decreasingis born. One may even compute the Hopf period of this limit
graph isf forareprgssible operon, while the straight linesxdeg . Th?s figure cycle by assuming that = ja)H (J - \/j_) in EquatiorEZlZ
was constructed with = 4 andA = 10. See the text for further details. wherewy is the Hopf angular frequency. Equating real and

imaginary parts of the resultant yields, = vaz/a; or
e Asingle steady stat¥; (SN), forkq € [0, xg-)
. _ 2t o
e Two coexisting steady state§ (SN) andX; = X; (HS, Th = o 21t X )
— Kd 1« i=17i

born through a saddle node bifurcation) kgr= x4-
These local stability results tell us nothing about the glob

behaviour when stability is lost, but it is possible to cluieaze

the global behaviour of a repressible operon with the faithgwy

° Tyvo cogxisting steady state§ = X; (HS ata saddle node 1 .5rem 2. (Smith[ 1995, Theorem 4éi Theorem 4.2, Chap-
bifurcation), andX; (SN) for kg = k. ter 3) For a repressible operon with given by Equatiohl4, de-
fine Ik = [K1/K, 1]. There is a globally attracting box/Bc R
defined by
For the inducible operon, other work extends these local sta )
bility considerations and we have the following result etar Br = {(X1. X2. X3) : X € I, 1 =1,2,3}
terizing the global behaviour:

e Three coexisting steady stat¥$(S N), X5(US), X5 (SN)
for kg € (kd-, kd+)

¢ One steady stat¥; (SN) for kg, < «g.

such that the flow S is directed inward everywhere on the sur-

Theorem 1. (Othmer,[ 19767 Smitn, 1995, Proposition 2.1, face of B. Furthermore there is a single steady stateeXBg.

Chapter 4) For an inducible operon Withgiven by EquatioS’ If X*is |Oca||y stable it is g|0ba||y Stable, but if Xis unsta-
define | = [1/K, 1]. There is an attracting box,B- R} defined ble then a generalization of the Poincare-Bendixson thmore

by M& Chapter 3) implies the existence of a glolssdly

B = {(X0, X2, X3) X € 1), i =1,2,3} ble limit cycle in B.
such that the flow Sis directed inward everywhere on the sur- Remark 2. There is no necessary connection between the Hopf
face of B. Furthermore, all X € B, and period computed from the local stability analysis and theqzk

of the globally stable limit cycle.

1. If there is a single steady state, i.ej ®r «q € [0, «q-), Or
X; for kg4 < kg, then it is globally stable.

2. If there are two locally stable nodes, i.e.; Xnd X for
Kd € (kd-, kg+), then all flows $X°) are attracted to one of  |n dynamical systems, considerable simplification and in-
them. (Se de (1979) for a delineation of the basigight into the behaviour can be obtained by identifying &t
of attraction of X and X.) slow variables. This technique is especially useful whee on

is initially interested in the approach to a steady statethis
2.3.3. Repressible regulation context a fast variable is one that relaxes much more rapidly
As illustrated in Figur€l4, the repressible operon has desing an equilibrium than a slow variable (Hakén, 1983). In many
steady state corresponding to the unique solutiasf Equation  systems, including chemical and biochemical ones, thig-is o
[I5. To determine its local stability we apply the Routh-Hitzw ten a consequence offfirences in degradation rates, with the

6

3. Fast and slow variables



fastest variable the one that has the largest degradatmnk®  mRNA is exponentially distributed at the single cell leveéthw
employ the same strategy here to obtain approximationsto thdensity
population level dynamics that will be used in the next secti h(y) = le—y/E (29)
Itis often the case that the degradation rate of mMRNA is much b ’

greater than the corresponding degradation rates for beth t \yherep is the average burst size, and that the frequency of
intermediate protein and thefector (1 > v2,3) S0 in this  pyrstingy is dependent on the level of théfector. Writing
case the mRNA dynamics are fast and we have the approximagg,atior 2D in terms of our dimensionless variables we have
relationship

Xy = de(Xg). h(X) — }e—x/b. (30)
Consequently the three variable system describing therigene b
operon reduces to a two variable one involving the slowerint Remark 3. The technique of eliminating fast variables de-

mediate andféector: scribed in Sectiof 213 above (also known as the adiabatic-eli
d ination technique (Hakéh, 1983)) has been extended toasech
d_)iz = yolkd F(X3) — X2]. (24) tically perturbed systems when the perturbation is a Gaussi

d distributed white noise, c.fl_Stratonovich (1963, Chapter
DS (% — xa). (25)  Section 11.1), Wilemski (1976). Titdlar (1978), dnd Gaedin
dt (@ Section 6.4). However, to the best of our knowletigge, t
In our considerations of specific single operon dynamics betype of approximation has never been extended to the siuati
low we will also have occasion to examine two further subsase dealt with here in which the perturbation is a jump Markov-pro
name|y cess.
Case 1. Intermediate (protein) dominated dynamics.If it
should happen that; > y3 > vy, (as for thelac operon, then
the dfector also qualifies as a fast variable so

The single cell analog of the population level intermediate
protein dominated Case 1 above (whens y3 > y,) is

X3 = Xo dd_>;2 = —y2X +E(h, o(X2)), Wwith  ¢(X2) = y2¢mf(X2), (31)
and thus from[{24)E(25) we recover the one dimensional equavhereZ(h, ¢) denotes a jump Markov process, occurring at a
tion for the slowest variable, the intermediate: ratep, whose amplitude is distributed with denditas given in
d (30). Analogously, in the Case Zfector dominated situation
ax _ yalka f(X2) — Xo]. (26)  the single cell equation becomes

dt

dx .
Case 2. Hfector (enzyme) dominated dynamicsAlternately, == —y3X3+E(h, o(x3)), with ©(X3) = yapemf(x3). (32)
if y1 > v, > y3 then the intermediate is a fast variable relative
to the dfector and we have Equation§ 311 anld 82 can both be written as
X2 =~ X3 dx

dt

"Remark 4. In the case of bursting we will always take= ¢m

= —yx+E(h,e(x)),  with  ¢(x) = ykpf(X), &b = ¢m.

so our two variable systeni(24)-{25) reduces to a one dime
sional system

dxs in contrast to the deterministic case whege= byom.
—+ = valkaf(Xs) — xg] (27) —
dt From|Mackey and Tyran-Kaminska (2008) the correspond-
for the relatively slow &ector dynamics. ing operator equation for the evolution of the density, x)
Both Equations26 arid P7 are of the form when there is a single dominant slow variable is given by
dx ou(t, x) o(xu(t, X))
= f(x) — 2 - = _
o = Mkaf (0 - (28) Y = kT O0ult )
X
wherey is eithery, for protein ;) dominated dynamics or; + )/be f(y)u(t, y)h(x — y)dy.
for effector (x3) dominated dynamics. 0 (33)
4. Distributions with intrinsic bursting Remark 5. This is a straightforward generalization of what
@B, Section 3.4) refers to as thefatential
4.1. Generalities Chapman-Kolmogorov equation.

:r:t 'S! We:l d; :cuj ‘rsn ente?j ir?xper;:nenztal gﬂ - (%al_eltOOOGé. Stationary solutions,(x) of (33) are solutions of
lSIgaLeI_alLZQ_dd._Xu_el_hl %]%6) that in some organisms the  d(xu.(X)) . X . A i (34
amplitudeof protein production through bursting translation of ~ gy~ b (U () + &b o (Y)u.(Y)h(x-y)dy. (34)
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If there is a unique stationary density, then the solutic
u(t,x) of Equation[3B is said to be asymptotically stabl
v, 1994) in the sense that

tIimf Jut, X) — u.(X)|dx=0
= Jo

for all initial densitiesu(0, x).

Theorem 3. (Mackey and Tyran-Kaminska, 2008, Theorem 7

The unique stationary density of Equat[ad 34, with f given t
Equatiorf® and h given bz (29), is

u.(x) = %e”‘/b exp[xb fx @dy}, (35)

where(C is a normalizing constant such thﬁx’ u.(x)dx = 1.
Further, ut, x) is asymptotically stable.

Remark 6. The stationary densnﬂBS) is found by rewriting Figure 5: Schematic illustration of the possibility of ohep or three solutions

Equatior 34 in the form of Equatior:3B for varying values @f, with bursting inducible regulation. The
straight lines correspond (in a clockwise directionkgos (0, kp—), kb = Kb—,
dY(X) n M @ (X) -0 (X) = x (X) kb € (kp—,kp+) (@nd respectivelyp < K, «p = K, K < «p), kp = kp+, and
dx b Ty Y =0,y = XU Kb+ < kp. This figure was constructed with= 4, K = 10 andb = 1 for which
kp- = 4.29 andky, = 14.35 as computed froni.(#2). See the text for further
using Laplace transforms and solving by quadratures. Noteletails.

also that we can represent as

“(kpf(y) 1 1 The first two terms of Equatidn B6 are simply proportional to
u.(¥) = Cexpf ( y b g/) dy. the density of the gamma distribution. ForOk,A™t < 1 we
_ o haveu,(0) = oo while for k,A™* > 1, u.(0) = 0 and there is at
whereC is a normalizing constant. least one maximum at a value > 0. We haveu,(x) > 0 for

o ) ) all x> 0 and from RemarKkl6 it follows that
4.2. Distributions in the presence of bursting

4.2.1. Protein distribution in the absence of control () = 1.() (be(X) 1 }) w0, (37)
If the burst frequency = y«pf is independent of the level X b x
of all of the participating molecular species, then the sofu

given in Equatiofi35 is the density of the gamma distribution Observe that ik, < 1 thenu. is a monotone decreasing function

of x, sincexpf(x) < 1 for all x > 0. Thus we assume in what
b-1gx/b follows thatk, > 1.

’ Since the analysis of the qualitative nature of the statipna
density leads to dierent conclusions for the inducible and re-
pressible operon cases, we consider each in turn.

U.(X)

~ bl (ky)

wherel'(-) denotes the gamma function. kgre (0, 1), u.(0) =
oo andu, is decreasing while fat, > 1, u.(0) = 0 and there is

a maximum ai = b(kp — 1).
(ko = 1) 4.2.3. Bursting in the inducible operon

4.2.2. Controlled bursting For6 > 0, as in the case of an inducible operon, the third
We next consider the situation in which the burst frequency€'m of Equatiof36 is a monotone increasing functior afd,

¢ is dependent on the level af c.f. Equatiolb. This requires consequently, there is the possibility thiatmay have more than
that we evaluate one maximum, indicative of the existence of bistable behavi

In this case, the stationary density becomes
*1(y) “kp| L+Y"
My = =2
“) vy

A+ Ay"
whereA, A are enumerated in Talle 1 for both the inducible and

dy = In{x®* (A + AxY], .
{ } U,(x) = Ce¥/Px oK LK 4 XN, g = "—r:’(l -K™).

only if
K A 1/x 1+x
0=211-2=1. —(— l):—.
nA( A) Kb bJr K+ xn (38)

Consequently, the steady state dengffy (35) explicitiphees ~ Again, graphical arguments (see Figlie 5) show that these ma
be up to three roots of (B8). For illustrative valuespK, and

u.(x) = Ce’x/bx“bA_l’l(A + AX")?. (36) b, Figurd® shows the graph of the valuesatt whichu’(x) = 0



as a function ok,. When there are three roots bf138), we label There are two cases to distinguish.
them asxi < % < Xs. Case 1.0 < kp < K. In this casey,(0) = . Further, the same
Generally we cannot determine when there are three rootgraphical considerations as in the deterministic case shatv
However, we can determine when there are only two rgpts © there can be none, one, or two positive solutions to Equation
%3 from the argument of Sectign 2.8.2. Atandxz we willnot 8. Ifxy < kp_, there are no positive solutions, is a monotone
only have Equation 38 satisfied but the graph of the right handecreasing function of. If x, > «,_, there are two positive
side of [38) will be tangent to the graph of the left hand sitle asolutions ( and X3 in our previous notationy;"has become
one of them so the slopes will be equal flBrentiation of[[3B) negative and not of importance) and there will be a maximum
yields the second condition in u, at X3 with a minimum inu, atX..
o1 Case 2.0 < K < kp. Now, u.(0) = 0 and there may be one,
n—2> = 1 (39)  two, orthree positive roots of Equatibn38. We are intedtste
(K+x7)2  xpb(K - 1) knowing when there are three which we labekas<™% < %3

We first show that there is an open set of parametes, k) asx”l_, X3 will correspond to the I_()(_:ation of maxima in while
for which the stationary density, is bimodal. From Equations X2 Will be the location of the minimum between them and the

and3D it follows that the value of at which tangency will ~ condition for the existence of three rootsds < kp < ko
occur is given by We see then that theftiérent possibilities depend on the re-

X, = b(kp — 1)z spective values oK, «p_, kb, andxy. To summarize, we may
characterize the stationary densityfor an inducible operon in
the following way:

andz. are positive solutions of equation

2 _1_7-p1-2% where g= Ko - 1) 1. Unimodal type 1. u.(0) = oo andu, is decreasing for
’ (K—l)Kb 0 < kp <kp-andO< xy, < K
We explicitly have 2. Unimodal type 2. u.(0) = 0 andu, has a single maxi-
mum at
1 2 (@) X3 > 0forK < kp < kp OF
2= 2n (23”‘ M+ = yn+1) “W‘) (b) atss > O for kp, < xp andK < xy

3. Bimodal type 1: u.(0) = 0 andu, has a single maximum
atXz > 0forky. < kp < K
(40) 4. Bimodal type 22 u.(0) = 0 andu. has two maxima at
X1, X3, 0 < X1 < X3 fOr kp— < kp < kpy anNdK < kp

provided that
2 —
(n+1) S p= K (kp 1).
4n (K = 1)kp
Equatior 4D is always satisfied when< K or whenk, > K
andK is as in the deterministic cage{19). Observe also that we'='"' Rl ? :
havez, > 0> z fork, < K andz, > z > 0 fork, > K. The bility in the deterministic case. However, in the case ofhng
. . . . - K
two corresponding values @fat which a tangency occurs are N the inducible system when=s 1, if 5 +1 <k < K'and
given by b > X5, then u(0) = o and u. also has a maximum & > 0.
Thus in this case one can have a Bimodal type 1 stationary den-

1 K sity.
b, = ! -K and z >0.
(ko — 1)z \ B(1-z.) We now choose to see how the average burst Isiaects

bistability in the density, by looking at the parametric plot of
kp(X) versusK(x). Define

Remark 7. Remember that the case=nl cannot display bista-

If xp, < K thenu.(0) = c andu, is decreasing fob < b,,
while for b > b, there is a local maximum at> 0. If x, > K
thenu.(0) = 0 andu, has one or two local maximum. As a X'+ 1

consequence, far > 1 we have a bimodal steady state density F(x.b) = nx1(x + b)’ (43)
u. if and only if the parameterg, andK satisfy [40)«, > K, h
andb e (b,,b_). en

We now want to find the analogy between the bistable be; 1+ X"F(x,b) 3 X+b
havior in the deterministic system and the existence of diaho Kby = 1-F(xb) and k(> b) = [K(x b)+x] b(x" + 1)’
stationary density,. To this end we fix the parameters> 0 (44)

andK > 1 and varyk, as in Figuréb. Equatiofis38 and 39 can The bifurcation diagram obtained from a parametric ploKof
also be combined to give an implicit equation for the value ofversuss, (with x as the parameter) is illustrated in Figlie 7

X, at which tangency will occur for n = 4 and two values ob. Note that it is necessary for
0 < K < «p in order to obtain Bimodal type 2 behaviour.
¥ (K - 1) [n _K+1 X onb(K - 1)x"t+ K =0 (41) _Forbursting behaviourin an inducible situation, theretae
K-1 different bifurcation patterns that are possible. The tviedi

ent cases are delineated by the respective valués arid «,

as shown in Figurgl6 and Figure 7. Both bifurcation scenarios
Xz + b\ [K+ X2 share the property that while increasing the bifurcatiopa

Kbs = (T)( 1+ X0 ) (42) eter kp from 0 to oo, the stationary density. passes from a

and the corresponding valuessgf are given by
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Figure 6: Full logarithmic plot of the values afat whichu.(x) = 0 versus the
parameteky, obtained from Equatidn 88, far= 4, K = 10, and (left to right)
b=51andb= 1—10. Though somewhat obscured by the logarithmic scale,for
the graphs always intersect theaxis ats, = K. Additionally, it is important
to note thatt,(0) = 0 for K < «p, and that there is always a maximum at O for
0 < kp < K. See the text for further details.

Figure 7: In this figure we present two bifurcation diagrarfes (0 = 4) in
(K, xp) parameter space delineating unimodal from bimodal statipdensities
u, in an inducible operon with bursting as obtained from EaquresiZd wit{ZB.
The upper cone-shaped plot is foe 1—10 while the bottom one is fop = 1. In
both cone shaped regions, for any situation in which the idwanch is above
the linex, = K (lower straight line) then bimodal behaviour in the stasign
solution u.(x) will be observed with maxima in.. at positive values ok, X1
andxs.
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Figure 8: This figure presents an enlarged portion of Fifilier b = 1. The
various horizontal lines mark specific values«gfreferred to in FigureS]9 and

g

unimodal density with a peak at a low value (either xgrtd
a bimodal density and then back to a unimodal density with a
peak at a high valuexg).

In what will be referred aBifurcation type 1, the maximum
atx = 0 disappears when there is a second peak-ai;. The
sequence of densities encountered for increasing valugdof
then: Unimodal type 1 to a Bimodal type 1 to a Bimodal type 2
and finally to a Unimodal type 2 density.

In the Bifurcation type 2 situation, the sequence of density
types for increasing values f is: Unimodal type 1 to a Uni-
modal type 2 and then a Bimodal type 2 ending in a Unimodal
type 2 density.

The two diferent kinds of bifurcation that can occur are eas-
ily illustrated forb = 1 as the parametey, is increased. (An
enlarged diagram in the region of interest is shown in Fifgliye
Figureld illustrate®ifurcation type 1, whenK = 4, andky in-
creases from low to high values. Asincreases, we pass from
a Unimodal type 1 density, to a Bimodal type 1 density. Furthe
increases iy, lead to a Bimodal type 2 density and finally to
a Unimodal type 2 density. This bifurcation cannot occur, fo
example, whetb = 1—10 andK < 15 (see Figurgl7).

Figure[10 showsSifurcation type 2, whenK = 3. Asky in-
creases, we pass from a Unimodal type 1 density, to a Unimodal
type 2 density. Then with further increasesqj we pass to a
Bimodal type 2 density and finally back to a Unimodal type 2
density.

Remark 8. There are several qualitative conclusions to be
drawn from the analysis of this section.

1. The presence of bursting can drastically alter the regions
of parameter space in which bistability can occur relative
to the deterministic case. Figutelll presents the regions
of bistability in the presence of bursting in t(i€, b - «,)
parameter space, which should be compared to the region
of bistability in the deterministic case in tki, x4) param-
eter space (k, is the mean number of proteins produced
per unit of time, as i&q)



Figure 9: In this figure we illustratBifurcation type 1 when intrinsic bursting ~ Figure 10: An illustration ofBifurcation type 2 for intrinsic bursting. For
is present. For a variety of values of the bifurcation pareme, (between 3 ~ Several values of the bifurcation parametgr(between B and 5 from top
and 6 from top to down), the stationary denaityis plotted versus between 10 down), the stationary density, is plotted versusc between 0 and 8. The
0 and 8. The values of the parameters used in this figurb aré, K = 4, and ~ Parameters used ate= 1, K = 3, andn = 4. Forkp < 3, U, has a single
n = 4. Forxy, < 3.5, u, has a single maximum at= 0. For 35 < «p < 4, maximum atx = 0, and for 3< «p < 3.3, u, has a single maximum a > 0.
u. has two local maxima at = 0 andxz > 1. For 4< x, < 5.9, u, has two For 33 < «kp < 4.45,u, has two local maxima at @ X3 < X3, and finally for
local maxima at O< %3 < %s. Finally, forx, > 5.9, u, has a single maximum &b < 4.45U, has a single maximum ag > 0. Note that for each plot of the
at %3 > 1. Note that for each plot of the density, the scale of theraii is density, the scale of the ordinate is abritrary to improweuisualization.
arbitrary to improve the visualization.

In this limit, the implicit equations which define the maximu
2. When0 < kp < K, at a fixed value ofy, increasing the av-  points of the steady state density, become the implicit &ojus
erage burst size b can lead to a bifurcation from Unimodal(@5) and [I6) which define the stable steady states in the-dete

type 1 to Bimodal type 1. ministic case.

3. When0 < K < «p, at a fixed value ofy, increasing b can The bifurcations will also take place at the same points, be-
lead to a bifurcation from Unimodal type 2 to Bimodal type cause we recover Equatibn]18 in the limit. However, Bimodal-
2 and then back to Unimodal type 2. ity type 1 as well as the Unimodal type 1 behaviours will no

longer be present, as in the deterministic case, because for
kp — oo we havex, > K. Finally, from the analytical ex-
4.2.4. Bursting in the repressible operon pression for the steady-state dendifyl (@6)vill became more
The possible behaviours in the stationary densityor the  sharply peaked als — 0. Due to the normalization constant
repressible operon are easy to delineate based on the i@nalygvhich depends o and«p), the mass will be more concen-
of the previous section, with Equatibnl38 replaced by trated around the larger maximumwf

bt (45) 5. Distributions with fluctuations in the degradation rate

1(x 1)_ 1+ X"
Tl AXY

Kb
Again graphical arguments (see Figliré 12) show that Equatio5.1. Generalities

[43 may have either none or one solution. Namely, For a generic one dimensional stochastitegtential equation

f the f
1. For O< «p < 1, u,(0) = o0 andu, is decreasing. Equation ofthe form dX(t) = a(X)dt + -()dw(t)

[249 does not have any solution (Unimodal type 1). _ _
2. For 1< «p, u.(0) = 0 andu, has a single maximum at a the corresponding Fokker Planck equation
value ofx > 0 determined by the single positive solution ou _6(au) laz(azu)

of Equatiori4b (Unimodal type 2). - ox T3 o (46)

4.3. Recovering the deterministic case can be written in the form of a conservation equation
We can recover the deterministic behaviour from the bugstin ou 8J
dynamics with a suitable scaling of the parameters andifigit ot + X 0,
procedure. With bursting production there are two impdrtan
parameters (the frequeney and the amplitudé), while with ~ where )
deterministic production there is onky. The natural limit to J=au- }6(0 u)
consider is when 2 ox
is the probability current. In a steady state widetn = 0, the
b—0, kp— oo with bkp=«g. current must satisfy] = constant throughout the domain of

11
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Figure 11: The presence of bursting can drastically altgiores of bimodal
behaviour as shown in this parametric plot (foe 4) of the boundary ink, b-
kp) parameter space delineating unimodal from bimodal statipdensities.

in an inducible operon with bursting and i,(ky) parameter space delineating
one from three steady states in the deterministic inducpkron. From top to
bottom, the regions are fdr = 10,b = 1, b = 0.1 andb = 0.01. The lowest
(heavy dashed line) is for the deterministic case. Noteftivdt = 0.1, the two
regions of bistability and bimodality coincide and are 8iuliguishable from
one another.

the problem. In the particular case whé&n= 0 at one of the
boundaries (a reflecting boundary) thén= 0 for all x in the
domain and the steady state solutigrof Equatiori4b is easily
obtained with a single quadrature as

dy},

ol [ 5

whereC is a normalizing constant as before.

C
a*(X)

u.(x) =

5.2. Fluctuations in degradation rate
In our considerations of theffects of continuous fluctua-

tions, we examine the situation in which fluctuations appear

in the degradation rate of the generic equatiof (28). From
standard chemical kinetic arguments (Oppenheim/et alg)196
if the fluctuations are Gaussian distributed the mean nusrifer
molecules decaying in a tint is simplyyxdtand the standard
deviation of these numbers is proportionahfa. Thus we take

the decay to be given by the sum of a deterministic component

yxdtand a stochastic component/xdw(t), wherew is a stan-

Figure 12: Schematic illustration that there can be one @ahation of Equa-
tion[4d, depending on the value af, with repressible regulation. The straight
lines correspond (in a clockwise direction)«9= 2 andx, = 0.8. This figure
was constructed with = 4, A = 10 andb = 1. See the text for further details.

In the situation we consider here(x) = o vx anda(x) =
vkq T (X) —yx. Further, since concentrations of molecules cannot
become negative the boundary»xat= 0 is reflecting and the
stationary solution of Equatidn %7 is given by

X
u.(x) = ge*Zyx/JZ exp[%f %dy}.

Setke = 2ykg/c?. Then the steady state solution is given ex-
plicitly by

U (X) = Ce 27 g 1A 1 AX]Y, (48)

whereA, A > 0 andd are given in TablE]1.
Remark 9. Two comments are in order.

1. Because the form of the solutions for the situation with
bursting (intrinsic noise) and extrinsic noise are ideatic

all of the results of the previous section can be carried
over here with the proviso that one replaces the average
burst amplitude b with b- ¢2/2y = b, andx, — ke =
2yk4/0? = Kg/by.

We can look for the regions of bimodality in thi€, xg)-
plane, for a fixed value of o We have the implicit equa-
tion for x.

2.

dard Brownian motion, and write Equatibnl28 as a stochastic

differential equation in the form
dx = y[kgf(X) = X]dt + o Vxdw.

Within the Ito interpretation of stochastic integratiorhist

equation has a corresponding Fokker Planck equation for

the evolution of the ensemble densityt, x) given by
(Lasota and Mackey, 1994)
au __9lraf () -yl

ot X

a? 9*(xu)
2 0@

(47)
12

K+1

_ _ n-1 _
K_1x" nby(K - 1)xX"*+K =0

x2”—(K—1)[n—

and the corresponding valuesf are given by

K+X§)

1+x7
Then the bimodality region in th, «4)-plane with noise
in the degradation rate is the same as the bimodality region
for bursting in the(K, bxp)-plane.

Kds =(X:F+bw)(



We have also the following result. straightforward and we will report on our results in a sefira
communication.

Theorem 4. (lE&h-QLa-U_-d—R“-dm-Qk'l_—ZQ—d)o’ _Theorem 2). The |, terms of the issue of when bistability, or a unimodal versu
unique stationary density of Equatibnl47 is given by Equetio pimodal stationary density is to be expected, we have pointe
8. Further |t, X) is asymptotically stable. out the analogy between the unimodal and bistable behaviour
in the deterministic system and the existence of bimodal sta
5.3. The deterministic limit tionary densities in the stochastic systems. Our analyakem

Here again we can recover the deterministic behavior from §/€ar the critical role of the dimensionless parameteis(be
limit in the extrinsic fluctuations dynamics. In this caseph It £d kb, OF ke), b (eitherb or by), and the fractional leakage
ever, the frequency and the amplitude of the perturbatien arK™ T_he relations between these deﬂmng the various possible
already scaled. Then the limit — 0 gives the same result as behgwours are subtle_, and we have given these in the re¢levan
in the deterministic case. sections of our analysis. _ , o
The appearance of both unimodal and bimodal distri-
butions of molecular constituents as well as what we
6. Discussion and conclusions have termed Bifurcation Type 1 and Bifurcation Type
2 have been extensively discussed in the applied math-
In trying to understand experimentally observed distribu-ematics literature (c.f. | _Horsthemke and Lefever (1984),
tions of intracellular components from a modeling perspeciFeistel and Ebeling (1989) and others) and the bare founda-
tive, the norm in computational and systems biology is oftertions of a stochastic bifurcation theory have been laid down
to use algorithms developed initially By Gilledp 70) t by (1998). Significantly, these are also well doc-
solve the chemical master equation for specific situati@®® umented in the experimental literature as has been shown
Lipniacki et al. (2006) for a typical example. However these by [Gardner et al.[(2000),_Acar eflal. (2005), Friedman et al.
vestigations demand long computer runs, are computalyonal _;o_ojs), Hawkins and Smolke! (2006}, Zacharioudakis ket al.
expensive, and furtherfer little insight into the possible diver- (2007),| Mariani et 2l.[(2010), arld Song et al. (2010) for both
sity of behaviours that @ierent gene regulatory networks are prokaryotes and eukaryotes. If the biochemical detailspra
capable of. ticular system are dficiently well characterized from a quan-
There have been notable exceptions in which the probtitative point of view so that relevant parameters can be es-
lem has been treated from an analytical point of viewtimated, it may be possible to discriminate between whether
c.f.  |Kepler and Elston | (2001),[ Friedman et al._(2006),these behaviours are due to the presence of bursting tinscr
IBobrowski et al. [(2007), and_Shahrezaei and Swain (2008a}ion/translation or extrinsic noise.
The advantage of an analytic development is that one can de-
termine how diferent elements of the dynamics shape temporal
and steady state results for the densitigsx) andu,(x) respec-  Acknowledgements
tively. : : :
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