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Regularity and Singularities of
Optimal Convex Shapes in the Plane

Jimmy Lamboley∗, Arian Novruzi†, Michel Pierre‡

December 13, 2011

Abstract

We focus here on the analysis of the regularity or singularity of solutionsΩ0 to shape optimization problems
among convex planar sets, namely:

J(Ω0) = min{J(Ω), Ω convex, Ω ∈ Sad},

whereSad is a set of 2-dimensional admissible shapes andJ : Sad → R is a shape functional.
Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order

optimality conditions, including the infinite dimensionalLagrange multiplier due to the convexity constraint. We
prove two types of results:

i) under a suitable convexity property of the functionalJ , we prove thatΩ0 is aW 2,p-set,p ∈ [1,∞]. This
result applies, for instance, withp = ∞ when the shape functional can be written asJ(Ω) = R(Ω) +
P (Ω), whereR(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) involves the area|Ω|, the Dirichlet energyEf (Ω) or the first
eigenvalue of the Laplace-Dirichlet operatorλ1(Ω), andP (Ω) is the perimeter ofΩ,

ii) under a suitable concavity assumption on the functionalJ , we prove thatΩ0 is a polygon. This result
applies, for instance, when the functional is now written asJ(Ω) = R(Ω)−P (Ω), with the same notations
as above.

Keywords:Shape optimization, convexity constraint, optimality conditions, regularity of free boundary.

1 Introduction

The goal of this paper is to develop general and systematic tools to prove the regularity or the singularity of optimal
shapes in shape optimization problemsamong convex planar sets, namely problems like:

min{J(Ω), Ω convex, Ω ∈ Sad}, (1)

whereSad is a set of admissible shapes among subsets ofR2 and J : Sad → R is a shape functional. Our
main objective is to obtain qualitative properties of optimal shapes by exploiting first and second order optimality
conditions on (1) wherethe convexity constraintis included through appropriate infinite dimensional Lagrange
multipliers.
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Our approach is analyticin the sense that convex sets are represented through adequate parametrizations and
we work with the corresponding ”shape functionals” defined on spaces of functions. In particular, we will use the
classical polar coordinates representation of convex setsas follows:

Ωu :=

{
(r, θ) ∈ [0,∞)× R ; r <

1

u(θ)

}
, (2)

whereu is a positive and2π-periodic function, often called “gauge function ofΩu”. It is well-known that

Ωu is convex ⇐⇒ u′′ + u ≥ 0. (3)

Thus, Problem (1) may be transformed into the following:

min
{
j(u) := J(Ωu), u

′′ + u ≥ 0, u ∈ Fad

}
, (4)

whereFad is a space of2π-periodic functions which will be chosen appropriately to representSad in (1).

We obtain two families of results depending on whetherj is ”of convex type” or ”of concave type”. In the first
case, we prove regularity of the optimal shapes. In the second case, we prove that optimal shapes are polygons.

i) ”Optimal shapes are regular”:under a suitable convexity property on the ”main part” of thefunctionalj, we
prove that any solutionu0 of (4) isW 2,p, which means that the curvature of∂Ω0 = ∂Ωu0

is anLp function
whereas it is a priori only a measure: see Theorems 2.4, 2.6 and Corollary 2.7. To that end,we simply use the
first optimality conditionfor the problem (1).

The functionals under consideration here are of the formJ(Ω) = R(Ω) + C(Ω), wherer(u) := R(Ωu) has
anLp-derivative andC is like (6) below and satisfies a convexity condition. As a main example, we consider
R(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) which depends on the area|Ω|, on the Dirichlet energyEf (Ω) and/or on the
first eigenvalueλ1(Ω) of the Laplace operator onΩ (with Dirichlet boundary conditions), andC(Ω) = P (Ω)
is its perimeter: see Section 3.2. In this case, we actually prove that the optimal shape isW 2,∞ which means
that the curvature is bounded.

ii) ”Optimal shapes are polygons”:next, we prove that, under a suitable concavity assumption on the functional
j, for any solutionu0 of (4), u0 + u′′0 is (locally) a finite sum of Dirac masses, so thatΩu0

is (locally)
a polygon: see Theorems 2.9, 2.12 and Corollary 2.13. The proof of this result isbased on the second
order optimality conditionfor the problem (1). We apply this result to shape optimization problems where
J(Ω) = R(Ω)− P (Ω) whereR(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) with the same notations as above, see Section
4.2. This application involves some sharp estimates on the second shape derivative of the energy which are
interesting for themselves: see Section 4.3.2.

Our examples enlighten and exploit the fact that, in the context of shape optimization under convexity constraint,
the perimeter is “stronger” than usual energies involving PDE, in terms of the influence on the qualitative properties
of optimal shapes: if it appears in the energy as a positive term, it has a smoothing effect on optimal shapes, and on
the opposite as a negative term, it leads to polygonal optimal shapes.

Dual parametrization:Since our results are stated for the analytic functionals (4), we may apply them to the dual
parametrization of convex sets instead of the parametrization with the gauge function: each convex shape can also
be associated to its support functionhΩ(θ) = max{x · eiθ, x ∈ Ω}, θ ∈ T and (1) again leads to the problem:

min
{
j̃(h), h′′ + h ≥ 0, h ∈ F̃ad

}
, (5)
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where j̃(h) := J(Ωh), Ωh being now the set whose support function ish, andF̃ad are all support functions of
admissible shapesΩ ∈ Sad. In this framework, if̃j satisfies the suitable convexity property, the regularity result (i)
above holds forh0 minimizer of (5). However, this regularity does not imply that the corresponding optimal shape
Ω0 := Ωh0 is regular, but it exactly means thatΩ0 is strictly convex: see Section 3.4.

The situation is more similar to the gauge representation when exploiting the results (ii). Indeed, when they apply,
they imply that the optimal shape is polygonal as well: see Remark 2.14.

Situation with respect to previous results:The second family of results (ii) is an extension of previousresults
obtained in [14] by the two first authors for the specific following functionals of “local type”:

J(Ωu) =

∫ 2π

0
G
(
θ, u(θ), u′(θ)

)
dθ, (6)

whereG = G(θ, u, q) : T × [0,∞) × R → R is strictly concave inq. Among these functionals, we find for
instance the area|Ω|, the perimeterP (Ω) or also the famous Newton’s problem of the body of minimal resistance
as studied by T. Lachand-Robert and coauthors: see for example [5, 16] and see also [14, 7] for more examples
arising in the operator theory. Actually, the techniques employed in [14], and here as well for (ii), are inspired
from those introduced in [16]. The main novelty here in the results (ii) is that the functionals are not necessarily of
the local form (6) and may include shape functionals defined through state functions which are solutions of partial
differential equations (PDE). The “concavity condition” is then expressed in a functional way through the coercivity
of the second derivative in an adequate functional space : see Theorem 2.9. In [2], a similar concavity phenomenon
is used to get qualitative properties of minimizers in higher dimension, under assumptions about their regularity and
convexity. We avoid here any assumption of this kind for the planar case.

The general optimality conditions including the infinite dimensional Lagrange multipliers were also provided
(and exploited) in the same paper [14]. They are revisited here in anW 1,∞-context which is better adapted to our
more general functionals (see e.g. Proposition 3.1).

Similar arguments to those used here to obtain the first family of results (i) may also be found in [3] where op-
timality conditions with convexity constraints are developed in anN -dimensional setting. They are exploited for
several examples in dimension 1 (or in radial situations) toobtainC1-regularity of the optimal shapes. With our
approach here, we are able to reachW 2,∞-regularity and this is valid for a rather general family of functionals.

About a localization of the approach:Let us mention that our two families of results may be mixed inthe same
functional: indeed, as often the case, it may be that the required convexity property for (i) is valid on some part of the
boundary of the optimal shape, while the concavity propertyfor (ii) is valid on the other part. Then, the techniques
developed here may be locally applied to each part and we can obtain at the same time smooth and polygonal pieces
in the boundary. However, as one expects, it remains difficult to understand the portion of the boundary which
remains at the intersection of these two parts. We refer to Section 5.1 for more details.

To end this introduction, let us say that many questions are of interest in shape optimization among convex sets.
Here, we try to exploit as much as possible analytical tools to obtain precise qualitative results for optimal shapes
among convex planar sets. But many questions are left open inhigher dimensions. Among them, and besides the
Newton’s problem already mentioned, we can quote the famousMahler conjecture about the minimization of the
so-called Mahler-product|K||K◦| among symmetric convex bodies inRd (see [19]), which is of great interest in
convex geometry and functional analysis, and the Pólya-Szegö conjecture about the minimization of the Newtonian
capacity among convex bodies ofR3 whose surface area is given (see for example [4] and reference therein).

This paper is structured as follows. In the following section we state our main results. In Section 3 we focus on
the regularity result (i) and we apply it to some various examples. In Section 4, we deal with problems leading to
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polygonal solutions (result (ii)), and we again consider indetail some classical examples. We conclude with some
remarks and perspectives.

2 Main results

2.1 Notations and problems

We setT := [0, 2π). Throughout the paper, any function defined onT is considered as the restriction toT of a2π-
periodic function onR. We defineW 1,∞(T) := {u ∈W 1,∞

loc (R), u is 2π-periodic}, and similarly for any functional
space. Ifu ∈W 1,∞(T), we say thatu′′ + u ≥ 0 if

∀ v ∈W 1,∞(T) with v ≥ 0,

∫

T

(
uv − u′v′

)
dθ ≥ 0.

In this case,u′′ + u is a nonnegative2π-periodic measure onR and finite on[0, 2π].
We denote bySad a class of open bounded sets inR2 (including constraints besides convexity). We will focus on

two problems:
min{J(Ω), Ω ∈ Sad, Ω convex}, (7)

min{J(Ω), Ω ∈ Sad, Ω convex,M(Ω) =M0}, (8)

whereJ : Sad → R is referred as the energy andM : Sad → Rd is an extra constraint (M0 given in∈ Rd).
In order to analyze the regularity of an optimal shape, we transform these problems into minimization problems

in a functional analytic setting as follows: choosing an originO and using parameterization (2), we define

Fad := {u ∈W 1,∞(T), Ωu ∈ Sad}, (9)

the set of admissible gauge functions, endowed with the‖ · ‖W 1,∞(T)-norm, and we assume that this set can be
written

Fad = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2 andu > 0}, (10)

for some functionsk1, k2 : T → R+ respectively upper- and lower-semicontinuous (see Remark2.1 below for this
assumption).

A simple calculus of the curvature shows thatΩu is convex if and only ifu′′ + u ≥ 0. Moreover, the support of
the measureu′′ + u gives a parametrization of the “strictly convex part” of theboundary, and a Dirac mass in this
measure correspond to a corner of the associated shape; we have for instance thatΩu is a convex polygon if and
only if u′′ + u is a finite sum of positive Dirac masses.

If Ω0 is a solution of problem (7) (resp. (8)), then its gauge function u0 is respectively solution of:

j(u0) = min
{
j(u), u′′ + u ≥ 0, u ∈ Fad

}
, (11)

resp. j(u0) = min
{
j(u) / u ∈ Fad, u

′′ + u ≥ 0 andm(u) =M0

}
, (12)

wherej : Fad 7→ R, j(u) := J(Ωu), andm : Fad → R,m(u) =M(Ωu).

Our main goal in this paper is the analysis of the convexity constraint. Thus, given an optimal shapeΩ0, we focus
on the part of∂Ω0 which does not saturate the other constraints defined bySad. We therefore define, foru0 ∈ Fad

andΩ0 = Ωu0
,

Tin := Tin(Fad, u0) = {θ ∈ T / k1(θ) < u0(θ) < k2(θ)}, (13)

(∂Ω0)in :=

{
x ∈ ∂Ω0 / ∃θ ∈ Tin, x =

1

u0(θ)
(cos θ, sin θ)

}
. (14)

See Example 2.2 and Figure 1 for examples.
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Remark 2.1 If k1 or k2 happened not to be semicontinuous, we could replace them by

k1 = inf{k : T → R continuous, k ≥ k1}, k2 = sup{k : T → R continuous, k ≤ k2}

and we have
{u ∈W 1,∞(T) / k1 ≤ u ≤ k2} = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2}.

Therefore, the assumptions onk1 andk2 are not restrictive. Note that, thanks to the regularity ofu0, k1, k2, the set
Tin is open.

×
O

(∂Ω)in

Tin

K2

K1

Ω

(∂Ω)in

(∂Ω)in

Tin

Tin

Figure 1: Inclusion constraints

Example 2.2 A frequent example for admissible shapesSad is:

Sad :=
{
Ω bounded open set ofR2 / K2 ⊂ Ω ⊂ K1

}
,

whereK2 andK1 are two given bounded open sets. If for exampleK1 andK2 are starshaped with respect to a
common pointO, chosen as the origin, then

Fad = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2},

wherek1, k2 are the gauge functions ofK2 andK1 respectively. In that case, given a setΩ ∈ Sad,

(∂Ω)in = ∂Ω \ (∂K1 ∪ ∂K2),

see Figure 1.
The analysis of the optimal shape around the set{θ / u0(θ) ∈ {k1(θ), k2(θ)}} = T \ Tin, where the inclusion

constraint is saturated, may require more efforts, see [14]for example. In this paper, we will not discuss this
question.

Note that we can also consider the caseK2 = ∅ and/orK1 = R2 with k1 = 0 andk2 = +∞.

Example 2.3 With respect to the constraintsm,M in (8), (12), a classical example is the area constraint:

m(u) := |Ωu| = A0 ⇐⇒
∫

T

1

2u2
dθ = A0,

where|Ω| denotes the area ofΩ.

5



2.2 The main results

As explained in the introduction, Section 1, we will prove two types of results: they are described in the two
following subsections.

2.2.1 ”Optimal shapes are smooth”

First we consider the problem (7) and its associated analytical version (11). We assume thatJ(Ω) = R(Ω)+C(Ω),
R satisfying some “regularity” assumption, andC being written like in (6), and satisfying a convexity like property.
More precisely:

Theorem 2.4 Letu0 > 0 be an optimal solution of(11) withFad of the form(10) and

j(u) := r(u) +

∫

T

G
(
θ, u(θ), u′(θ)

)
dθ, ∀u ∈W 1,∞(Ω) ∩ {u > 0}, (15)

wherer andG satisfy:

i) r : W 1,∞(T) → R is C1 aroundu0 andG : (θ, u, q) ∈ T × (0,∞) × R → R is C2 aroundT × u0(T) ×
Conv(u′0(T)), whereConv(u′0(T)) is the smallest (bounded) closed interval containing the values of the
right- and left-derivativesu′0(θ

+), u′0(θ
−), θ ∈ T,

ii) r′(u0) ∈ Lp(T) for somep ∈ [1,∞],

iii) Gqq > 0 in T× u0(T)× Conv(u′0(T)).

Then
u0 ∈W 2,p(Tin), whereTin is defined in(13).

See Section 3.1 for the proof, and Section 3.2 for explicit examples.

Remark 2.5 A C1-regularity result has been proved for a similar problem with r = 0 in [3] with different boundary
conditions, with a proof which is also based on first order optimality conditions. Here, for periodic boundary
conditions (but this is not essential), we improve this result to theC1,1-regularity, and generalize it to the case of
non-trivial r, which is of great interest for our applications. Let us alsorefer to [6] for a higher dimensional result.

Let us remark that the same result is valid, with the same proof, if we only assume thatr′(u0) is the sum of a
function inLp(T) and of a nonpositive measure onT. �

We can also get a similar result for the equality constrainedproblem (8) and the associated problem (12) as follows.

Theorem 2.6 Letu0 > 0 be an optimal solution of(12) with j,Fad as in Theorem 2.4, andm :W 1,∞ → Rd aC1

function aroundu0 withm′(u0) ∈ (Lp(T))d onto. Then

u0 ∈W 2,p(Tin).

See Section 3.1 for the proof, and Section 3.2 for explicit examples.

For a shape functional, using parametrization (2), Theorems 2.4 and 2.6 lead to the following.
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Corollary 2.7 LetSad be a class of open sets inR2 such thatFad := {u / Ωu ∈ Sad} is of the form(10) (Ωu is
defined in(2)), and letJ : Sad → R be a shape functional:
i) LetΩ0 be an optimal shape for problem(7), and assume thatJ = R+ C with:

∀u ∈ Fad, R(Ωu) = r(u) andC(Ωu) =

∫

T

G(θ, u(θ), u′(θ))dθ,

wherer andG satisfy assumptions of Theorem 2.4 for somep ∈ [1,∞]. Then(∂Ω0)in, as defined in(14), isC1 and
its curvature is inLp((∂Ω0)in).
ii) A similar results holds for the problem(8), if m(u) =M(Ωu) satisfies the hypotheses in Theorem 2.6.

Remark 2.8 The results of this section are in an abstract analytical context, and do not depend on the charac-
terization of the domain. Therefore, one could consider theclassical characterization of a convex body with its
support function instead of the gauge function. In Section 3.4, we give a geometrical interpretation of similar results
associated to this parametrization.

2.2.2 ”Optimal shapes are polygons”

Our second result is a generalization of Theorem 2.1 from [14]. We give a sufficient condition on the shape func-
tional J so that any solution of (1) be a polygon. In [14], the first two authors only consider shape functionals
of local type like (6). The following results deal with non-local functionals, which allow a much larger class of
applications, including shape functionals depending on a PDE.

Theorem 2.9 Letu0 > 0 be a solution for(11) with Fad of the form(10), and assume thatj : W 1,∞(T) → R is
C2 aroundu0 and satisfies (see Section 4.1 for definitions ofHs-(semi-)norms):

∃s ∈ [0, 1), α > 0, β, γ ∈ [0,∞), such that

∀v ∈W 1,∞(T), j′′(u0)(v, v) ≤ −α|v|2H1(T) + γ|v|H1(T)‖v‖Hs(T) + β‖v‖2Hs(T). (16)

If I is a connected component ofTin (defined in(13)), then

u′′0 + u0 is a finite sum of Dirac masses inI.

See Section 4.1 for a proof and Section 4.2 for explicit examples.

Remark 2.10 We can even get an estimate of the number of Dirac masses in terms ofα, β, γ, see Remark 4.2.

Remark 2.11 Theorem 2.9 remains true if (16) holds only for anyv such that (denotingµ = u′′0 + u0):

∃ϕ ∈ L∞(T, µ) with v′′ + v = ϕµ.

Indeed, the proof of Theorem 2.9 uses only this kind of perturbationsv which preserve the convexity of the shape.
�

As in Section 2.2.1, we can also handle the problem with an equality constraint as follows.

Theorem 2.12 Letu0 > 0 be any optimal solution of(12)with j,Fad as in Theorem 2.9, and the new assumptions:

j′(u0) ∈
(
C0(T)

)′
, and m : W 1,∞ → Rd is C2 aroundu0,

m′(u0) ∈
(
C0(T)′

)d
is onto, ‖m′′(u0)(v, v)‖ ≤ β′‖v‖2Hs(T), for someβ′ ∈ R.

Then, ifI is a connected component ofTin (defined in(13)),

u′′0 + u0 is a finite sum of Dirac masses inI.
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See Section 4.1 for the proof.

Again, using the parametrization (2), we get the following result.

Corollary 2.13 LetSad be a class of open sets inR2 such thatFad := {u / Ωu ∈ Sad} is of the form(10), Ω0 be
an optimal shape for the problem(7) (or (8) for the constrained problem), and assume thatj : u ∈ Fad 7→ J(Ωu)
satisfies assumptions of Theorem 2.9 (andm : u ∈ Fad 7→M(Ωu) satisfies assumption in Theorem 2.12 in the case
of the constrained problem). Then:

each connected component of(∂Ω0)in is polygonal.

Remark 2.14 When one uses the parametrization of convex sets by the gaugefunctionu, Ωu is a polygon if and
only if u′′ + u is a sum of Dirac masses. When parametrizingΩ with the support function as in Section 3.4, one has
the same characterization. Therefore, the results of this section hold if we work with the optimization problems as
in Section 3.4.

3 Shape functionals containing a local-convex term

In this section, we give the proof of the results in Section 2.2.1, that is to say regularity results for solutions of (11)
or (12). Using the parametrization (2), since the regularity of a shape and of its gauge functions are the same, we
consider several applications of regularity for optimal shapes to classical examples of energies. We conclude with a
few remarks about the application of our results when we use another parametrization of convex bodies, namely the
support function. In that case, we get the regularity of the support function, which does not imply the regularity of
the corresponding shape, but only the fact that this one is strictly convex.

3.1 Proof of Theorem 2.4 and 2.6

First order optimality condition:

A first optimality condition for the problem (11) is stated in[14, Proposition 3.1, 3.2] whenj is defined and differ-
entiable in the Sobolev Hilbert spaceH1(T). We give here an adaptation to state this result inW 1,∞ instead (which
is important for our applications involving a PDE, since theshape functionals are known to be differentiable for
Lipschitz deformations only).

Proposition 3.1 Let u0 > 0 be a solution of (11) withj : W 1,∞(T) → R of classC1 and such thatj′(u0) ∈
C0(T)′. Then there existsζ0 ∈W 1,∞(T), such that





ζ0 ≥ 0 onT, ζ0 = 0 on Supp(u′′0 + u0), and

∀ v ∈W 1,∞(Tin), j′(u0)v = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ :=

∫

T

ζ0v − ζ ′0v
′.

(17)

Remark 3.2 Without any assumption onj′(u0), we would a priori get a Lagrange multiplierζ0 ∈ L∞(T) (see the
proof below). The non-continuity ofζ0 may lead to some difficulties, especially to state thatζ0 = 0 onSupp(u′′0 +
u0). Though a restriction, the assumptionj′(u0) ∈ C0(T)′ will be satisfied in all of our applications.

Proof. We set

g : v ∈W 1,∞ 7→ v′′ + v ∈ (W 1,∞)′ in the sense that〈v′′ + v, ϕ〉W 1,∞′×W 1,∞ =

∫

T

vϕ− v′ϕ′,
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and we considerY := Im(g) = {f ∈W 1,∞(T)′, 〈f, cos〉(W 1,∞)′×W 1,∞ = 〈f, sin〉(W 1,∞)′×W 1,∞ = 0}, which is a
closed subspace of(W 1,∞(T))′.

Applying the same strategy as in [14], one getsl0 ∈ Y ′ such thatl0(g(u0)) = 0 and

∀f ∈ Y, f ≥ 0 ⇒ l0(f) ≥ 0, and ∀v ∈W 1,∞, 〈j′(u0), v〉(W 1,∞)′×W 1,∞ = 〈l0, v′′ + v〉Y ′×Y .

We restrict ourselves tov ∈ D(T) := C∞(T), and consider

ζ0 : f ∈ D(T) ∩ Y 7→ 〈ζ0, f〉D′×D := 〈l0, f〉Y ′×Y .

Our aim is to prove thatζ0 can be extended to a continuous linear form onL1(T). First, forf ∈ D(T) ∩ Y = {f ∈
D(T),

∫
T
f sin =

∫
T f cos = 0} we choose the uniquev ∈ W 2,1(T) such that{

∫
T
v sin =

∫
T
v cos = 0} and

v′′ + v = f in T. Then there existsC <∞ independant ofv or f such that

‖v‖W 1,∞(T) ≤ C‖f‖L1(T). (18)

Indeed, we first get anL∞-estimate using Fourier series: iff =
∑

n∈Z f̂(n)en with en(θ) = einθ and f̂(n) =∫
T
f(θ)e−inθ dθ

2π , thenv =
∑

|n|6=1
1

1−n2 f̂(n)en, and therefore

‖v‖L∞ ≤


∑

|n|6=1

1

|1− n2|


max

n
|f̂(n)| ≤ C‖f‖L1 ,

with C <∞. Then we get aW 1,∞-estimate by choosingθ0 such thatv′(θ0) = 0 (which is always possible, thanks
to regularity and periodicity ofv), and getting fromv′′ + v = f that

|v′(θ)| =
∣∣∣∣−
∫ θ

θ0

(f(s)− v(s))ds

∣∣∣∣ ≤ 2π (‖v‖L∞ + ‖f‖L1) ,

which concludes the proof of the estimate (18).
Therefore, we can write (C may define different universal constants)

∀f ∈ Y ∩ D(T), |〈ζ0, f〉D′×D| = |〈l, v′′ + v〉Y ′×Y | = |〈j′(u0), v〉(W 1,∞)′×W 1,∞ | ≤ C‖v‖W 1,∞ ≤ C‖f‖L1 .
(19)

We now extendζ0 onD(T) by

∀f ∈ D(T), 〈ζ0, f〉D′×D = 〈ζ0, f − f̂(1)e1 − f̂(−1)e−1〉D′×D.

Then, applying (19) tof − f̂(1)e1 − f̂(−1)e−1, we get

∀f ∈ D(T), |〈ζ0, f〉D′×D| ≤ C‖f − f̂(1)e1 − f̂(−1)e−1‖L1 ≤ C‖f‖L1 ,

and therefore by density, we extendζ0 to a continuous linear form inL1, which can be identified withζ0 ∈ L∞.
Moreover, in the sense of distributions:

〈ζ0, v′′ + v〉D′×D = 〈j′(u0), v〉D′×D, that is to sayζ ′′0 + ζ0 = j′(u0).

From the hypothesis forj′(u0) it follows ζ ′′0 + ζ0 ∈ (C0(T))′ which impliesζ0 ∈ W 1,∞(T). Using the continuity
of ζ0 and the factj′(u0)(u0) = 0 we get

∫
T
ζ0d(u

′′
0 + u0) = 0 by a density argument. Therefore, the rest of the

proof stays as in [14], namely we prove that we can add a combination ofcos andsin to ζ0 so thatζ0 ≥ 0. �
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Proof of Theorem 2.4.

Applying the previous proposition, and using the hypotheses on the functionalj, we get:

∀v ∈ C∞
c (Tin), j′(u0)v = r′(u)v +

∫

T

Gu(θ, u0, u
′
0)v +Gq(θ, u0, u

′
0)v

′ = 〈ζ0 + ζ ′′0 , v〉(W 1,∞(T))′×W 1,∞(T).

To integrate by part in this formula, sinceu′0 is only inBV (T), we may look in [20] (see also [1]) to get:

r′(u0) +Gu(θ, u0, u
′
0)−Gθq(θ, u0, u

′
0)−Guq(θ, u0, u

′
0)u

′
0 − u′′0G̃qq(θ, u0, u

′
0) = ζ0 + ζ ′′0 in D′(Tin). (20)

whereG̃qq(θ, u0, u
′
0) =

∫ 1
0 Gqq(θ, u0(θ), (1 − t)u′0(θ

+) + tu′0(θ
−))dt. For simplicity, we will drop the indication

of the dependence in(θ, u0, u′0) and write more simply

r′(u0) +Gu −Gθq −Guqu
′
0 − u′′0G̃qq = ζ0 + ζ ′′0 in D′(Tin). (21)

Equality (21) implies thatζ ′′0 is a Radon measure, and also that the singular parts of the measures in the two sides
of (21) are equal. To study the sign of these measures, we willuse the following lemma.

Lemma 3.3 The measureζ ′′0 satisfies:ζ ′′0 ≥ 0 on [ζ0 = 0].

Proof of Lemma 3.3.Letϕ ∈ C∞
0 (R), ϕ ≥ 0 and letpn : R+ → R+ be defined by

∀r ∈ [0, 1/n], pn(r) = 1− nr; ∀r ∈ [1/n,+∞), pn(r) = 0.

Recall thatζ0 ∈W 1,∞(T) andζ0 ≥ 0. Then
∫
ϕpn(ζ0)d(ζ

′′
0 ) = −

(∫
ζ ′0ϕ

′pn(ζ0) + ϕp′n(ζ0)ζ
′
0
2
)

≥ −
∫
ζ ′0ϕ

′pn(ζ0).

Lettingn tend to+∞ leads to ∫

[ζ0=0]
ϕd(ζ ′′0 ) ≥ −

∫

[ζ0=0]
ζ ′0ϕ

′ = 0,

the last integral being equal to0 thanks to the known propertyζ ′0 = 0 a.e. on[ζ0 = 0]. �

End of the proof of Theorem 2.4:

DenoteK := Supp(u′′0 + u0). Recall thatζ0 = 0 onK by Proposition 3.1. By Lemma 3.3,ζ ′′0 ≥ 0 onK. Let
u′′0 = µac+µs andζ ′′0 = nac+ns be the Radon-Nikodym decompositions of the measuresu′′0 , ζ

′′
0 in their absolutely

continuous and singular parts. Note that: [u′′0 + u0 ≥ 0 ⇒ µs ≥ 0] andns ≥ 0 onK.
Identifying the singular parts in the identity (21), and using thatr′(u0), Gu, Gθq, Guqu

′
0, u0G̃qq are at leastLp-

functions, we are led to−µsG̃qq = ns in Tin. SinceG̃qq > 0, µs ≥ 0, ns ≥ 0 onK ⊃ Supp(µs), we deduce
µs = 0 = ns in Tin. Thus,u0 ∈ W 2,1(Tin) andu′0 is absolutely continuous onTin. In particular,G̃qq = Gqq on
Tin.

We can now obtain higher regularity, using again the multiplier ζ ′′0 . Indeed, on one hand, we deduce from Lemma
3.3, from (21) and from the inequality−u′′0Gqq ≤ u0Gqq, that, on the setTin ∩K

0 ≤ ζ ′′0 ≤ r′(u0) +Gu −Gθq −Guqu
′
0 + u0Gqq ∈ Lp(T).

Thus,ζ ′′0 ∈ Lp(Tin ∩K). Going back to (21) and using that̃Gqq = Gqq is bounded from below on the compact set
T× u0(T)× Conv(u′0(T)), we deduceu′′0 ∈ Lp(Tin ∩K).

On the other hand, in the open setTin \K, we haveu′′0 + u0 = 0 so thatu′′0 ∈ L∞(Tin \K). As a conclusion
u′′0 ∈ Lp(Tin). �
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Proof of Theorem 2.6.

Optimality conditions are written with the Lagrangian (sincem′(u0) is onto, see also [14, Proposition 2.3.3]):

∀v ∈ C∞
c (Tin), j′(u0)v + µ · (m′(u0)v) = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ ,

for someµ ∈ Rd. The regularity ofm′(u0) implies that the strategy used in the proof of Theorem 2.4 remains valid.
�

3.2 Examples

In this section, we apply Corollary 2.7 to a number of classical energy functionals. For the proof of the differentia-
bility of the shape functionals see Section 3.3. We start by reminding some classical PDE functionals that we use in
our examples.

Dirichlet energy - Torsional rigidity

ForΩ an open bounded set inR2, we consider the solution of the following PDE, in a variational sense:

UΩ ∈ H1
0 (Ω), −∆UΩ = f in Ω, (22)

and we define the Dirichlet energy ofΩ by

Ef (Ω) :=

∫

Ω

(
1

2
|∇UΩ|2 − f UΩ

)
= min

{∫

Ω

(
1

2
|∇U |2 − fU

)
, U ∈ H1

0 (Ω)

}

= −1

2

∫

Ω
|∇UΩ|2 = −1

2

∫

Ω
UΩf.

About the regularity of the state function, we are going to use the following classical result (see [13], [9]).

Lemma 3.4 LetΩ be convex,f ∈ Lp
loc(R

2) with p > 2, andUΩ be the solution of (22). ThenUΩ ∈ W 1,∞(Ω) ∩
H2(Ω).

Remark 3.5 Whenf ≡ 1, the Dirichlet energy is linked to the so-called torsional rigidity T (Ω), with the formula
T (Ω) = −2E1(Ω).

First Dirichlet-eigenvalue of the Laplace operator

We defineλ1(Ω) as the first eigenvalue for the Laplacian with Dirichlet’s boundary conditions on∂Ω. It is well-
known that, if we defineUΩ as a solution of the following minimization problem,

λ1(Ω) :=

∫

Ω
|∇UΩ|2 = min

{∫

Ω
|∇U |2, U ∈ H1

0 (Ω),

∫

Ω
U2 = 1

}
,

thenUΩ is (up to the sign) the positive first eigenfunction of−∆ in Ω:

UΩ ∈ H1
0 (Ω), −∆UΩ = λ1(Ω)UΩ,

∫

Ω
U2
Ω = 1.

Again, like in Lemma 3.4, ifΩ is convex thenUΩ ∈ H2(Ω) ∩W 1,∞(Ω) andUΩ > 0 in Ω.

We are now in position to state some applications of Corollary 2.7:
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Example 3.6 (Penalization by perimeter)One can study

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) + P (Ω) / Ω convex,D1 ⊂ Ω ⊂ D2} (23)

whereF : (0,+∞) × (−∞, 0) × (0,∞) → R is C1, f ∈ H1
loc(R

2), D1,D2 are bounded open sets,Ef (Ω) is the
Dirichlet energy andλ1(Ω) is the first eigenvalue of−∆ defined as above.

Proposition 3.7 If Ω0 is an optimal set for the problem(23), then the free boundary∂Ω0 ∩ (D2 \D1) is C1,1 (or
equivalentlyW 2,∞), that is to say∂Ω0 ∩ (D2 \D1) has a bounded curvature.

The proof is a simple consequence of Section 3.3, which asserts thatR(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) andC(Ω) =
P (Ω) satisfy the assumptions in Corollary 2.7 withp = ∞.

Note that in Proposition 3.7 we could also add a dependence ofF in the capacity ofΩ or in any shape functional
which is shape differentiable and whose shape derivative can be represented as a function ofL∞(∂Ω) whenΩ is
convex.

Remark 3.8 The constraintsD1 ⊂ Ω ⊂ D2 helps existence for the problem (23). Of course, if one can prove
existence of an optimal shape without these constraints (mainly, one need to prove that a minimizing sequence
remains bounded and does not converge to a segment), the result of Proposition 3.7 remains a fortiori true for the
whole boundary of the optimal shape, i.e.∂Ω0 isC1,1.

Example 3.9 (Volume constraint and Perimeter penalization) We can also consider a similar problem with a
volume constraint:

min{J(Ω) := F (Ef (Ω), λ1(Ω)) + P (Ω) / Ω convex, and|Ω| = V0}, V0 ∈ (0,+∞).

In this case, the first optimality condition will be similar to the one for the problem (23) withF (Ef (Ω), λ1(Ω)) + µ|Ω|+ P (Ω)
whereµ is a Lagrange multiplier for the constraint|Ω| = V0. Theorem 2.6 applies and one gets globally the same
regularity result (but global) as in Proposition 3.7 on any optimal shape.

Example 3.10 (Perimeter constraint) If one considers again a problem with a perimeter constraint,

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) / Ω convex, andP (Ω) = P0} (24)

whereP0 ∈ (0,+∞), one needs to be more careful. In this case, the first optimality condition will be similar to the
one for the problem (23), withF (|Ω|, Ef (Ω), λ1(Ω)) + µP (Ω), whereµ is a Lagrange multiplier for the constraint
P (Ω) = P0. Therefore if we are able to proveµ > 0 then we can apply the same strategy as in Theorem 2.4, and
we therefore get the same regularity result as in Proposition 3.7. However, ifµ < 0, we refer to Example 4.9.

Example 3.11 In a more abstract context, one can consider

min{J(Ω)− α|Ω|+ P (Ω) / Ω convex ⊂ D}, (25)

whereJ is a shape differentiable functional, increasing with respect to the domain inclusion,D is an open set, and
α > 0 (if α = 0, the empty set is clearly solution of the problem). Again, weget that∂Ω0∩D has a locally bounded
curvature. Indeed, the derivative ofj(u) := J(Ωu) is a nonpositive measure, thanks to the monotonicity ofJ (see
[15]), and we apply Theorem 2.4 combined with the end of Remark 2.5.

3.3 Computation and estimate of first order shape derivatives

In this section we will prove the differentiability of the shape functionals involved in the examples of Section 3.2,
which are needed in Proposition 3.7.
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3.3.1 Volume and perimeter

About geometrical functionals, it is easy to write the area and the perimeter as functional ofu, namely

a(u) := |Ωu| =
∫

T

1

2u2
dθ, p(u) := P (Ωu) =

∫

T

√
u2 + u′2

u2
dθ, u ∈W 1,∞(T) ∩ {u > 0}. (26)

Note thatp(u) =
∫
T
G(θ, u(θ), u′(θ))dθ withG(θ, u, q) =

√
u2+q2

u2 and one can easily check thatGqq =
1

(u2+q2)3/2
>

0.

3.3.2 Dirichlet Energy - Torsional rigidity

We focus our analysis around a convex open setΩ0 with parametrizationu0 > 0. For ‖u − u0‖W 1,∞(T) small,
consider

ef : W 1,∞(T) ∩ {u > 0} → R,
u 7→ Ef (Ωu).

In order to study the differentiability ofef nearu0, we use the classical framework of shape derivatives. As
usual, we need to work with an extension operator: the deformation ∂Ω0 to ∂Ωu allows to define the vector field
ξ(u) : ∂Ω0 → R2 such that∂Ωu = (Id+ ξ(u))(∂Ω0). We will consider an extension toR2 of this transformation,
since we need to study the differentiability ofu → Ûu := UΩu ◦ (Id + ξ(u)) ∈ H1

0 (Ω0), whereUu := UΩu (see
[10] for example).

If we consider a smooth extension operatorξ : W 1,∞(T) → W 1,∞(R2;R2), we have(Id+ ξ(u))(∂Ω0) = ∂Ωu

if

ξ(u)

(
1

u0(θ)
, θ

)
=

(
1

u(θ)
− 1

u0(θ)

)
eiθ,∀θ ∈ T, (27)

where( 1
u0
(θ), θ) are polar coordinates (for simplicity, we will often writeu0, u or ξ instead ofu0(θ), u(θ) or

ξ(u)(r, θ)).

Remark 3.12 The transformationξ(u) can be extended toR2 in different ways. The easiest way is to take

ξ(u)(r, θ) =

(
1

u(θ)
− 1

u0(θ)

)
eiθη(r, θ) in R2, (28)

whereη ∈ C∞
0 (R2), η = 0 in a neighborhood of the origin andη = 1 in a neighborhood of∂Ω0.

This (polar) extension ofξ(u) is such thatξ ∈ C∞(W 1,∞(T);W 1,∞(R2;R2)) nearu0, and is sufficient for the
results of this section. More work will be needed for the second order shape derivatives, see Section 4.3.2.

Let us point out that ifξ isC2 in a neighborhood ofu0 and satisfies (27), then

∀v ∈W 1,∞(T) : ξ′(u0)(v) = − v

u20
eiθ, ξ′′(u0)(v, v) = 2

v2

u30
eiθ on ∂Ω0. (29)

Note also that the method used in the proof of Lemma 3.14, which is needed in the proof of Proposition 3.13, allows
to say that the method a priori fails if we consider an extension operatorξ : H1(T) → H1(R2;R2). This explains
our choice to work withv ∈ W 1,∞(T) rather thanv ∈ H1(T), even though it introduces extra difficulties (like in
Proposition 3.1 and in the proof of Proposition 4.11). �

The main result of this section is the following.
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Proposition 3.13 LetΩ0 = Ωu0
convex,f ∈ Hk

loc(R
2), k ∈ N∗ andξ ∈ Ck(W 1,∞(T);W 1,.∞(R2;R2)) nearu0.

We have:
i) ef isCk nearu0.
ii) If ξ satisfies(27), then for anyv ∈W 1,∞(T) we have

e′f (u0)(v) = −
∫

∂Ω0

1

2
|∇U0|2(ξ′(u0)(v) · ν0)ds0 =

∫

T

1

2
|∇U0(xθ)|2

v(θ)

u30(θ)
dθ, (30)

whereU0 ∈ H2(Ω0) is the solution of(22) inΩ0, ν0 is the exterior unit normal vector on∂Ω0, xθ =
1

u0(θ)
(cos θ, sin θ) ∈

∂Ω0.
iii) Furthermore,e′f (u0) ∈ L∞(T).

The proof of this proposition is classical and uses the following lemma, which will be needed in the following
section.

Lemma 3.14 Letu0 ∈W 1,∞(T), u0 > 0, f ∈ Hk
loc(R

2), k ∈ N∗. We have:

i) The mapu ∈W 1,∞(T) 7→ Ûu ∈ H1(Ω0) isCk nearu0.

ii) For v ∈W 1,∞(T), set

Û ′
0 := Û ′

u(u0)(v), U ′
0 := Û ′

0 −∇U0 · ξ′(u0)(v). (31)

Then

U ′
0 ∈ L2(Ω0), ∆U ′

0 = 0 in D′(Ω0), (32)

U ′
0 +∇U0 · ξ′(u0)(v) ∈ H1

0 (Ω0). (33)

iii) Furthermore, ifu′′0 + u0 ≥ 0, thenU ′
0 ∈ H1(Ω0).

Remark 3.15 Here we are not interested in the differentiability ofu 7→ Uu and the functionU ′
0 is directly defined

by (31). In fact, the mapu 7→ Uu (with Uu extended by zero inR2) is differentiable inL2(R2) and its derivative
equalsU ′

0 in Ω0, see Théorème 5.3.1, [10] for example.

Proof of Lemma 3.14:

i) The mapθ ∈ W 1,∞(R2;R2) 7→ U(Id+θ)(Ω0) ◦ (Id + θ) ∈ H1
0 (Ω0) is Ck in a neighborhood of0, see for

example [10, Proposition 5.3.7]. We conclude by using the composition of this map withξ.

ii) It is clear thatU ′
0 ∈ L2(Ω0) and thatU ′

0 + ∇U0 · ξ′(u0)(v) = Û ′
0 ∈ H1

0 (Ω0). To prove∆U ′
0 = 0 we

consider the mapS : W 1,∞(T) 7→ W 1,∞(R2;R2), S(u) = (Id + ξ(u))−1, which is well defined andCk in
a neighborhood ofu0. FromS(u) ◦ (Id+ ξ(u)) = Id, it is easy to check that forv ∈W 1,∞(T) we have

S′(u0)((v) = −ξ′(u0)(v), S′′(u0)(v, v) = 2∇ξ′(u0)(v) · ξ′(u0)(v) − ξ′′(u0)(v, v). (34)

Let ϕ ∈ D(Ω0). From (22), for allu nearu0 we have
∫
Ω0
Ûu ◦ S(u)∆ϕ − fϕ = 0. Differentiating this

equality on the directionv gives
∫

Ω0

(
Û ′
u ◦ S(u) +∇Ûu ◦ S(u) · S′(u0)(v)

)
∆ϕ = 0. (35)

Replacingu = u0 in (35) and using (34) gives
∫

Ω0

(
Û ′
0 −∇U0 · ξ′(u0)(v)

)
∆ϕ = 0,

which proves ii).
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iii) If u′′0 + u0 ≥ 0 thenΩ0 is convex. From Lemma 3.4 we obtainU0 ∈ H2(Ω0), which impliesU ′
0 ∈ H1(Ω0).

�

Proof of Proposition 3.13:
i) The functionalu 7→ ef (u) can be seen asef (u) = Ef,Ω0

◦ ξ(u), whereEf,Ω0
is a classical functional, introduced

to compute shape derivatives:

Ef,Ω0
(θ) : W 1,∞(R2;R2) → R

θ 7→ Ef ((Id + θ)(Ω0)).
(36)

As ξ isCk nearu0 andEf,Ω0
isCk nearθ = 0 in W 1,∞(R2;R2), see [10, Corollaire 5.3.8]), the differentiability of

ef (u) follows.
ii) As we haveef (u) = −1

2

∫
Ωu
Ûu ◦ S(u)f andÛu = 0 on∂Ω0, from Corollaire 5.2.5, [10], we obtain

e′f (u)(v) = −1

2

∫

Ωu

(
Û ′
u ◦ S(u) +∇Ûu ◦ S(u) · S′(u)(v)

)
f. (37)

Takingu = u0 in the last equality and using (34) gives

e′f (u0)(v) = −1

2

∫

Ω0

(Û ′
0 −∇U0 · ξ′(u0)(v))f = −1

2

∫

Ω0

U ′
0f = −1

2

∫

∂Ω0

|∇U0|2(ξ′(u0)(v) · ν0)ds0.

Finally, by changing the variables0 =

√
u2
0
+(u′

0
)2

u2
0

dθ, taking into account thatν0 =
(

1
u0
eiθ +

u′
0

u2
0

(ieiθ)
)

u2
0√

u2
0
+u′2

0

,

and after using (29). we obtain (30).
iii) As k ∈ N∗ it follows f ∈ Lp(Ω0), for all p ∈ [1,∞). Then Lemma 3.4 givesU0 ∈ W 1,∞(Ω0), soe′f (u0) ∈
L∞(T). �

3.3.3 First eigenvalue of the Laplace operator with Dirichlet boundary conditions

We consider
l1 : {u ∈W 1,∞(T), u > 0} → R

u 7→ l1(u) := λ1(Ωu)

and we have the same result as in Proposition 3.13, see for example Théorème 5.7.1, [10], and (29), with

l′1(u0)(v) =

∫

T

|∇U0|2(xθ)
v(θ)

u30(θ)
dθ, ∀v ∈W 1,∞(T).

3.4 Application with the dual parametrization

Instead of using parametrization by the gauge function, onecan also use the well-known parametrization by the
support function of a body, namely

∀θ ∈ T, hΩ(θ) := max{x · eiθ, x ∈ Ω}.

We get a characterization of the convexity in a similar way to(3):

Ω is convex ⇒ h′′Ω + hΩ ≥ 0.

Conversely, ifh ∈W 1,∞(T) satisfiesh′′ +h ≥ 0, then one can find a unique (after a choice of an origin) open con-
vex set, denotedΩh, whose support function ish (see [18] for example). This parametrization is the dual of the one
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with the gauge function. Indeed, the gauge function ofΩ is the support function of the dual body ofΩ and vice versa.

Therefore the optimization problem

min{J(Ω) / Ω ∈ Sad, Ω convex}, (38)

whereSad is a class of open planar sets, becomes




find h0 ∈ F̃ad such that̃j(h0) = min{j̃(h), h ∈ F̃ad, h
′′ + h ≥ 0}, where

j̃(h) = J(Ωh), andF̃ad = {h ∈W 1,∞(T) / Ωh ∈ Sad},
(39)

which is the same as (11).

Again, if the set of admissible functions can be written

F̃ad = {h ∈W 1,∞(T) / k1 ≤ h ≤ k2}, (40)

we can definẽTin = {θ ∈ T / k1(θ) < h(θ) < k2(θ)}, and then(̃∂Ω)in = {x ∈ ∂Ω s.t.∃θ ∈ T̃in, x · eiθ = h(θ)},
i.e. the set of points of∂Ω whose supporting plane is orthogonal to(cos(θ), sin(θ)) with θ ∈ T̃in.

As in Example 2.2, ifSad = {Ω / K1 ⊂ Ω ⊂ K2}, whereK1 andK2 are two convex open sets, then (40) is

satisfied withk1, k2 the supports functions ofK1,K2, and in that casẽ(∂Ω)in = ∂Ω \ (∂K1 ∪ ∂K2).
Therefore one gets a dual version of Corollary 2.7 as follows.

Corollary 3.16 LetΩ0 = Ωh0 be an optimal shape for the problem(38) with J = R+ C, and assume that,

∀h ∈ F̃ad, R(Ωh) = r(h) andC(Ωh) =

∫

T

G(θ, h(θ), h′(θ))dθ

wherer andG satisfy the assumptions of Theorem 2.4 for somep ∈ [1,∞]. Then

h0 ∈W 2,p(T̃in).

This implies in particular that˜(∂Ω0)in is strictly convex.

Remark 3.17 This parametrization is especially interesting when one has to deal with the perimeter because in this
caseP (Ωh) =

∫
T
hdθ. An example of a functionC(Ωh) satisfying the hypotheses of Corollary 3.16 is now the

opposite of the area, since

|Ωh| = 1

2

∫

T

(h2 − h′2)dθ.

However, it is not easy to work now with functionals coming from PDE. Indeed, it is well-known for example,
that the derivative ofλ1 in terms ofh is not more regular than a measure onT, see [11, 12]. We think that this can
be explained by the fact that some solutions of problems like(23) may not be strictly convex.

4 Optimization of concave non-local shape functionals

In this section, we prove the results of Section 2.2.2. The main proof relies on the analysis of the second order
shape derivatives. Next we apply these results to various energy functionals involving the Dirichlet energy or the
first eigenvalue of the Laplace-Dirichlet operator. Since the optimal shapes come with no a priori regularity except
the convexity condition, one needs some delicate computations to check the required assumptions. This leads to
rather sharp estimates on second derivatives which are interesting for themselves.
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4.1 Proof of Theorems 2.9 and 2.12

We first introduce the classical Sobolev semi-norms onT. Fors ∈ R+, we set:

|u|2Hs(T) :=
∑

n∈Z

|n|2s|û(n)|2 whereû(n) :=
∫

T

u(θ)e−inθ dθ

2π
.

We also defineHs(T) := {u ∈ L2(T) such that|u|Hs(T) < +∞} and‖u‖2Hs(T) := ‖u‖2L2(T) + |u|2Hs(T).

Proof of Theorem 2.9.

The main idea is to prove that for a deformation supported by asmall set, the estimate (16) is a concavity estimate,
and so it violates the second order optimality condition. This relies of the following Poincaré-type inequality:

Lemma 4.1 Lets ∈ [0, 1) andε ∈ (0, π). Then there exists a constantC = C(s) independant onε such that,

∀u ∈ H1(T) such thatSupp(u) ⊂ [0, ε], ‖u‖Hs(T) ≤ Cε1−s|u|H1(T).

Proof of Lemma 4.1. Let u ∈ C∞(T) with Supp(u) ⊂ [0, ε]. If we first assume thats = 0, then we have the
classical Poincaré inequality (with the optimal constant), proved using the fact that|u|2H1(T) =

∫
T
u′2, so

‖u‖L2(T) ≤
ε

π
|u|H1(T).

If one has nows ∈ (0, 1), one can proceed with an interpolation inequality, easily obtained by Hölder inequality:

|u|2Hs(T) =
∑

n∈Z

|n|2s|û(n)|2s|û(n)|2(1−s) ≤
(
∑

n∈Z

|n|2|û(n)|2
)s(∑

n∈Z

|û(n)|2
)1−s

,

and so

|u|Hs(T) ≤ |u|sH1(T)‖u‖1−s
L2(T)

≤ ε1−s

π1−s
|u|H1(T).

�

Let K := Supp(u′′0 + u0). Assume that, for a connected componentI of Tin, K ∩ I is infinite. Then, there
existsθ0 ∈ I an accumulation point ofK ∩ I. Without loss of generality we can assumeθ0 = 0 and also that there
exists a decreasing sequence(εn) tending to0 such thatK ∩ (0, εn) ⊂ I is infinite. Then, we follow an idea of
T. Lachand-Robert and M.A. Peletier as in [14] (see also [16]). We can always find0 < εin < εn, i = 1, . . . , 4,
increasing with respect toi, such thatSupp(u′′0 + u0) ∩ (εin, ε

i+1
n ) 6= ∅, i = 1, 3. We considervn,i ∈ W 1,∞(T)

solving
v′′n,i + vn,i = 1(εin,εi+1

n )(u
′′
0 + u0), vn,i = 0 in (0, εn)

c, i = 1, . . . , 3.

Suchvn,i exist since we avoid the spectrum of the Laplace operator with Dirichlet boundary conditions. Next, we

look for λn,i, i = 1, 3 such thatvn =
∑

i=1,3

λn,ivn,i satisfies

v′n(0
+) = v′n(ε

−
n ) = 0.

The above derivatives exist sincevn,i are regular near0 andεn in (0, εn). We can always find suchλn,i so as they
satisfy two linear equations. It implies thatv′′n does not have any Dirac mass at0 andεn. It even implies that the

17



support ofvn is included in[ε1n, ε
4
n]. In particular,v′′n + vn = ϕ(u′′0 + u0) whereϕ is bounded and with support in

[ε1n, ε
4
n]. AsSupp(u0) ∩ (εin, ε

i+1
n ) 6= ∅, we also havevn 6= 0.

SinceSupp(vn) ⊂ Tin andv′′n + vn = ϕ(u′′0 + u0), it follows thatu0 + tvn is admissible for|t| small enough
(andn fixed). Consequently, sincej(u0 + tvn) ≥ j(u0) for |t| small, we havej′(u0)(v) = 0 and then by using the
assumption (16) and Lemma 4.1, we get

0 ≤ j′′(u0)(vn, vn) ≤ −α|vn|2H1(T) + γ|vn|H1(T)‖vn‖Hs(T) + β‖vn‖2Hs(T) (41)

≤ (−α+ Cγε1−s
n + C2β(εn)

2(1−s))|vn|2H1(T). (42)

As εn tends to0, inequality (41) becomes impossible and proves thatSupp(u′′0 + u0) has no accumulation points in
Tin. It follows thatu′′0 + u0 is a finite sum of positive Dirac masses. �

Remark 4.2 More precisely, we can get an estimate of the number of corners in each connected componentI of
Tin:

#{Supp(u′′0 + u0) ∩ I} ≤ 2|I|
A

+ 2 where A1−s :=
−γ +

√
γ2 + 4αβ

2βC

(C = 1
π1−s appears in Lemma 4.1). Indeed, let us consider three consecutive Dirac massesθ1, θ2, θ3 in I. Then

• if β > 0, γ ≥ 0, we have

(θ3 − θ1)
1−s ≥ −γ +

√
γ2 + 4αβ

2βC
. (43)

• if β = γ = 0, then we have a contradiction, that is to sayu′′0 + u0 is the some of at most two Dirac massesI.

To prove this estimate, we definev ∈ H1
0 (θ1, θ3) satisfyingv′′ + v = δθ2 in (θ1, θ3), v = 0 in T \ (θ1, θ3). In T,

the measurev′′ + v is supported in{θ1, θ2, θ3}, and since these points are inSupp(u′′0 + u0), and[θ1, θ3] ⊂ Tin,
u0 + tv is admissible for small|t|. The second order optimality condition and then the assumption (16) together
with Lemma 4.1 lead to

0 ≤ j′′(u0)(v, v) ≤ −α|v|2H1(T) + γ|v|H1(T)‖v‖Hs(T) + β‖v‖2Hs(T)

≤ (−α+ CγX + C2βX2)|v|2H1(T),

whereX = (θ3 − θ1)
1−s, which implies (43) whenβ is positive, and gives a contradiction ifβ = γ = 0.

Remark 4.3 When one uses the parametrization of convex sets by the gaugefunctionu, Ωu is a polygon if and only
if u′′ + u is a sum of Dirac masses. With the support function (see Section 3.4), one has the same characterization.
Therefore, the conclusion is the same if we work with the optimization problem (39). Estimate (43) remains valid.
However,θi is no longer the polar angle of a corner of the shape, but is theangle of the normal vectors to the
successive segments of the polygonal boundary of the shape. �

As in Section 2.2.1, one can also handle problem with the equality constraint.
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Proof of Theorem 2.12.

We now need an abstract result for second order optimality conditions. Adapting [14, Proposition 3.3] similarly to
the first order condition given in Proposition 3.1 (this explains the assumptionj′(u0) ∈ (C0(T))′), we get that there
existζ0 ∈W 1,∞(T) nonnegative,µ ∈ Rd such that

{
ζ0 = 0 on Supp(u′′0 + u0) and

∀ v ∈W 1,∞(Tin), j′(u0)v + µ ·m′(u0)v = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ .
(44)

Furthermore, for allv ∈ H1(Tin) such that∃λ ∈ R,with v′′+v ≥ λ(u′′0+u0), and〈ζ0+ζ ′′0 , v〉−µ ·m′(u0)(v) = 0,

j′′(u0)(v, v) + µ ·m′′(u0)(v, v) ≥ 0. (45)

Then we proceed as in the proof of [14, Theorem 2.1]. Comparedto the first step of the proof of Theorem 2.9, we
add one degree of freedom introducing 4 functionsvn,i on a partition of(0, εn), and we look forλn,i, i = 1 . . . 4
such thatvn =

∑
i=1,4 λn,ivn,i satisfies

v′n(0
+) = v′n(ε

−
n ) = µ ·m′(u0)vn = 0.

Such a choice ofλn,i is always possible asλn,i satisfy three linear equations. Moreover,vn is not zero and using
(44), we get

∫
T
vn(ζ0 + ζ ′′0 ) = 0, which implies

0 = j′(u0)(vn) =

∫

T

vn(ζ0 + ζ ′′0 ) = µ ·m′(u0)(vn).

As v′′n + vn ≥ λ(u′′0 + u0) for λ ≪ 0, it follows thatvn is eligible for the second order necessary condition (45).
Then, it follows

0 ≤ j′′(u0)(vn, vn) + µ ·m′′(u0)(vn, vn) ≤ −α|vn|2H1(T) + γ|vn|H1(T)‖vn‖Hs(T) + (β + ‖β′µ‖)‖vn‖2Hs(T)

≤ (−α+ Cγε1−s
n + C2(β + ‖β′µ‖)(εn)2(1−s))|vn|2H1(T)

As n tends to∞, the inequality0 ≤ j′′(u0)(vn, vn) + µ ·m′′(u0)(vn, vn) becomes impossible and this concludes
the proof. �

Remark 4.4 An estimate similar to the one in Remark 4.2 is not straightforward anymore, since the Lagrange
multiplier µ is unknown.

4.2 Examples

We analyze the same examples as in Section 3.2, with−P instead ofP :

Example 4.5 (Negative perimeter penalization)One can study

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω))− P (Ω) / Ω convex,D1 ⊂ Ω ⊂ D2} (46)

whereF : (0,+∞) × (−∞, 0) × (0,+∞) → R is C2, f ∈ H2(R2), andD1,D2 are bounded open sets. We can
prove the following.

Proposition 4.6 If Ω0 is an optimal set for the problem(46), then each connected component of the free boundary
∂Ω0 \ (∂D1 ∪ ∂D2) is polygonal.
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Proof. The proof is a direct consequence of Corollary 2.13 and of theestimates given in Section 4.3.2. Indeed,
Proposition 4.11 forEf (Ω), the similar result forλ1 (See Section 4.3.3) and Proposition 4.10 for the volume, imply

|r′′(0)| ≤ C‖v‖2
H1/2+ε(T)

,

wherer(t) = F (|Ωt|, Ef (Ωt), λ1(Ωt)), Ωt = Ωu0+tv and ε ∈ (0, 12). Next, the estimate for the perimeter in
Proposition 4.10 provides the concavity condition. �

Remark 4.7 As in Remark 3.8, if we consider problems of type (46) where the constraintD1 ⊂ Ω ⊂ D2 can be
dropped, then the solution is a polygon.

Example 4.8 (Volume constraint and negative perimeter penalization) We can also consider a similar problem
with a volume constraint:

min{J(Ω) := F (Ef (Ω), λ1(Ω))− P (Ω) / Ω convex, and|Ω| = V0} (47)

whereV0 ∈ (0,+∞). Again, Corollary 2.13 applies and leads to the fact that anyoptimal shape of (47) is a polygon.

Example 4.9 [Perimeter constraint] We consider again a problem with a perimeter constraint, as in Example 3.10

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) / Ω convex, andP (Ω) = P0} (48)

whereP0 ∈ (0,+∞). The optimality conditions are written forF (|Ω|, Ef (Ω), λ1(Ω)) + µP (Ω), whereµ is a
Lagrange multiplier for the constraintP (Ω) = P0, so if we prove thatµ < 0, then the strategy of this section
applies, and we get that any optimal shape is polygonal.

4.3 Computations and estimates of second order shape derivatives

4.3.1 Volume and perimeter

Let a(u), p(u) be the area and perimeter functionals, see (26).

Proposition 4.10 Let 0 < u ∈ W 1,∞(T). Thena andp are twice differentiable aroundu in W 1,∞(T) and there
exists some real numbersβ1, β2, β3, γ andα > 0 (depending onu) such that,∀v ∈W 1,∞(T)





|a′′(u)(v, v)| ≤ β1‖v‖2L2(T)

α|v|2H1(T) − γ|v|H1(T)‖v‖L2(T) − β2‖v‖2L2(T) ≤ p′′(u)(v, v) ≤ β3‖v‖2H1(T)

(49)

Proof. This is done by easy computations, using formulas of Section3.3.1. �

4.3.2 The Dirichlet energy - Torsional rigidity

We now analyze the second order derivative ofef (u) = Ef (Ωu) introduced in Section 3.3. The main result is the
following.

Proposition 4.11 AssumeΩ0 := Ωu0
, u0 > 0, u′′0 + u0 ≥ 0, f ∈ H2

loc(R
2). Thenef isC2 in a neighborhood ofu0

(in W 1,∞(T)). Furthermore, there existβ1, β2 positive such that, for allv ∈W 1,∞(T),

|e′f (u0)v| ≤ β1‖v‖L2(T), (50)

|e′′f (u0)(v, v)| ≤ β2(‖v‖2H1/2(T)
+ ‖v‖2L∞(T)). (51)
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The differentiability ofef and the estimate (50) follow easily from Proposition 3.13. The estimate (51) is easy
to prove when working with smooth sets and one can then even drop theL∞ term. However, this result is more
difficult for a general convex set and the rest of this sectionis devoted to its proof.

Let v be given as in Proposition 4.11. To prove the estimate (51), it is appropriate to consider a transformationξ
such that

ξ ∈ C2((−η, η),W 1,∞(R2,R2)), η ∈ (0, 1), ξ(t) =

(
1

u0 + tv
− 1

u0

)
eiθ on ∂Ω0. (52)

Then, we will differentiate twicet ∈ (−η, η) → e(t) = E(Ωu0+tv). We will use the following notation and
identities:

Ωt := Ωu0+tv, Ut := UΩu0+tv , Ût := Ut ◦ (I + ξ(t)), e(t) := E(Ωu0+tv). (53)

Note thate(t) = ef (u0 + tv) = Ef,Ω0
(ξ(t)) and we have

e′(0) = e′f (u0)(v) = E ′
f,Ω0

(0)(ξ′(0)), (54)

e′′(0) = e′′f (u0)(v, v) = E ′′
f,Ω0

(0)(ξ′(0), ξ′(0)) + E ′
f,Ω0

(0)(ξ′′(0)). (55)

In the smooth case,e′′(0) can be written in terms of boundary integrals, which involvein particular the boundary
trace ofD2U0 and∇U ′

0. These terms are not well defined in the non-smooth setting (even in the caseΩ0 convex).
To overcome this difficulty, our strategy will be to write allnon-smooth terms ofe′′(0) as “interior” integrals inΩ0.

Estimate ofe′′(0): Note that we have proven in Section 3.3 thatef isC2 if f ∈ H2
loc(R

2)) (so,e isC2). We remind
the following classical formulation ofe′′(0)

Lemma 4.12 Letf ∈ H2
loc(R

2) andξ ∈ C2(R;W 1,∞(R2;R2)) near0. Then we have

e′′(0) = −1

2

(∫

Ω0

fU ′′
0 +

∫

∂Ω0

fU ′
0(ξ

′(0) · ν0)
)
, (56)

whereÛ ′′
0 := Û ′′

u (u0)(v, v) andU ′′
0 is defined by

U ′′
0 := Û ′′

0 −
(
2∇U ′

0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇U0 · ξ′′(0)
)

in Ω0, (57)

and satisfies
U ′′
0 ∈ L2(Ω0), ∆U ′′

0 = 0 in D′(Ω0). (58)

Proof. Differentiating (37) atu = u0 (see Corollaire 5.2.5, [10]) and then using (34) gives

e′′(0) = −1

2

∫

Ω0

(
Û ′′
0 − 2∇Û ′

0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇Û0 · (2∇ξ′(0) · ξ′(0)− ξ′′(0))
)
f,

−1

2

∫

∂Ω0

U ′
0f(ξ

′(0) · ν0). (59)

After replacingÛ ′
0 = U ′

0 −∇U0 · ξ′(0), (59) gives (56).
ClearlyU ′′

0 ∈ L2(Ω0). To prove that∆U ′′
0 = 0 we differentiate (35) atu = u0 and use (34). Then we obtain

∫

Ω0

(
Û ′′
0 − 2∇Û ′

0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇U0 · (2∇ξ′(0) · ξ′(0) − ξ′′(0))
)
∆ϕ = 0.

ReplacingÛ ′
0 as given by (31) gives

∫
Ω0
U ′′
0∆ϕ = 0, which proves (58). �
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Proof of Proposition 4.11.

We will often writeξ, ξ′, ξ′′ for ξ(0), ξ′(0), ξ′′(0). Let us rewrite (56) in the forme′′(0) = 1
2(I1 + I2). The second

termI2 is easy to estimate: from (31) we have

I2 := −
∫

∂Ω0

fU ′
0(ξ

′ · ν0) =
∫

∂Ω0

f∂ν0U0(ξ
′ · ν0)2 ≤ C‖ξ′‖2L2(∂Ω), C = C(‖f‖L∞(Ω0), ‖U0‖W 1,∞(Ω0)).(60)

The first termI1 =
∫
Ω0
U ′′
0∆U0 requires more investigation. To go around the non regularity of Ω0, we introduce

U0 = U1 − U2, Ui ∈ H1
0 (Ω0),−∆U1 = f+, −∆U2 = f−, Ui > 0 on Ω0.

Recall thatUi ∈ W 1,∞(Ω0) ∩ H2(Ω0). We will compute on the level setsΩi
ε := {x ∈ Ω0, Ui(x) > ǫ} (only on

one of them iff+ ≡ 0 or f− ≡ 0). Indeed, by Sard’s theorem, theΩi
ε are at leastC1 for a.e.ε. By strict positivity

of Ui, limε→0 1Ωi
ε
= 1Ω0

, so that

I1 = lim
ε→0

∫

Ω1
ε

U ′′
0∆U1 −

∫

Ω2
ε

U ′′
0∆U2.

Note thatU ′
0, U

′′
0 ∈ C∞

loc(Ω0) and asf ∈ H2
loc(R

2) we haveU0 ∈ H4
loc(Ω0). We obtain

∫

Ωi
ε

U ′′
0∆Ui =

∫

∂Ωi
ε

U ′′
0 ∂νεUi =

∫

∂Ωε

Û ′′
0 ∂νεUi − 2(∇U ′

0 · ξ′)∂νεUi − (ξ′ ·D2U0 · ξ′)∂νεUi − (∇U0 · ξ′′)∂νεUi

=: Iε1 + Iε2 + Iε3 + Iε4 . (61)

For the termIε1 , we have

Iε1 =

∫

Ωi
ε

Û ′′
0∆Ui +∇Û ′′

0 · ∇Ui
ε→0−−−→

∫

Ω0

Û ′′
0∆Ui +∇Û ′′

0 · ∇Ui =

∫

∂Ω0

Û ′′
0 ∂ν0Ui = 0. (62)

To deal withIε2 andIε3 , we will need the following generalized formula of integration by parts.

Lemma 4.13 LetΩ be aC1 open set,U ∈W 1,∞
0 (Ω)∩H2(Ω), V ∈ H1(Ω)∩{∆V ∈ L2(Ω0}, g ∈W 1,∞(Ω;R2).

Then

J :=

∫

∂Ω
∂νU(g · ∇V ) =

∫

Ω
∇(∇U · g) · ∇V + (∇U · g)∆V −∇(∇⊥U · g) · ∇⊥V, (63)

where the operator⊥ acts on a vector and is defined by⊥(a1, a2) = (−a2, a1). As a consequence

|J | ≤ ‖∇U‖L∞(Ω)‖g‖L2(Ω)‖∆V ‖L2(Ω) +2
{
‖V ‖H1(Ω)

[
‖U‖H2(Ω)‖g‖L∞(Ω) + ‖∇U‖L∞(Ω)‖∇g‖L2(Ω)

]
.
}

(64)

Proof. If ν is the exterior normal unit vector to∂Ω andτ =⊥ν the unit tangent vector, then, forϕ ∈ H1(Ω) and
a = (a1, a2), using that∇U · τ = 0 on∂Ω0, we have

⊥τ = −ν, (a · ν)∂νU = a · ∇U, (a · τ)∂νU = a · ∇⊥U, τ · ∇ϕ = −ν · ∇⊥ϕ.

Then we obtain
∫

∂Ω
∂νU(g · ∇V ) =

∫

∂Ω
(∇U · ν)(g · ν)(∇V · ν) + (∇U · ν)(g · τ)(∇V · τ)

=

∫

∂Ω

(
(∇U · g)∇V − (∇⊥U · g)∇⊥V

)
· ν (apply divergence theorem to both terms)

=

∫

Ω
∇ · ((∇U · g)∇V )−∇ · ((∇⊥U · g)∇⊥V ),
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which proves (63) because∇ · ∇⊥ = 0. The estimate (64) follows. �

End of the proof of Lemma 4.13.

We apply Lemma 4.13 onΩ = Ωi
ε to estimateIε2 , I

ε
3 in (61). ForIǫ2, we chooseU = Ui − ǫ, V = U ′

0, g = ξ′(0)
(recall that∆U ′

0 = 0) and for Iε3 , we chooseU = Ui − ǫ, V = Vj = ∂jUi, g = gj = ξ′j(0)ξ
′(0), j = 1, 2:

here−∆Vj = ∂jf
+ or ∂jf−. Next, we apply the estimate (64) to each of these choices andwe are obviously led

to estimates independent ofε. For Iε4 , we make a direct easy estimate. Together also with (60) and using Young
inequality we obtain:

|e′′(0)| ≤ C(‖∇U ′
0‖2L2(Ω0)

+ ‖∇ξ′‖2L2(Ω0)
+ ‖ξ′‖2L∞(Ω0)

+ ‖ξ′‖2L2(∂Ω0)
+ ‖ξ′′‖L1(∂Ω0)), (65)

where C = C(‖f‖L∞(Ω0)∩H1(Ω0), ‖Ui‖W 1,∞(Ω0), ‖Ui‖H2(Ω0), i = 0, 1, 2). (66)

Now, let us write the estimate (65) in terms ofv. First note that ifα, β ∈ H1/2(∂Ω0) ∩ L∞(∂Ω) thenαβ ∈
H1/2(∂Ω0) ∩ L∞(∂Ω0) and

‖αβ‖H1/2(∂Ω0)∩L∞(∂Ω0)
≤ C‖α‖H1/2(∂Ω0)∩L∞(∂Ω0)

‖β‖H1/2(∂Ω0)∩L∞(∂Ω0)
.

(using the easy fact thatH1(Ω0)∩L∞(Ω0) is an algebra, and that theH1/2(∂Ω0)-norm is equivalent to theH1(Ω0)-
norm of the harmonic extension inΩ0). Also, we point out that the transformationψ = ψ(r, θ) := r

u0(θ)
eiθ is

bi-Lipschitz nearT andψ(T) = ∂Ω0. Thenγ ∈ H1/2(∂Ω) if and only if γ ◦ ψ ∈ H1/2(T), and theirH1/2-norms
are equivalent.

Let us remind that, according to the choice ofξ in (52), we haveξ′(0) = − v
u2
0

eiθ, ξ′′(0) = 2 v2

u3
0

on∂Ω0. Then we

obtain, with the same dependence of the various constantsC as in (66)

‖∇U ′
0‖2L2(Ω0)

≤ C|ξ′ · ∇U0|2H1/2(∂Ω)
≤ C‖ξ′‖2

H1/2(∂Ω)∩L∞(Ω0)
≤ C‖v‖2

H1/2(T)∩L∞(T)
, (67)

‖ξ′‖L∞(∂Ω0) ≤ C‖v‖L∞(T), ‖ξ′‖2L2(∂Ω0)
+ ‖ξ′′‖L1(∂Ω0) ≤ C‖v‖2L2(T). (68)

All these estimates are valid for all choices ofξ as in (52). Let

W := {w ∈W 1,∞(Ω0), w|∂Ω0
= − v

u20
eiθ }.

Givenw ∈ W, let us chooseξ(t) := ζ(t) + t(w − ζ ′(0)), whereζ is theW 1,∞-extension as given in (28), namely

ζ(t)

(
1

u0(θ)
, θ

)
=

(
1

u0(θ) + tv(θ)
− 1

u0(θ)

)
eiθη(r, θ), η ∈ C∞

0 (R2),

with η = 0 (resp. η = 1) in a neighborhood of the origin (resp. of∂Ω0). Then,ξ is as in (52) andξ′(0) = w.
Therefore, the estimate (65) together with (67), (68) leadsto

∀w ∈ W, |e′′(0)| ≤ C
(
‖∇w‖2L2(Ω0)

+ ‖v‖2
H1/2(T)∩L∞(T)

+ ‖w‖2L∞(Ω0)

)
. (69)

Let us introduce

w0 ∈ H1(Ω0), ∆w0 = 0 on Ω0, (w0)|∂Ω0
= − v

u20
eiθ [or w0 − ζ ′(0) ∈ H1

0 (Ω0)] .
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Let now δn be a sequence ofC∞
0 (Ω0)-functions converging tow0 − ζ ′(0) in H1

0 (Ω0) and letwn := inf{δn +
ζ ′(0), ‖w0‖L∞(Ω0)}. Then,wn ∈ W and converges inH1(Ω0) to w0. Applying (69) withwn in place ofw and
passing to the limit yields:

|e′′(0)| ≤ C
(
‖∇w0‖2L2(Ω0)

+ ‖v‖2
H1/2(T)∩L∞(T)

+ ‖w0‖2L∞(Ω0)

)
. (70)

But, sincew0 is harmonic,

‖∇w0‖L2(Ω0) ≤ ‖w0‖H1/2(∂Ω0)
≤ C‖v‖H1/2(T), ‖w0‖L∞(Ω0) ≤ ‖w0‖L∞(∂Ω0) ≤ C‖v‖L∞(T).

Finally, the estimate (70) leads to
|e′′(0)| ≤ C‖v‖2

H1/2(T)∩L∞(T)
.

�

4.3.3 First eigenvalue of the Laplace operator with Dirichlet boundary conditions

The estimate of Proposition 4.11 also holds forλ1(Ωu), the first Laplace eigenvalue (see Section 3.3), namely

|l′′1(0)| ≤ C‖v‖2H1/2(T) ∩ L∞(T), (71)

wherel1(t) = λ1(Ωu0+tv). As the computations are very similar, we will only sketch the proof.

Proof of (71).

As for ef , for v ∈ W 1,∞(T) fixed and|t| small we considerl1(t) := λ1(Ωt) andUt, the first eigenvalue and the
corresponding eigenfunction of−∆ in Ωt := Ωu0+tv . As in Lemma 4.12 we can show that

l′′1(0) = −
∫

Ω0

U ′
0∆U

′
0 + U0∆U

′′
0 =: I1 + I2. (72)

HereU ′
0 andU ′′

0 satisfy

−∆U ′
0 = l1U

′
0 + l′1U0 in Ω0, U ′

0 = −ξ′(0) · ∇U0 on ∂Ω0,

∫

Ω0

U0U
′
0 = 0,

−∆U ′′
0 = l1U

′′
0 + 2l′1U

′
0 + l′′1U0 in Ω0,

∫

Ω0

|U ′
0|2 + U0U

′′
0 = 0,

U ′′
0 = Û ′′

0 −
(
2ξ′(0) · ∇U ′

0 + ξ′(0) ·D2U0 · ξ′(0) + ξ′′(0) · ∇U0

)
in Ω0,

wherel1 = l1(0), l′1 = l′1(0), l
′′
1 = l′′1(0). Then consideringΩε = {x ∈ Ω0, U0 > ε} as in the proof of Proposition

4.11 (note thatU0 > 0 onΩ0 here), we have :

I1 =

∫

Ω0

U ′
0(l1U

′
0 + l′1U0) = l1

∫

Ω0

|U ′
0|2, (73)

I2 = − lim
ε→0

∫

Ωε

U0∆U
′′
0 = − lim

ε→0

∫

Ωε

ε∆U ′′
0 + (U0 − ε)∆U ′′

0 = − lim
ε→0

∫

Ωǫ

(U0 − ε)∆U ′′
0

= lim
ε→0

∫

Ωε

U ′′
0 (−∆U0)− lim

ε→0

∫

∂Ωε

(U0 − ε)∂νεU
′′
0 − U ′′

0 ∂νεU0

= −l1
∫

Ω0

|U ′
0|2 + lim

ε→0

∫

∂Ωε

U ′′
0 ∂νεU0. (74)

24



Combining (72) with the last two equalities gives

l′′1(0) = lim
ε→0

∫

∂Ωε

U ′′
0 ∂νεU0.

Then we proceed exactly as in Proposition 4.11, and obtain for l′′1(0) an estimate exactly similar to (65).
Next, we prove that‖∇U ′

0‖L2(Ω0) ≤ C‖ξ′(0)‖H1(Ω0). As U ′
0 = Û ′

0 − ξ′(0) · ∇U0 it is enough to prove

‖∇Û ′
0‖L2(Ω0) ≤ C‖ξ′(0)‖H1(Ω0). One can verify that̂U ′

0 satisfies

Û ′
0 ∈ H1

0 (Ω0) ∩H2(Ω0), ∆Û ′
0 + l1Û

′
0 = 2trace([∇ξ′] · [D2U0])− l′1U0,

∫

Ω0

Û ′
0U0 = 0.

Using the convexity ofΩ0 and Fredholm alternative theorem, we can prove that the operator

V ∈ (H1
0 (Ω0) ∩H2(Ω0))\span{U0} 7→ ∆V + l1V ∈ L2(Ω0) ∩ {h,

∫

Ω0

hU0 = 0},

defines an isomorphism (see for example [8]), which togetherwith the formula forl′1(0) provides the required
estimate forÛ ′

0. Therefore, as fore′′(0), for all ξ as in (52), we have

|l′′1(0)| ≤ C
(
‖∇ξ′(0)‖2L2(Ω0)

+ ‖v‖2
H1/2(T)∩L∞(T)

+ ‖ξ′(0)‖L∞(Ω0)

)
.

Then we complete the proof as in Proposition 4.11. �

5 Remarks and perspectives

5.1 Localization of our two approaches

As explained in the introduction, the approaches leading toour two families of results are very ”local” with respect
to the boundary of the optimal shape. Indeed, each proof usestest functionsv ∈ W 1,∞ whose support may be as
small as we want and only covers the portion of the boundary that we want to analyze. To show how this can be
exploited, we give now -without proof- , an example of a result which can be reached by the same two methods
when applied locally.

Let us consider the following optimization problem whereG : (θ, u, q) ∈ T × R × R → R is assumed to be of
classC2 anda, b ∈ (0,∞):





u0 ∈W 1,∞(T), j(u0) = min{j(u), u′′ + u ≥ 0, a ≤ u ≤ b},

wherej(u) =
∫

T

G
(
θ, u(θ), u′(θ)

)
dθ.

(75)

We defineTin as in (13) and we introduce the partitionTin = T+ ∪ T0 ∪ T− where

T+ := {θ ∈ Tin ; G̃qq(θ) ∈ (0,∞)}, (recallG̃qq(θ) =
∫ 1
0 Gqq (θ, u0(θ), tu

′
0(θ

+) + (1− t)u′0(θ
−)) dt,

T− := {θ ∈ Tin, [Gqq (θ, u0(θ), u
′
0(θ

−)) , Gqq (θ, u0(θ), u
′
0(θ

+))] ⊂ (−∞, 0)},
T0 := Tin \ (T+ ∪ T−).
Then
(i) T+ is open andu′′0 ∈ L∞

loc(T+), so thatu0 ∈W 2,∞
loc (T+),

(ii) There is no accumulation point ofSupp(u′′0 + u0) in the open setT−; in other words,[θ ∈ T− → ∂Ωu0
(θ)] is

locally polygonal.
The situation onT0 requires a complementary study specific to each functional.
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5.2 Very singular optimal shapes

In this paper, we gave some sufficient conditions on the shapefunctional so that an optimal shape be smooth
or polygonal. But there exist convex sets which are not of this type, and in a certain sense have “intermediate
regularity”. Namely, there are convex sets which are singular in the sense that they do not have corners (they are
C1), but their curvature is zero almost everywhere. As an example, one may consider any convex set such that
u′′ + u is a Radon measure, without mass, but singular with respect the Lebesgue measure.

Let us mention a shape optimization problem whose solution is neither regular nor polygonal (see [17] for an
analysis of this problem). LetΩ0 be a convex set,V0 = |Ω0|, P0 = P (Ω0) andD = (Ω0)T = {x ∈ R2, d(x,Ω0) <
T}. Then Theorem 8 in [17] states that:

J(Ω0) = min{J(Ω) / Ω ⊂ D convex such thatP (Ω) = P0, |Ω| = V0}, (76)

whereJ is the distance functional:

J(Ω) :=

∫

D
d(x,Ω)dx.

SinceΩ is any convex set, one cannot expect any geometrical property for a minimizerof (76) without extra condi-
tions onD, V0 andP0. Remark also that the boxD = (Ω0)T isC1,1 here.

5.3 Problem without perimeter

An interesting problem, which has not been analyzed in this paper, is the following (we use the notation of Section
4.3):

max{Ef (Ω), |Ω| = V0,Ω convex ⊂ D}. (77)

It is easy to prove the existence of an optimal shapeΩ0. In this situation, we expect the termEf (Ω) to be leading
over|Ω| (whereas the perimeter was the stronger term in the examplessolved in this paper). So we are naturally led
to the following question : do there existα > 0, β, γ ≥ 0 such that

∀v ∈W 1,∞(T), e′′(0) ≥ α|v|2
H1/2 − γ|v|H1/2‖v‖L2 − β‖v‖2L2 ? (78)

A consequence of such an estimate, would be that any solutionof (77) is locally polygonal insideD (the same
strategy as in the proof of Theorem 2.9 would provide the result, we just need to adapt Lemma 4.1 toH1/2-norms).
It is easy to prove that (78) holds ifv is supported by a subset ofT which parametrizes aC2 strictly convex part
of ∂Ω0. Therefore, with the same proof as for Theorem 2.9, we are in position to deduce that∂Ω0 ∩D is nowhere
C2 with a positive curvature. But it is not clear whether estimate (78) remains valid in a more general situation and,
consequently, whether∂Ω0 ∩D is a polygon or not.
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