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Abstract

We focus here on the analysis of the regularity or singylafitsolutions(2, to shape optimization problems
among convex planar sets, namely:

J(Q0) = min{J(2), Q convex Q € Sua},

whereS, 4 is a set of 2-dimensional admissible shapes.and,; — R is a shape functional.

Our main goal is to obtain qualitative properties of theséno@ shapes by using first and second order
optimality conditions, including the infinite dimensionagrange multiplier due to the convexity constraint. We
prove two types of results:

i) under a suitable convexity property of the functiodalwe prove thaf), is aW??-set,p € [1,00]. This
result applies, for instance, with = oo when the shape functional can be writtenJd$)) = R(Q)) +
P(Q), whereR(Q2) = F (||, Ef(2), A1 (©)) involves the are#|, the Dirichlet energye; (€2) or the first
eigenvalue of the Laplace-Dirichlet operatar(©?), andP(?) is the perimeter of?,

i) under a suitable concavity assumption on the functiohalve prove that, is a polygon. This result
applies, for instance, when the functional is now writtel 63) = R(€2) — P(2), with the same notations
as above.

Keywords: Shape optimization, convexity constraint, optimality dions, regularity of free boundary.

1 Introduction

The goal of this paper is to develop general and systematis to prove the regularity or the singularity of optimal
shapes in shape optimization probleamong convex planar setsamely problems like:

min{J(Q2), Q convex Q € Syq}, (1)

where S, is a set of admissible shapes among subsef®?0énd J : S,; — R is a shape functional. Our
main objective is to obtain qualitative properties of o@irahapes by exploiting first and second order optimality
conditions on (1) wher¢he convexity constrains included through appropriate infinite dimensional Lage
multipliers.
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Our approach is analytién the sense that convex sets are represented through aelggwametrizations and
we work with the corresponding "shape functionals” definadgspaces of functiondn particular, we will use the
classical polar coordinates representation of convexasetsllows:
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Qu::{(r,ﬁ)e[o,oo)xﬂ%;r<w}, )

whereu is a positive an@m-periodic function, often called “gauge function@f,”. It is well-known that
Q, is convex <= u” +u > 0. (3)
Thus, Problem (1) may be transformed into the following:
min{j(u) = J(Qy), v +u>0, ue]-"ad}, 4
whereF,, is a space ofr-periodic functions which will be chosen appropriately épresentS,; in (1).

We obtain two families of results depending on wheth& "of convex type” or "of concave type”. In the first
case, we prove regularity of the optimal shapes. In the skcase, we prove that optimal shapes are polygons.

i) "Optimal shapes are regular”:under a suitable convexity property on the "main part” offilnectional j, we
prove that any solutiom, of (4) is W2, which means that the curvature @f, = 99, is an L? function
whereas it is a priori only a measure: see Theorems 2.4, &.€arollary 2.7. To that endye simply use the
first optimality conditiorfor the problem (1).

The functionals under consideration here are of the fé(fa) = R(Q2) + C(Q), wherer(u) := R(Q2,,) has
an LP-derivative and”' is like (6) below and satisfies a convexity condition. As am&iample, we consider
R(Q) = F(|Q, E¢(2), A1(€2)) which depends on the ar¢d|, on the Dirichlet energy”,(€2) and/or on the
first eigenvalue\; (2) of the Laplace operator dn (with Dirichlet boundary conditions), and(£2) = P(Q2)
is its perimeter: see Section 3.2. In this case, we actuatiyepthat the optimal shape i82> which means
that the curvature is bounded.

i) "Optimal shapes are polygons’next, we prove that, under a suitable concavity assumpticgh@functional
J, for any solutionu of (4), up + ug is (locally) a finite sum of Dirac masses, so tifat, is (locally)
a polygon: see Theorems 2.9, 2.12 and Corollary 2.13. Thef mbthis result isbased on the second
order optimality conditiorfor the problem (1). We apply this result to shape optima@aproblems where
J(2) = R(Q) — P(Q2) whereR(Q2) = F(|Q2], E¢(£2), A1(£2)) with the same notations as above, see Section
4.2. This application involves some sharp estimates ondbersl shape derivative of the energy which are
interesting for themselves: see Section 4.3.2.

Our examples enlighten and exploit the fact that, in theexdndf shape optimization under convexity constraint,
the perimeter is “stronger” than usual energies involvil=Rin terms of the influence on the qualitative properties
of optimal shapes: if it appears in the energy as a positiva, ti has a smoothing effect on optimal shapes, and on
the opposite as a negative term, it leads to polygonal opshepes.

Dual parametrization:Since our results are stated for the analytic functionglswé may apply them to the dual
parametrization of convex sets instead of the paramadtizatith the gauge function: each convex shape can also
be associated to its support functiba(f) = max{z - ¢, = € Q},6 € T and (1) again leads to the problem:

win {F(h), W' +h >0, h € Fag} (5)
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wherejj(h) := J(Q"), Q" being now the set whose support functiomisand F,, are all support functions of
admissible shapes € S,,. In this framework, ifj satisfies the suitable convexity property, the regulagsutt (i)
above holds foiy minimizer of (5). However, this regularity does not imphathihe corresponding optimal shape
Qo := QM is regular, but it exactly means th@y is strictly convex: see Section 3.4.

The situation is more similar to the gauge representatioervexploiting the results (ii). Indeed, when they apply,
they imply that the optimal shape is polygonal as well: sem&& 2.14.

Situation with respect to previous result$he second family of results (ii) is an extension of previoesults
obtained in [14] by the two first authors for the specific fallng functionals of “local type”:

2
J(Q) = /O G (0,u(0),4(8)) db, (6)

whereG = G(0,u,q) : T x [0,00) x R — R is strictly concave inyj. Among these functionals, we find for
instance the are@|, the perimeter”(2) or also the famous Newton’s problem of the body of minimaistesice

as studied by T. Lachand-Robert and coauthors: see for dggdfpl6] and see also [14, 7] for more examples
arising in the operator theory. Actually, the techniquegleyed in [14], and here as well for (ii), are inspired
from those introduced in [16]. The main novelty here in thauts (ii) is that the functionals are not necessarily of
the local form (6) and may include shape functionals defiheouigh state functions which are solutions of partial
differential equations (PDE). The “concavity conditios"then expressed in a functional way through the coercivity
of the second derivative in an adequate functional space Tlseorem 2.9. In [2], a similar concavity phenomenon
is used to get qualitative properties of minimizers in higtienension, under assumptions about their regularity and
convexity. We avoid here any assumption of this kind for tteear case.

The general optimality conditions including the infiniterginsional Lagrange multipliers were also provided
(and exploited) in the same paper [14]. They are revisited leani¥’1->°-context which is better adapted to our
more general functionals (see e.g. Proposition 3.1).

Similar arguments to those used here to obtain the first yaofitesults (i) may also be found in [3] where op-
timality conditions with convexity constraints are deyed in anN-dimensional setting. They are exploited for
several examples in dimension 1 (or in radial situations)ltain C'-regularity of the optimal shapes. With our
approach here, we are able to re&&R>°-regularity and this is valid for a rather general family ohttionals.

About a localization of the approach:et us mention that our two families of results may be mixedhie same
functional: indeed, as often the case, it may be that thenedjaonvexity property for (i) is valid on some part of the
boundary of the optimal shape, while the concavity propfatyii) is valid on the other part. Then, the techniques
developed here may be locally applied to each part and weltaimaat the same time smooth and polygonal pieces
in the boundary. However, as one expects, it remains difftoulinderstand the portion of the boundary which
remains at the intersection of these two parts. We refer ¢tid®e5.1 for more details.

To end this introduction, let us say that many questions firgt@rest in shape optimization among convex sets.
Here, we try to exploit as much as possible analytical tomlghtain precise qualitative results for optimal shapes
among convex planar sets. But many questions are left opbiglrer dimensions. Among them, and besides the
Newton’s problem already mentioned, we can quote the farMalder conjecture about the minimization of the
so-called Mahler-produdti|| K°| among symmetric convex bodiesRf (see [19]), which is of great interest in
convex geometry and functional analysis, and the Poheg&zonjecture about the minimization of the Newtonian
capacity among convex bodiesl®f whose surface area is given (see for example [4] and referiyecein).

This paper is structured as follows. In the following sectwe state our main results. In Section 3 we focus on
the regularity result (i) and we apply it to some various egka®. In Section 4, we deal with problems leading to



polygonal solutions (result (ii)), and we again considedétail some classical examples. We conclude with some
remarks and perspectives.

2 Main results

2.1 Notations and problems

We setT := [0, 27). Throughout the paper, any function definedbis considered as the restrictionToof a 27-
periodic function orR. We definel¥’1:>(T) := {u € W,5>°(R), u is 27-periodic}, and similarly for any functional
space. Ifu € Wh°°(T), we say that” + u > 0 if

Vo € Wh(T) with v > 0, / (uv — u'v') do > 0.
T
In this casen” + u is a nonnegativ@r-periodic measure oR and finite on[0, 27].
We denote bys,,; a class of open bounded setsiif (including constraints besides convexity). We will focurs o
two problems:
min{J (), Q € S,q, Q2 convex, @)

min{J (), Q € S,q, Q convex M (Q2) = My}, (8)

whereJ : S, — Ris referred as the energy aid : S,; — R¢ is an extra constraint\{y given ine R%).
In order to analyze the regularity of an optimal shape, westicrm these problems into minimization problems
in a functional analytic setting as follows: choosing amgioriO and using parameterization (2), we define

Faa = {u € WH(T), Q, € Saq}. ©)

the set of admissible gauge functions, endowed with|[théy; 1, ()-norm, and we assume that this set can be
written
Foa = {u € WH(T) / ki < u < kg andu > 0}, (10)

for some functions:;, k» : T — R respectively upper- and lower-semicontinuous (see Reharkelow for this
assumption).

A simple calculus of the curvature shows thigt is convex if and only ifu” + u > 0. Moreover, the support of
the measure” + u gives a parametrization of the “strictly convex part” of th@undary, and a Dirac mass in this
measure correspond to a corner of the associated shape,verddnanstance thaf,, is a convex polygon if and
only if u” + w is a finite sum of positive Dirac masses.

If Qg is a solution of problem (7) (resp. (8)), then its gauge fiomct, is respectively solution of:

j(ug) = min {j(u), v’ +u>0, ue Foq}, (11)
resp. j(uo) = min {j(u) / u € Foq,u” +u > 0andm(u) = My}, (12)

wherej : Foq — R, j(u) := J(Q,), andm : Foq — R, m(u) = M(Q,).
Our main goal in this paper is the analysis of the convexitysti@int. Thus, given an optimal sha@g, we focus

on the part ob$2y which does not saturate the other constraints definesl,hyWe therefore define, fary € F,.q4
andQy = Qy,,

Tin = Tin(Fad,uo) ={0 €T / k1(0) < uo(0) <k2(0)}, (13)
(09)in = {x €0 /30 € Tip,x = ! (cos 9,81119)} . (14)
uo(0)

See Example 2.2 and Figure 1 for examples.



Remark 2.1 If k1 or ko happened not to be semicontinuous, we could replace them by
k1 =inf{k: T — R continuous k > k;1}, k2 =sup{k: T — R continuous k < k}

and we have o
{u e WH(T) [ ki <u <k} ={u € WH(T) / k) <u < ko).

Therefore, the assumptions énandk, are not restrictive. Note that, thanks to the regularity@fky, ko, the set
T, is open.

Figure 1: Inclusion constraints
Example 2.2 A frequent example for admissible shaggg is:
Saa := {Q bounded open set & / K, ¢ Q C K},

where Ky, and K are two given bounded open sets. If for example and K, are starshaped with respect to a
common pointD, chosen as the origin, then

Faa={u€W'(T) / ki < u < ko},
wherek, ko are the gauge functions &, and K respectively. In that case, given a §et S,
(OQ)m = 00 \ (8K1 U 8K2),

see Figure 1.

The analysis of the optimal shape around the{get wy(0) € {k1(0),k2(0)}} = T \ Ty, where the inclusion
constraint is saturated, may require more efforts, see fddgxample. In this paper, we will not discuss this
guestion.

Note that we can also consider the c&§e= () and/orkK; = R? with k; = 0 andks = +o0.

Example 2.3 With respect to the constraints, M in (8), (12), a classical example is the area constraint:
: A ! A
m(u) = |Qu| = Ay — T ﬁdﬂ = AQ;,

where|Q2| denotes the area 6f.



2.2 The main results

As explained in the introduction, Section 1, we will proveottypes of results: they are described in the two
following subsections.

2.2.1 "Optimal shapes are smooth”

First we consider the problem (7) and its associated acalytersion (11). We assume th&f2) = R(Q2) + C(Q),
R satisfying some “regularity” assumption, atitheing written like in (6), and satisfying a convexity likeoperty.
More precisely:

Theorem 2.4 Letuy > 0 be an optimal solution of11) with F,,; of the form(10) and
i) = () + / G (6, u(6),/(6)) db, ue WS(Q)N {u> 0}, (15)
T

wherer and G satisfy:

i) r: Wh(T) — Ris C! aroundug andG : (6,u,q) € T x (0,00) x R — Ris C% aroundT x ug(T) x
Conv (ug(T)), whereConv(ug(T)) is the smallest (bounded) closed interval containing thieies of the
right- and left-derivativesy,(6™), u,(67),0 € T,

i) r'(ug) € LP(T) for somep € [1, 0],
iii) Ggq >0inT x up(T) x Conv(ug;(T)).

Then
ug € W?P(Ty,), whereT, is defined in(13).

See Section 3.1 for the proof, and Section 3.2 for explicineples.

Remark 2.5 A C'-regularity result has been proved for a similar problenhwit= 0 in [3] with different boundary
conditions, with a proof which is also based on first ordeiiroglity conditions. Here, for periodic boundary
conditions (but this is not essential), we improve this ltesuthe C'1!-regularity, and generalize it to the case of
non-trivial », which is of great interest for our applications. Let us alksfer to [6] for a higher dimensional result.
Let us remark that the same result is valid, with the samefpibae only assume that’(u) is the sum of a
function in LP(T) and of a nonpositive measure @n O

We can also get a similar result for the equality constrapredhlem (8) and the associated problem (12) as follows.

Theorem 2.6 Letug > 0 be an optimal solution of12) with j, F,4 as in Theorem 2.4, anck : W1 — R?a C!
function aroundkg with m/(ug) € (LP(T))? onto. Then

ug € WP(Ty,).
See Section 3.1 for the proof, and Section 3.2 for explicineples.

For a shape functional, using parametrization (2), Thesr2i and 2.6 lead to the following.



Corollary 2.7 LetS,, be a class of open sets R? such thatF,, := {u / Q, € Suq} is of the form(10) (£2,, is
defined in(2)), and letJ : S,; — R be a shape functional:
i) Let Qg be an optimal shape for proble(id), and assume that = R + C with:

Vu € Fog,  R(Q) = r(u) andC(Q,) = / G0, u(0), ' (6))do,
T

wherer and G satisfy assumptions of Theorem 2.4 for sgnee([1, oo]. Then(99 )., as defined irf14), isC! and
its curvature is inLP((9820)in)-
ii) A similar results holds for the probler8), if m(u) = M ((2,,) satisfies the hypotheses in Theorem 2.6.

Remark 2.8 The results of this section are in an abstract analyticatesonand do not depend on the charac-
terization of the domain. Therefore, one could considerciassical characterization of a convex body with its
support function instead of the gauge function. In Sectidn8e give a geometrical interpretation of similar results
associated to this parametrization.

2.2.2 "Optimal shapes are polygons”

Our second result is a generalization of Theorem 2.1 frorh [Me give a sufficient condition on the shape func-
tional J so that any solution of (1) be a polygon. In [14], the first twdhers only consider shape functionals
of local type like (6). The following results deal with nooell functionals, which allow a much larger class of
applications, including shape functionals depending oD&.P

Theorem 2.9 Letug > 0 be a solution for(11) with 7,4 of the form(10), and assume that : W1>°(T) — R is
C? aroundug and satisfies (see Section 4.1 for definitiong/6f(semi-)norms):

ds € [0,1),a > 0,8,v € [0,00), such that
Vo € WH(T), " (uo)(v,v) < =l gy + 0l (m ol s oy + BlollFpe ) - (16)
If I is a connected component®f, (defined in(13)), then
ugy + up is a finite sum of Dirac masses in

See Section 4.1 for a proof and Section 4.2 for explicit eXasp
Remark 2.10 We can even get an estimate of the number of Dirac massesns t#, 3, v, see Remark 4.2.

Remark 2.11 Theorem 2.9 remains true if (16) holds only for anguch that (denoting = g + uo):
Jp € L=(T, u) with v” +v = ¢ pu.

Indeed, the proof of Theorem 2.9 uses only this kind of pbetionsv which preserve the convexity of the shape.
U

As in Section 2.2.1, we can also handle the problem with aalégwonstraint as follows.

Theorem 2.12 Letuy > 0 be any optimal solution of12) with j, 7,4 as in Theorem 2.9, and the new assumptions:
' (up) € (€M), and m: Wh>® - R%is C? arounduy,
m’ (ug) € (CO(T)’)d is onto, ||m" (uo)(v,v)|| < B'l[v[|7(r), for somes’ € R.
Then, ifI is a connected component®f, (defined in(13)),

ugy + ug is a finite sum of Dirac masses in



See Section 4.1 for the proof.

Again, using the parametrization (2), we get the followieguit.

Corollary 2.13 LetS,, be a class of open sets R? such thatF,q := {u / ., € S,q} is of the form(10), Q2 be

an optimal shape for the proble(i) (or (8) for the constrained problem), and assume thatu € F,5 — J(,)
satisfies assumptions of Theorem 2.9 (andu € F 4 — M (£,) satisfies assumption in Theorem 2.12 in the case
of the constrained problem). Then:

each connected component(6tYy);, is polygonal

Remark 2.14 When one uses the parametrization of convex sets by the danggon u, €2, is a polygon if and
only if u” + w is a sum of Dirac masses. When parametriZingith the support function as in Section 3.4, one has
the same characterization. Therefore, the results of dusam hold if we work with the optimization problems as
in Section 3.4.

3 Shape functionals containing a local-convex term

In this section, we give the proof of the results in Sectidh B.that is to say regularity results for solutions of (11)
or (12). Using the parametrization (2), since the regylasfta shape and of its gauge functions are the same, we
consider several applications of regularity for optimass to classical examples of energies. We conclude with a
few remarks about the application of our results when we nséhar parametrization of convex bodies, namely the
support function. In that case, we get the regularity of tngpsrt function, which does not imply the regularity of
the corresponding shape, but only the fact that this oneigilgtconvex.

3.1 Proof of Theorem 2.4 and 2.6
First order optimality condition:

A first optimality condition for the problem (11) is stated[i#, Proposition 3.1, 3.2] whenis defined and differ-
entiable in the Sobolev Hilbert spaée' (T). We give here an adaptation to state this resul¥’ih> instead (which

is important for our applications involving a PDE, since #i@pe functionals are known to be differentiable for
Lipschitz deformations only).

Proposition 3.1 Letug > 0 be a solution of (11) withj : W1>°(T) — R of classC' and such that’(ug) €
CY(T)'. Then there exist§ € WH>(T), such that

Co>00nT, (o=0onSupp(uj+uy), and

. (17)
Voe Wb (Ty), j'(uo)v = (Co+ (), v)wreeyxwico i= /TCOU — (v’

Remark 3.2 Without any assumption ofi(ug), we would a priori get a Lagrange multiplies € L>°(T) (see the
proof below). The non-continuity afy may lead to some difficulties, especially to state tfaat 0 on Supp(ug +
up). Though a restriction, the assumptigfitug) € C°(T)’ will be satisfied in all of our applications.

Proof. We set

g:vE W™ " +ve (WhHe) inthe sense that” + v, ©) e i = / v — vy,
T
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and we consideY” := Im(g) = {f € W>(T)', (f,cos) 100y xmwree = (f,8i0) 100y e = 0}, which is a
closed subspace ¢f1>°(T))".
Applying the same strategy as in [14], one dgts Y’ such that(g(ug)) = 0 and

vfeY, f>0= lo(f) >0, and Yve Wl,oo’ <j,(u0),v>(Wl,oo)/><W1,oo = <l0,2}” + U>y/><y.
We restrict ourselves to € D(T) := C*°(T), and consider
G : feDT)NY = (Co, [loxp = (los flyrxy-

Our aim is to prove thafy can be extended to a continuous linear formid(T). First, forf € D(T)NY = {f €
D(T), [y fsin = [, fcos = 0} we choose the unique € W?%!(T) such that{ [, vsin = [;vcos = 0} and
v” +v = finT. Then there exist§’ < oo independant of or f such that

[vllwiooery < Clfllpr(r)- (18)

Indeed, we first get an>-estimate using Fourier series: fif= > _, f(n)en with e, () = e™? andf(n) =
Jp F(0)e L thenv = 3 ) L f(n)e,, and therefore

1 .
[v][Lee < (Z 1712) max [f(n)] < C|f|Lr,
n71

with C' < co. Then we get &1 >°-estimate by choosing, such that’(fy) = 0 (which is always possible, thanks
to regularity and periodicity of), and getting from"” + v = f that

0
—/ (f(s) —v(s))ds| < 2m ([[vl[Le + [ flL1)

0o

o) =|

which concludes the proof of the estimate (18).
Therefore, we can write’{ may define different universal constants)

VfeYND(T), (o, floxnl=[Lv" +v)yiy| = (w0), v) ey xwiee| < Clloflwre < O|lflL
(19)
We now extend, onD(T) by

VfeD(T), (Co,floxp = (Cos f — F(Ver — f(=1)e_1)prxp.

o~

Then, applying (19) tg — f(1)e; — f(—l)e,l, we get
¥f e D(T), (o, f)orwnl < ClIf = F(Der = F(=De-1llzr < ClIflr,

and therefore by density, we extetglto a continuous linear form i', which can be identified witd, € L°.
Moreover, in the sense of distributions:

(Co,v" +v)prxp = (5 (uo), v)pr «p, that is to say{ + (o = 5’ (uo)-

From the hypothesis foi (u) it follows ¢ + ¢y € (C°(T))" which implies¢y € W1°°(T). Using the continuity
of ¢y and the facy’(uo)(uo) = 0 we get [ (od(ug + up) = 0 by a density argument. Therefore, the rest of the
proof stays as in [14], namely we prove that we can add a caatibimofcos andsin to {, so that(, > 0. O



Proof of Theorem 2.4.

Applying the previous proposition, and using the hypothasethe functionaj, we get:
Vo € C°(Tin), J'(uo)v = 7' (u)v + /T Gu(0,uo, up)v + Gq(8, uo, up)v" = (Co + €0, V) (wieo (1)) xwt.oo() -
To integrate by part in this formula, sineg is only in BV (T), we may look in [20] (see also [1]) to get:

' (u0) + G (8, 10, 1) — Glag (8, 10, 1) — Gug(8, 0, )y — g Glaq (6, 10, 1) = Co + G5 i D' (Tan).  (20)

whereGy, (0, ug, up) = [ Gyq(8,uo(8), (1 — t)up(0) + tuly(6~))dt. For simplicity, we will drop the indication
of the dependence if®, ug, u;,) and write more simply

TI(UO) + Gu - Geq - Guquo uO CO + C(/)/ in D/(T ) (21)

Equality (21) implies that/ is a Radon measure, and also that the singular parts of theunesain the two sides
of (21) are equal. To study the sign of these measures, weisdglthe following lemma.

Lemma 3.3 The measure// satisfies:(j > 0 on[(y = 0].
Proof of Lemma 3.3.Let p € C3°(R), ¢ > 0 and letp,, : R, — R be defined by

Vr € 10,1/n], pp(r) =1—nr; Vr € [1/n,4+00), pu(r) = 0.
Recall that, € W1°°(T) and(, > 0. Then

/tppn(Co)d( (/ Cow'pn(Co) + pl, (C0) <o ) /Cosopn Co)-

Letting n tend to+oc leads to
| ez =0
[Co=0] [Co=0]

the last integral being equal tothanks to the known property, = 0 a.e. on[¢, = 0]. O
End of the proof of Theorem 2.4:

DenoteK := Supp(uj + up). Recall that(, = 0 on K by Proposition 3.1. By Lemma 3.3y > 0 on K. Let
Uy = flac + ps @aNd¢ = nqe +n;s be the Radon-Nikodym decompositions of the measuffe§; in their absolutely
continuous and singular parts. Note thatg - vp > 0 = p, > 0] andn, > 0 on K.

Identifying the singular parts in the identity (21), andngsthatr’(uo) Gu,Gog, Guqu{),uoﬁ(; are at least.?-
functions, we are led tc—}uquq = ng in T;,. Slncequ > 0,us > 0,ng > 00nK D Supp(,us) we deduce
ts = 0 = ngin Ty,. Thus,ug € WL(Ty,) andu, is absolutely continuous df;,,. In particular, qu = Gyq 0N
Tin-

We can now obtain higher regularity, using again the mutigg;. Indeed, on one hand, we deduce from Lemma
3.3, from (21) and from the inequalityu( G, < uoG 4, that, on the sef;, N K

Thus,(] € LP(T;, N K). Going back to (21) and using théEq = (4, is bounded from below on the compact set
T x ug(T) x Conv(ug(T)), we deduces; € LP(T;, N K).

On the other hand, in the open &&t, \ K, we haveu( + uo = 0 so thatug € L>(T;, \ K). As a conclusion
ull € LP(Ty,). O
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Proof of Theorem 2.6.

Optimality conditions are written with the Lagrangian (mn’(ug) is onto, see also [14, Proposition 2.3.3]):
Vo € CX(Tin), J'(uo)v + p- (m'(uo)v) = (Co + (g, v) wieey oo,

for someu € R?. The regularity ofn’(uo) implies that the strategy used in the proof of Theorem 2.4iesvalid.
[

3.2 Examples

In this section, we apply Corollary 2.7 to a number of classénergy functionals. For the proof of the differentia-
bility of the shape functionals see Section 3.3. We starenyinding some classical PDE functionals that we use in
our examples.

Dirichlet energy - Torsional rigidity

For (2 an open bounded set &?, we consider the solution of the following PDE, in a variaabsense:
Ug € Hi(Q), —AUq=f inQ, (22)

and we define the Dirichlet energy Qfby

Ef(Q) = /QG\VUQP—fUQ) :min{/Q (%]VU\Q—fU>, UeH&(Q)}

1 , 1
= —§/QNUQ; _—i/QUQf.

About the regularity of the state function, we are going te tie following classical result (see [13], [9]).

Lemma 3.4 LetQ be convexf € L (R?) withp > 2, andUy, be the solution of (22). Thelii, € W>°(2) N
H?(9Q).

Remark 3.5 When f = 1, the Dirichlet energy is linked to the so-called torsiongidity 7°(£2), with the formula
T(Q) = —2E,(Q).

First Dirichlet-eigenvalue of the Laplace operator

We define)\; (£2) as the first eigenvalue for the Laplacian with Dirichlet'subdary conditions owS2. It is well-
known that, if we defind/, as a solution of the following minimization problem,

() ::/Q|VUQ|2:min{/Q|VU|2, U € Hy(Q), /QU2:1}’

thenUq, is (up to the sign) the positive first eigenfunction-ed\ in ©:
Ug € H (Q), —AUq= \(Q)Uq, /QUS% =1
Again, like in Lemma 3.4, if2 is convex therl/ € H?(2) N W1H>°(Q) andUg > 0in Q.
We are now in position to state some applications of Corplar:
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Example 3.6 (Penalization by perimeter) One can study
min{J(Q2) := F (|Q|, E¢(2), A\ (R2)) + P(Q) / Q convex D; C Q C Dy} (23)

whereF : (0, +00) x (—00,0) x (0,00) = RisC!, f € H. (R?), Dy, D, are bounded open set;(2) is the
Dirichlet energy and\; (2) is the first eigenvalue of A defined as above.

Proposition 3.7 If ) is an optimal set for the probleif23), then the free bounda§Qy N (D5 \ D;) is C* (or
equivalentlyl2:>°), that is to sayp, N (D> \ D1) has a bounded curvature.

The proof is a simple consequence of Section 3.3, whichasetR(Q2) = F(|Q|, £¢(2), A1(R2)) andC(Q2) =
P () satisfy the assumptions in Corollary 2.7 wijth= occ.

Note that in Proposition 3.7 we could also add a dependengéeimthe capacity of) or in any shape functional
which is shape differentiable and whose shape derivatinebearepresented as a function Io¥ (02) when( is
CONnvex.

Remark 3.8 The constraintd); C 2 C D, helps existence for the problem (23). Of course, if one cawer
existence of an optimal shape without these constrainténfynane need to prove that a minimizing sequence
remains bounded and does not converge to a segment), thieafeBuoposition 3.7 remains a fortiori true for the
whole boundary of the optimal shape, i@ is C':'.

Example 3.9 (Volume constraint and Perimeter penalization We can also consider a similar problem with a
volume constraint:

min{J(Q) := F(E¢(Q), A\ () + P(Q) / Q convex and|2] = Vp}, Vp € (0, +00).

In this case, the first optimality condition will be similarthe one for the problem (23) withi(E¢(£2), A1 (€2)) + 1|2] + P
wherey is a Lagrange multiplier for the constraifft| = V. Theorem 2.6 applies and one gets globally the same
regularity result (but global) as in Proposition 3.7 on aptimal shape.

Example 3.10 (Perimeter constraint) If one considers again a problem with a perimeter constraint
min{J(Q) == F(192], E;(Q), M (€)) / © convex andP(Q2) = Fy} (24)

whereP, € (0,+00), one needs to be more careful. In this case, the first optyraindition will be similar to the

one for the problem (23), witlh'(|2], ££(£2), A1 (Q2)) + pP(£2), wherey is a Lagrange multiplier for the constraint
P(Q) = Py. Therefore if we are able to proye> 0 then we can apply the same strategy as in Theorem 2.4, and
we therefore get the same regularity result as in Proposgi@. However, ifu < 0, we refer to Example 4.9.

Example 3.11 In a more abstract context, one can consider
min{J(Q2) — «|Q| + P(£2) / Q convex C D}, (25)

whereJ is a shape differentiable functional, increasing with ez$pgo the domain inclusior) is an open set, and
a > 0 (if « = 0, the empty set is clearly solution of the problem). Again,geethatd2, N D has a locally bounded
curvature. Indeed, the derivative ffu) := J(2,) is a nonpositive measure, thanks to the monotonicity ¢fee
[15]), and we apply Theorem 2.4 combined with the end of R&r&s.

3.3 Computation and estimate of first order shape derivative

In this section we will prove the differentiability of the agbe functionals involved in the examples of Section 3.2,
which are needed in Proposition 3.7.

12



3.3.1 Volume and perimeter

About geometrical functionals, it is easy to write the ared the perimeter as functional ef namely

1 /22 /2
) = Q] =/ﬁd9, p(u) = / LI, weW(T)n{u>0}.  (26)
T
Note thaip(u) = [ G( ,u'(0))df with G(0,u, q) = 7”:;”12 and one can easily check ti@f, = W >

0.

3.3.2 Dirichlet Energy - Torsional rigidity

We focus our analysis around a convex open(getvith parametrizationyy > 0. For [[u — ug||y1.00(ry small,

consider
ef: Whe(T)Nn{u>0} — R,
U — Ef(Qu)

In order to study the differentiability of; nearu,, we use the classical framework of shape derivatives. As
usual, we need to work with an extension operator: the deftiamoS2, to 012, allows to define the vector field
£(u) : 09 — R? such thab$2, = (Id + £(u))(990). We will consider an extension &®? of this transformation,
since we need to study the differentiability @f— U, := Uq, o (Id + £(u)) € H}(Q), wherelU, := Ug, (see
[10] for example).

If we consider a smooth extension operagoriV 1:°°(T) — W1 (R?; R?), we have(ld + £(u))(020) = 08,

where (=-(0), 0) are polar coordinates (for simplicity, we will often wriig), « or £ instead ofug (), u(6) or

Remark 3.12 The transformatior§(u) can be extended f&? in different ways. The easiest way is to take

1 1, .
E(u)(r,0) = (WQ) — u0(0)> e 677(7“, f) in R2, (28)

wheren € C§°(R?), n = 0 in a neighborhood of the origin ang= 1 in a neighborhood adQ.

This (polar) extension of(u) is such that € C>°(WL°°(T); W1 (R?;R?)) nearug, and is sufficient for the
results of this section. More work will be needed for the sekcorder shape derivatives, see Section 4.3.2.

Let us point out that it is C? in a neighborhood ofiy and satisfies (27), then

v v2
Vo e Wh(T) 1 &' (ug)(v) = ——€”, " (ug)(v,v) = 2— “on 99y. (29)

Up “0

Note also that the method used in the proof of Lemma 3.14,wikineeded in the proof of Proposition 3.13, allows
to say that the method a priori fails if we consider an extmsiperatog : H'(T) — H'(R?;R?). This explains
our choice to work withy € W1°°(T) rather tharw € H*(T), even though it introduces extra difficulties (like in
Proposition 3.1 and in the proof of Proposition 4.11). O

The main result of this section is the following.
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Proposition 3.13 Let )y = Q,, convex,f € Hf (R?), k € N* and¢ € CH(WL°°(T); W->°(R?;R?)) nearug.
We have:
i) e is C* nearuy.

ii) If ¢ satisfieg27), then for anyy € W1>°(T) we have

v — [ Lroun e 1 o(6)
Guo)w) = [ SIVURE )e) - voydso = [ 59U s (30)

wherely € H?(£)) is the solution 0f22)in Q, vy is the exterior unit normal vector v, zy = #w)(cos 0,sin0) €

9.
iii) Furthermore, e, (ug) € L>(T).

The proof of this proposition is classical and uses the ¥alg lemma, which will be needed in the following
section.

Lemma 3.14 Letuy € WH(T), up > 0, f € HF (R?), k € N*. We have:
i) The mapu € W1>°(T) — U, € H'(Q) is C* nearug.

i) For v € Whee(T), set

Up = Up(uo)(v), Uy = Uy—VU- €& (uo)(v). (31)

Then
Uy € L*(Q), AU, = 0inD'(Q), (32)
Uy + VU - €' (uo)(v) € Hy () (33)

iii) Furthermore, ifuf + uo > 0, thenU} € H'(Qy).

Remark 3.15 Here we are not interested in the differentiability.of+ U,, and the functiorl/| is directly defined
by (31). In fact, the map — U, (with U, extended by zero iiR?) is differentiable inL?(R?) and its derivative
equalsl, in Q, see Théoreme 5.3.1, [10] for example.

Proof of Lemma 3.14:

i) The mapd € WH(R%: R?) — U1440)(0,) © (Id + 0) € H(Q0) is C* in a neighborhood of, see for
example [10, Proposition 5.3.7]. We conclude by using thepasition of this map witkg.

i) It is clear thatU}, € L*() and thatl}, + VU - €' (ug)(v) = U} € HL(Qp). To prove AU} = 0 we
consider the mag : W1°(T) s WH>(R?,R?), S(u) = (Id + £(uw)) ™!, which is well defined and'* in
a neighborhood ofiy. FromS(u) o (Id + £(u)) = Id, itis easy to check that far € W°°(T) we have

S'(uo)((v) = =& (uo)(v), 8" (uo)(v,v) = 2VE (ug)(v) - &' (uo)(v) — " (uo)(v, v). (34)

Let ¢ € D(Qp). From (22), for allu nearuy we havefQO U, o S(u)Ap — fe = 0. Differentiating this
equality on the directiom gives

/Q (U; o S(u) + VU, 0 S(u) - S’(uo)(v)> Ap =0. (35)
Replacingu = ug in (35) and using (34) gives
/ (Ué - VU - §'(u0)(v)) Ay =0,
Qo

which proves ii).
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iii) If uf +uo > 0 thenQ is convex. From Lemma 3.4 we obtdify € H?(£)), which impliesUj € H1(Q).
]

Proof of Proposition 3.13:
i) The functionalu — ef(u) can be seen as (u) = £y, o {(u), where&y o is a classical functional, introduced
to compute shape derivatives:

Eray(0) 1 WL(R%R?) — R

0 Bp((Id+ 0)(). (39)

As ¢ is C* nearug andéy g, is C* nearf = 0 in Wh>°(R?;R?), see [10, Corollaire 5.3.8]), the differentiability of
ef(u) follows.
ii) As we haveey(u) = —% [, U, 0 S(u)f andU, = 0 on €, from Corollaire 5.2.5, [10], we obtain

ep(u)(v) = — %/ (040 S(w) + V0, 0 S(u) - ' (u)(v) ) /. (37)
Takingu = ug in the last equality and using (34) gives
! = 1 A/— -/u v _—l ! _—1 /u V) - Y S
(o) (v) = /%(U0 VU € (uo)()f = — /Q Usf = /m IV TO[2(€ (10) (v) - v0)dso.

2

Finally, by changing the variable, = 7““2’3Wd9, taking into account that, = <u—1oei9 + Z—é(z’ew)) 40
0

and after using (29). we obtain (30).
iii) As k € N* it follows f € LP(y), forall p € [1,00). Then Lemma 3.4 giveE, € W1°(£y), soe(ug) €
L>®(T). 0

3.3.3 First eigenvalue of the Laplace operator with Dirichét boundary conditions

We consider
li: {ue WH°(T), u>0} — R
u = () = A (Q)
and we have the same result as in Proposition 3.13, see foned@ héoreme 5.7.1, [10], and (29), with
v(0)

H@MM:AW%WW%@M,WEWWW)

3.4 Application with the dual parametrization

Instead of using parametrization by the gauge function, Gamealso use the well-known parametrization by the
support function of a body, namely

Y0 €T, ho(f) :=max{z-e?, = ecQ}.
We get a characterization of the convexity in a similar wag3jo
Q is convex = h + hg > 0.

Conversely, ith € W1°(T) satisfiesh” + h > 0, then one can find a unique (after a choice of an origin) open co
vex set, denote@”, whose support function is (see [18] for example). This parametrization is the duahefdne
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with the gauge function. Indeed, the gauge functiof? & the support function of the dual body%fand vice versa.

Therefore the optimization problem
min{J(Q2) / Q€ S,q4, 2 convex, (38)

whereS, is a class of open planar sets, becomes

find ho € Foq such that(ho) = min{j(h), h € Faq, K" +h >0}, where
- . (39)
](h) = J(Qh)> and-/—:ad = {h € Wl,oo(']r) / Qh € Sad}>
which is the same as (11).
Again, if the set of admissible functions can be written
Foad ={h e WH2(T) / ky < h < ko}, (40)

we can defindl;, = {# € T / k1(0) < h(f) < ko2(6)}, and ther(m = {z € 00 s.t.30 e@,m e = n(9)},
i.e. the set of points a2 whose supporting plane is orthogonal(tes(6), sin()) with 6 € Tj,.

As in Example 2.2, ifS,y = {2 / K1 C Q C K,}, whereK; and K5 are two convex open sets, then (40) is

satisfied withk;, ko the supports functions df’, K, and in that cas€?);, = 0 \ (0K U 0K3).
Therefore one gets a dual version of Corollary 2.7 as follows

Corollary 3.16 LetQy = Q"0 be an optimal shape for the problef®8) with J = R + C, and assume that,
Vh € Fog, R(Q") = r(h) andC(Q") = /TG(H,h(H),h’(H))dH
wherer and G satisfy the assumptions of Theorem 2.4 for sprae[1, oc]. Then
ho € W2P(Ty,).
This implies in particular tha(mn is strictly convex.

Remark 3.17 This parametrization is especially interesting when orgetbaeal with the perimeter because in this
caseP(Q") = Jp hdd. An example of a functior' (") satisfying the hypotheses of Corollary 3.16 is now the
opposite of the area, since

1
Q" = 3 /(h2 — hW?)d6.
T

However, it is not easy to work now with functionals comingrfr PDE. Indeed, it is well-known for example,
that the derivative of\; in terms ofh is not more regular than a measureTrsee [11, 12]. We think that this can
be explained by the fact that some solutions of problems(#B¢ may not be strictly convex.

4 Optimization of concave non-local shape functionals

In this section, we prove the results of Section 2.2.2. Thanrpeoof relies on the analysis of the second order
shape derivatives. Next we apply these results to varioagggrfunctionals involving the Dirichlet energy or the
first eigenvalue of the Laplace-Dirichlet operator. Sirue dptimal shapes come with no a priori regularity except
the convexity condition, one needs some delicate computatio check the required assumptions. This leads to
rather sharp estimates on second derivatives which aregtieg for themselves.

16



4.1 Proof of Theorems 2.9 and 2.12

We first introduce the classical Sobolev semi-norm&ofors € R, we set:

S|z ~ —in do
|l =Y In[**[ii(n)[* whereii(n) = /Tu(ﬂ)e 9%.
nez
We also defing?*(T) := {u € L*(T) such thatu|gs(my < +oo} and\|u||§{s(m = HUH%Q(T) + |u|12'{S(T)

Proof of Theorem 2.9.

The main idea is to prove that for a deformation supported &ipall set, the estimate (16) is a concavity estimate,
and so it violates the second order optimality conditionisTalies of the following Poincaré-type inequality:

Lemma 4.1 Lets € [0,1) ande € (0, 7). Then there exists a constafit= C/(s) independant om such that,
Vu € H'(T) such thatSupp(u) C [0, €], ]l s () < Ce'~ *lul gy

Proof of Lemma 4.1 Letu € C°°(T) with Supp(u) C [0,¢]. If we first assume that = 0, then we have the
classical Poincaré inequality (with the optimal constaptoved using the fact thm@p(m = Jr u'?, so

13
lullp2(ry < ;’U\Hl(qr)

If one has nows € (0, 1), one can proceed with an interpolation inequality, eaditamed by Holder inequality:

s 1—s
[ulfroery = D Inf*[a(n)**[a@(n) [P0 ) < (Z!n! [u(n )(ZW")‘2> )

nel neZ nez

and so
51—5

|| sy < \U’EI(T)HUH;&) < ﬁ\U’Hl(T)-

O

Let K := Supp(uj + uo). Assume that, for a connected componérdf T;,,, K N I is infinite. Then, there
existsfy € I an accumulation point ok N I. Without loss of generality we can assufhe= 0 and also that there
exists a decreasing sequerieg) tending to0 such thatx N (0,¢,) C I is infinite. Then, we follow an idea of
T. Lachand-Robert and M.A. Peletier as in [14] (see also)[18le can always find < &', < ,,i = 1,...,4,
increasing with respect tg such thaSupp(uf + ug) N (e}, 4t # 0,4 = 1,3. We considew,,; € WH>(T)
solving

?)1/1/71- + U = 1(8%7&#1)(216/ + uo), Uni = 0in (0, e’;‘n)c, 1=1,...,3.
Suchu,, ; exist since we avoid the spectrum of the Laplace operatdr Rittichlet boundary conditions. Next, we

look for \,, ;, i = 1,3 such thaw,, = Z An.ivn i Satisfies
i=1,3

v (07) = vy (e;) = 0.

The above derivatives exist sineg; are regular nead ande,, in (0,¢,). We can always find such, ; so as they
satisfy two linear equations. It implies theff does not have any Dirac massOaande,,. It even implies that the
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support ofv,, is included in[e, €1]. In particular,v! + v,, = ¢(uf + up) wherey is bounded and with support in

el e2]. AsSupp(ug) N (g4, €4t # 0, we also have,, # 0.
SinceSupp(vy,) C Ty, @andv)! + v, = (ug + up), it follows thatwug + tv,, is admissible foi¢t| small enough
(andn fixed). Consequently, sincéug + tv,) > j(uo) for |¢| small, we have’(ug)(v) = 0 and then by using the

assumption (16) and Lemma 4.1, we get

0< j”(uo)(vm Un)

IN

—a|vn|§{1(m + Y[vnl g erylvnll s (ry + 5an\|%{s(1r) (41)
(—a+ Crep* + C2B(en)* N on s (- (42)

IN

As ¢, tends ta0, inequality (41) becomes impossible and proves $hiap(u( + uo) has no accumulation points in
T;y. It follows thatu( + u is a finite sum of positive Dirac masses. O

Remark 4.2 More precisely, we can get an estimate of the number of cerineeach connected compondnof

Tin:
2|1 v+ /72 +4ap

" < 27 1-s —
#{Supp(ug + ug) NI} < T 2 where A 250

(C = ,T% appears in Lemma 4.1). Indeed, let us consider three comge®irac masses;, 6, 03 in 1. Then

e if 3>0,7>0,wehave

(63— 01)' 7 > it 257(2]—’_ 4045. (43)

e if 5 =~ =0, then we have a contradiction, that is to séy+ v, is the some of at most two Dirac masdes

To prove this estimate, we definec H} (61, 63) satisfyingv” + v = &, in (61,03), v =0in T\ (61,603). In T,
the measure” + v is supported in{f;, 02,05}, and since these points areSapp(ug + ug), and[fy, 3] C Typ,
ug + tv is admissible for smallt|. The second order optimality condition and then the assiom§16) together
with Lemma 4.1 lead to

0 < j"(uo)(v,v)

IN

—alol gy + V[vla ol oy + Blol e
(—a+ CyX + C*BX?) o[ F ),

N

whereX = (65 — 61)'~*, which implies (43) whers is positive, and gives a contradictiondf= v = 0.

Remark 4.3 When one uses the parametrization of convex sets by the @angf@nw, €2, is a polygon if and only

if «” + u is a sum of Dirac masses. With the support function (see @e8ti4), one has the same characterization.
Therefore, the conclusion is the same if we work with theroation problem (39). Estimate (43) remains valid.
However, 6; is no longer the polar angle of a corner of the shape, but istigge of the normal vectors to the
successive segments of the polygonal boundary of the shape. O

As in Section 2.2.1, one can also handle problem with thelgguanstraint.
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Proof of Theorem 2.12.

We now need an abstract result for second order optimalitgiions. Adapting [14, Proposition 3.3] similarly to
the first order condition given in Proposition 3.1 (this eips the assumptiofi(ug) € (C°(T))’), we get that there
exist(y € WH>°(T) nonnegativey € R such that

=0 on Supp(u/ 4+ ug) and
{ Co pp( 0 0) (44)

VoeWh™(Ty,), 5 (ug)v+ pu-m'(ug)v = (o + ¢, V) (W10 ) W hoe -
Furthermore, for alb € H!(T;,,) such thaBA € R, with v” +v > A(ufj +uqg), and{Co+¢{/, v) — p-m/(ug) (v) = 0,
3" (uo) (v,v) + p - m" (uo) (v,v) = 0. (45)

Then we proceed as in the proof of [14, Theorem 2.1]. Comparduk first step of the proof of Theorem 2.9, we
add one degree of freedom introducing 4 functiops on a partition of(0, ¢,,), and we look for\,, ;,i = 1...4
such thaty,, = Zz:1,4 An,iUn,; Satisfies

v (07) = v, () = - (w)vm = 0.

Such a choice o, ; is always possible as,, ; satisfy three linear equations. Moreovey, is not zero and using
(44), we get[; v, (¢o + ¢() = 0, which implies

0= j'(uo)(vn) = / vn(Co + Cg) = - m/ (uo) (vn).

T

As vl + v, > AMuf + up) for X < 0, it follows thatw,, is eligible for the second order necessary condition (45).
Then, it follows

0 < "(t0)(vnyvn) + - 1" (u0) (Un, vn) < — v 3ps gy + Yoml iz ol =cr) + (B + 18"l a2y
< (—a+Cye* + C?(B+ 118 1) (En) >N onl3 oy
As n tends tooo, the inequality) < j”(ug)(vn, vp) + i - m” (ug)(vn, v,) becomes impossible and this concludes

the proof. O

Remark 4.4 An estimate similar to the one in Remark 4.2 is not straightésd anymore, since the Lagrange
multiplier p is unknown.

4.2 Examples
We analyze the same examples as in Section 3.2,-whihinstead ofP:
Example 4.5 (Negative perimeter penalization)One can study
min{J(Q2) := F(|Q], Ef(2),\(Q)) — P(©2) / Qconvex D; C Q C Dy} (46)

whereF : (0, +00) x (—00,0) x (0,+00) — Ris C?, f € H*(R?), andD;, D, are bounded open sets. We can
prove the following.

Proposition 4.6 If g is an optimal set for the problei@6), then each connected component of the free boundary
00 \ (0D1 U dDy) is polygonal.
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Proof. The proof is a direct consequence of Corollary 2.13 and oEstanates given in Section 4.3.2. Indeed,
Proposition 4.11 fofz¢(2), the similar result fon; (See Section 4.3.3) and Proposition 4.10 for the volumelyimp

‘7‘”(0)’ < CH”H?ﬂ/us(Ty

wherer(t) = F(|Qu|, B (), A1 (%)), U = Qe ande € (0,1). Next, the estimate for the perimeter in
Proposition 4.10 provides the concavity condition. O

Remark 4.7 As in Remark 3.8, if we consider problems of type (46) wheeedbnstraintD; c 2 C D, can be
dropped, then the solution is a polygon.

Example 4.8 (Volume constraint and negative perimeter periation) We can also consider a similar problem
with a volume constraint:

min{.J(Q) := F(E;(2),\1(22)) — P(22) / Q2 convex and|Q| = Vp} 47)
wherel} € (0, +00). Again, Corollary 2.13 applies and leads to the fact thataptymal shape of (47) is a polygon.
Example 4.9 [Perimeter constraint] We consider again a problem withravgter constraint, as in Example 3.10

min{J(2) := F(|Q, E£(2), A1 (2)) / 2 convex andP(2) = Py} (48)
where Py € (0,+00). The optimality conditions are written fa'(|2[, E¢(£2), \1(2)) + pP(£2), wherep is a
Lagrange multiplier for the constraii®(2) = P, so if we prove thaj: < 0, then the strategy of this section
applies, and we get that any optimal shape is polygonal.
4.3 Computations and estimates of second order shape dertes

4.3.1 Volume and perimeter

Leta(u), p(u) be the area and perimeter functionals, see (26).

Proposition 4.10 Let0 < u € W1°°(T). Thena andp are twice differentiable around in W1-°°(T) and there
exists some real numbefs, 32, 83,7 anda > 0 (depending on:) such thatyv € WH°°(T)

o () (v, 0)] < Bullv][ 22 o
alvlip ) = Yolm vl 2y = BallvllZs(py < 0" (W) (v,v) < Bsllvll3
Proof. This is done by easy computations, using formulas of Se&i8ri. OJ

4.3.2 The Dirichlet energy - Torsional rigidity

We now analyze the second order derivative pffu) = E£¢(€2,) introduced in Section 3.3. The main result is the
following.

Proposition 4.11 Assumeg := 2., ug > 0, uj +ug > 0, f € H?, (R?). Thene; is C* in a neighborhood ofi,
(in Whe°(T)). Furthermore, there exist;, 3, positive such that, for alb € W1>°(T),

s (uo)v] < Bullvll2(ry, (50)
€ (uo) (v, v)] < 52(HUH?{1/2(T)+||U||%oo(1r))- (51)
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The differentiability ofe; and the estimate (50) follow easily from Proposition 3.18eBstimate (51) is easy
to prove when working with smooth sets and one can then evamttie L°° term. However, this result is more
difficult for a general convex set and the rest of this sedsatevoted to its proof.

Letv be given as in Proposition 4.11. To prove the estimate (bl appropriate to consider a transformation
such that

€ C((=mm), WH(R%RY)), e (0.1),  &(t) = (uO i i uio) e’ onoQ.  (52)

Then, we will differentiate twicg € (—n,n) — e(t) = E(Qy,+t). We will use the following notation and
identities:

Qo= Qoo Ur=Uqyy sy Ur=Uro(I+£(1), e(t) := E(Quysto)- (33)

Note thate(t) = e¢(ug + tv) = £5.0,(£(t)) and we have
¢'(0) = ef(u)(v) = &5, (0)(€'(0)), (54)
e"(0) = ef(uo)(v,v) = &f,(0)(£'(0),6°(0)) + &0, (0)(£"(0)). (55)

In the smooth case;’(0) can be written in terms of boundary integrals, which invalvearticular the boundary
trace of D2U, andVU. These terms are not well defined in the non-smooth settiren (i the cas€l, convex).
To overcome this difficulty, our strategy will be to write atbn-smooth terms of” (0) as “interior” integrals irt.

Estimate ofe”(0): Note that we have proven in Section 3.3 thats C? if f € H? (R?)) (so,e is C?). We remind
the following classical formulation af’(0)

Lemma4.12 Let f € H? (R?) and¢ € C%(R; Wh*°(R% R?)) near0. Then we have

1
o =5 ([ ug+ [ i), (56)
2 \Ja, 990
wherel!/ := U (uo)(v,v) andU} is defined by

Ul = Uf — (2VU, - €(0) + €(0) - D*Uy - €(0) + VUp - £7(0)) in Qo, (57)
and satisfies
Uy € L*(Qg), AUY =0 in D'(Qp). (58)
Proof. Differentiating (37) at. = ug (see Corollaire 5.2.5, [10]) and then using (34) gives
1 A N N
'(0) = -3 /Q (07 — 2905 - €(0) +€(0) - DUy - €'(0) + VT - 2V (0) - €(0) — £"(0)) ) /.
1
-3 | Ut w) (59

After replacingU}, = U} — VU - £/(0), (59) gives (56).
Clearly Ul € L?(£y). To prove thatAU// = 0 we differentiate (35) at = 1 and use (34). Then we obtain

/Q (05 — 2905 - €/(0) +€/(0) - DUy - €'(0) + VU - (2V€'(0) - €'(0) — £"(0))) Ap = 0.

Replacingﬁé as given by (31) give§€QO Ui Ap = 0, which proves (58). O
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Proof of Proposition 4.11.

We will often write &, &', £” for £(0),£'(0), £”(0). Let us rewrite (56) in the form”(0) = 1 (I; + I»). The second
term I is easy to estimate: from (31) we have

o=~ | U ) = /8  FOU(E - w0)? < CUE a0y € = Ol U0 lwroe( (5O
0 0

The first terml; = fQO Ul AU, requires more investigation. To go around the non regulafif2,, we introduce
Uy=U; —Uy,U; € H&(QO), —AU; = f+, —AUs = f~, U; >0on Q.

Recall thatl/; € W1 () N H*(Qp). We will compute on the level sef3l := {z € Qo,U;(z) > €} (only on
one of them iff* = 0 or f~ = 0). Indeed, by Sard’s theorem, thE are at leasC" for a.e.c. By strict positivity
of U;, lim._,o Lo = Lo, SO that

Il = lim UélAUl —/ UélAUQ

e—0 Q% Qg

Note thatU}}, U} € C52.() and asf € H7,.(R?) we havel; € H}! (Q). We obtain
/ﬁ%AM:/
Q

vlo,.u; = / (76’6,,5 U; —2(VU| - £Y0,.U; — (¢ - D?U, - £0,.U; — (VUy - £")0,.U;
o001 09
For the term/7, we have

i
€

= [+ E+I5+I5 (61)

ﬁ::/nﬁAm+V%“Wﬁiﬂ wAm+v%ﬂwz:/ U, U; = 0. (62)
Qi Qo Q0

To deal withI5 andI5, we will need the following generalized formula of integoat by parts.

Lemma 4.13 LetQ be aC' open set{/ € W, () NH2(Q),V € HY(Q)N{AV € L*(Q}, g € Wh®(Q; R?).
Then

J = @U@-vvy:/VNVU-@-vv+«VU-@Av—wvaU-@-vLu (63)
o0 Q

where the operatorl. acts on a vector and is defined bya;, as) = (—as, a1). As a consequence
I < IVU L@ llgll2 @ 1AV lz2) + 2 {1V L) [1U a2 19l @) + IVU |l @ IVl 2] -} (64)

Proof. If v is the exterior normal unit vector @ andr = the unit tangent vector, then, forc H'(Q2) and
a = (a1,az), using thatVU - 7 = 0 on 99, we have

Lr=—v, (@ v U=0a-VU, (a-71)0U=0a-V'U, 7 -Vo=—-v -Vip.
Then we obtain

U(g-VV) = / (VU -v)(g-v)(VV -v)+ (VU -v)(g-7)(VV - T)
o0 o0
= / <(VU Lg)VV — (ViU - g)VlV) .v (apply divergence theorem to both terms)
o0

::L/Vﬁ«VU-mVV)—V-«VLU-mVLV%
Q
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which proves (63) becausg - V- = 0. The estimate (64) follows. O
End of the proof of Lemma 4.13.

We apply Lemma 4.13 oft = Q! to estimatels, I5 in (61). ForIg, we choosd/ = U; — ¢,V = U}, g = £'(0)
(recall thatAU;; = 0) and for I5, we choose/ = U; — ¢,V = V; = 0;U;,g = g; = £;(0)§'(0),5 = 1,2
here—AV; = 9,1 or 9;f~. Next, we apply the estimate (64) to each of these choicesverate obviously led
to estimates independent af For I, we make a direct easy estimate. Together also with (60) aimg) Young
inequality we obtain:

") < CUIVUZi00) + IVE 1200y + 1€ 172 (00) + 1€ 172 (000) + 1€ 1121 0520)): (65)

where €' = C([| f[| oo (9)nm1 (90)» IUillw.eo (90), Uil 52 (020), @ = 0,1, 2). (66)

Now, let us write the estimate (65) in termsaf First note that ifa, 3 € HY2(9Q) N L>(9N) thenaf €
HY2(0Q0) N L>(09) and

Bl 17200001 (9020) < Cllell /2900010 (9920) |81 172 (9020 )10 (9620

(using the easy fact thaf ' (20) N L> () is an algebra, and that té'/2 (9 )-norm is equivalent to thél ! (Q)-

norm of the harmonic extension iny). Also, we point out that the transformatiah = (r,0) := uor(e) e is

bi-Lipschitz nealT and«(T) = 9. Theny € HY/?(9Q) if and only ify o ¢y € H'/?(T), and theirH'/2-norms
are equivalent.

Let us remind that, according to the choicetoh (52), we have’(0) = —%ew, ¢"0) = 2Z—§ on Q. Then we
obtain, with the same dependence of the various constaatsin (66) ’ ’

HVU(/JH%Q(QO) < C|f/ : VU0|§{1/2(39) < CHg/H?{l/?(aQ)mLOO(QO) < C||U||§{1/2(T)OL00(T), (67)
€' | Lo (9020) < Cllvllpoo(my, H§,H%2(aszo) +11€" 00y < CHUH%%T)- (68)
All these estimates are valid for all choiceséadis in (52). Let
o) v
W = {w S Wl’ (QQ), Wio0, = —u—%e 0 }

Givenw € W, let us choosé(t) := ((t) + t(w — ¢'(0)), where( is theWW 1:>°-extension as given in (28), namely

1 1 1 i o
0 (s7?) = (a0 ~ @) <100 7€ TR

with n = 0 (resp.n = 1) in a neighborhood of the origin (resp. 6f);). Then,¢ is as in (52) and’(0) = w.
Therefore, the estimate (65) together with (67), (68) leaads

Yw € W, |6”(0)| < C (HVWH%Q(QO) + ||U||§{1/2(T)QLOO(’]I‘) + ||w||%°°(90)> . (69)
Let us introduce

1) .
wo € H'(Q0), Awo=0o0nQq, (wo)an, = —Pew lor wo — ¢'(0) € H(Q)] -
0
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Let now d,, be a sequence af°(Q)-functions converging tavy — ¢’(0) in H} () and letw,, := inf{s, +
¢'(0), [[woll Lo () }- Then,w, € W and converges i 1 () to wg. Applying (69) withw,, in place ofw and
passing to the limit yields:

€(0)] < € (Vw022 0g) + 101202 myr ey + 10|30 ) (70)
But, sincew is harmonic,

IVwollz2(g) < llwoll iz a0y) < Cllvllgizemy: llwollLe(oy) < llwollLeang) < CllvllLe(r)-

Finally, the estimate (70) leads to
"(0)] < CHUHfmﬂ(T)me(T)'

4.3.3 First eigenvalue of the Laplace operator with Dirichét boundary conditions

The estimate of Proposition 4.11 also holds Xe(<2,, ), the first Laplace eigenvalue (see Section 3.3), namely
1(0)] < Cllo|>HY2(T) N L=(T), (71)
wherel; (t) = A1 (Quy+10). As the computations are very similar, we will only sketcl firoof.

Proof of (71).

As for ey, for v € W1°(T) fixed and|t| small we considet; () := \1(Q;) andU,, the first eigenvalue and the
corresponding eigenfunction efA in €, := Q4+ . As in Lemma 4.12 we can show that

1(0) = — /Q USAUL + UAUY = I + I, (72)
0
HereU), andU{ satisfy
AUy = LU+ 10Uy in Qo,  Uj=-£(0)-VUy on 99, /QUOUézo,
0
CAUY = WU+ U+ 1Ty in Q, /Q U2 + Ul = 0,
0

Uy = U — (26(0) - VU +€/(0) - DUy - €'(0) +€7(0) - VUp)  in - Qo,

wherel; = 11(0), I} =17(0), ] = 1/(0). Then considering). = {z € Qy, Uy > ¢} as in the proof of Proposition
4.11 (note that/y > 0 on ) here), we have :

I = / US(LWUL+1U0) =10 | U, (73)
Q() Q()
I, = —lim [ UyAUY = —1lim [ eAUJ + (Uy —e)AUY = —1lim [ (Uy —e)AUY
e—0 Q. e—0 Q. e—0 Q.
_ . "e T . "o
= _ll/ ‘U6’2 + hm/ Ué’@VgUo. (74)
Q() e—0 895
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Combining (72) with the last two equalities gives

17(0) = lim Ul0,.Up.
e—0 90,
Then we proceed exactly as in Proposition 4.11, and obtaif{ {6) an e§timate exactly similar to (65).
Next, we prove that|VUpll2a0) < ClIE(0) a1y As Uy = Uy — £'(0) - VU it is enough to prove
INU Nl r2(00) < CIIE (0)]| 111 () One can verify thal/), satisfies

Uy € H(Q0) N H2(Q), AU} + 11U} = 2trace([VE'] - [D*Us]) — 14Uy, / UjUy = 0.
Qo
Using the convexity of)y and Fredholm alternative theorem, we can prove that theatger

V € (H(Q0) N H?(Q))\span{Up} — AV + 1,V € L*(Q9) N {h, / hUy = 0},
Qo
defines an isomorphism (see for example [8]), which togettigr the formula forl; (0) provides the required
estimate for/. Therefore, as foe”(0), for all £ as in (52), we have

)] < (1€ O)B) + 1012172 (myngqry + 1€1O0) 22y

Then we complete the proof as in Proposition 4.11. O

5 Remarks and perspectives

5.1 Localization of our two approaches

As explained in the introduction, the approaches leadirgutawo families of results are very "local” with respect
to the boundary of the optimal shape. Indeed, each prooftasefunctionsy € 11> whose support may be as
small as we want and only covers the portion of the boundaa/ ke want to analyze. To show how this can be
exploited, we give now -without proof- , an example of a resihich can be reached by the same two methods
when applied locally.

Let us consider the following optimization problem whéfe (6,u,q) € T x R x R — R is assumed to be of
classC? anda, b € (0, 00):

ug € WH(T), j(uo) = min{j(u), v’ +u >0, a<u<b},
(75)
wherej(u /G (6,u(8),u'(9)) db.

We defineT;,, as in (13) and we introduce the partltlﬁihn T, UTyuUT_ where

Ty = {0 € Tin ; Gygl6) € (0,00)}, (reCall Gy (8) = [} Gaq (8, u0(8), tuy(0F) + (1 — Lyl (67)) dt,

T_ = {0 € Tun, [Gaq (6, u0(0), uh(67)) , G (6, u0(0), up(6))] € (=00,0)},

Ty :=T;, \ (TJr U T,)

Then

(i) T, is open andy € L2,(T, ), so thatu € W22 (T),

(if) There is no accumulatlon point &fupp(ug + uo) in the open sef_; in other words[f € T_ — 99,,(0)] is
locally polygonal.

The situation orily requires a complementary study specific to each functional.
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5.2 Very singular optimal shapes

In this paper, we gave some sufficient conditions on the sliapetional so that an optimal shape be smooth
or polygonal. But there exist convex sets which are not f thpe, and in a certain sense have “intermediate
regularity”. Namely, there are convex sets which are siagin the sense that they do not have corners (they are
C1), but their curvature is zero almost everywhere. As an exangne may consider any convex set such that
u” 4+ u is a Radon measure, without mass, but singular with reshedtebesgue measure.

Let us mention a shape optimization problem whose solugameither regular nor polygonal (see [17] for an
analysis of this problem). L&Y be a convex sety = |, Py = P(Q0) andD = ()7 = {z € R?, d(x,Qp) <
T'}. Then Theorem 8 in [17] states that:

J(Qo) = min{J(Q2) / Q C D convex such thaP(Q2) = P, [ =V}, (76)

whereJ is the distance functional:
J(Q) = / d(xz,Q)dx.
D

Sincel) is any convex sebne cannot expect any geometrical property for a mininoz€v6) without extra condi-
tions onD, V; and Py. Remark also that the ba® = ()7 is C! here.

5.3 Problem without perimeter

An interesting problem, which has not been analyzed in thep is the following (we use the notation of Section
4.3):
max{F (), [ = Vo, convex C D}. (77)

It is easy to prove the existence of an optimal sh@peIn this situation, we expect the terfiy(2) to be leading
over|Q2| (whereas the perimeter was the stronger term in the exarsplesd in this paper). So we are naturally led
to the following question : do there exist> 0, 3, > 0 such that

Vo e WhS(T), (0 = afolZs —olmevllze — Bllol3 ? (78)

A consequence of such an estimate, would be that any solafi¢n7) is locally polygonal insideD (the same
strategy as in the proof of Theorem 2.9 would provide theltese just need to adapt Lemma 4.1k0/2-norms).

It is easy to prove that (78) holdsifis supported by a subset @fwhich parametrizes & strictly convex part

of 0€)y. Therefore, with the same proof as for Theorem 2.9, we aresitipn to deduce thai)o N D is nowhere
C? with a positive curvature. But it is not clear whether esten@8) remains valid in a more general situation and,
consequently, whethéi2y N D is a polygon or not.
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