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Introduction

The goal of this paper is to develop general and systematic tools to prove the regularity or the singularity of optimal shapes in shape optimization problems among convex planar sets, namely problems like:

min{J(Ω), Ω convex, Ω ∈ S ad }, (1) 
where S ad is a set of admissible shapes among subsets of R 2 and J : S ad → R is a shape functional. Our main objective is to obtain qualitative properties of optimal shapes by exploiting first and second order optimality conditions on [START_REF] Ambrosio | PALLARA Functions of Bounded Variation and Free Discontinuity Problems[END_REF] where the convexity constraint is included through appropriate infinite dimensional Lagrange multipliers.

1

Our approach is analytic in the sense that convex sets are represented through adequate parametrizations and we work with the corresponding "shape functionals" defined on spaces of functions. In particular, we will use the classical polar coordinates representation of convex sets as follows:

Ω u := (r, θ) ∈ [0, ∞) × R ; r < 1 u(θ) , (2) 
where u is a positive and 2π-periodic function, often called "gauge function of Ω u ". It is well-known that

Ω u is convex ⇐⇒ u ′′ + u ≥ 0. (3) 
Thus, Problem (1) may be transformed into the following:

min j(u) := J(Ω u ), u ′′ + u ≥ 0, u ∈ F ad , (4) 
where F ad is a space of 2π-periodic functions which will be chosen appropriately to represent S ad in [START_REF] Ambrosio | PALLARA Functions of Bounded Variation and Free Discontinuity Problems[END_REF].

We obtain two families of results depending on whether j is "of convex type" or "of concave type". In the first case, we prove regularity of the optimal shapes. In the second case, we prove that optimal shapes are polygons. i) "Optimal shapes are regular": under a suitable convexity property on the "main part" of the functional j, we prove that any solution u 0 of ( 4) is W 2,p , which means that the curvature of ∂Ω 0 = ∂Ω u 0 is an L p function whereas it is a priori only a measure: see Theorems 2.4, 2.6 and Corollary 2.7. To that end, we simply use the first optimality condition for the problem [START_REF] Ambrosio | PALLARA Functions of Bounded Variation and Free Discontinuity Problems[END_REF].

The functionals under consideration here are of the form J(Ω) = R(Ω) + C(Ω), where r(u) := R(Ω u ) has an L p -derivative and C is like [START_REF] Carlier | Regularity of Solutions for Some Variational Problems Subject to Convexity Constraint[END_REF] below and satisfies a convexity condition. As a main example, we consider R(Ω) = F (|Ω|, E f (Ω), λ 1 (Ω)) which depends on the area |Ω|, on the Dirichlet energy E f (Ω) and/or on the first eigenvalue λ 1 (Ω) of the Laplace operator on Ω (with Dirichlet boundary conditions), and C(Ω) = P (Ω) is its perimeter: see Section 3.2. In this case, we actually prove that the optimal shape is W 2,∞ which means that the curvature is bounded.

ii) "Optimal shapes are polygons": next, we prove that, under a suitable concavity assumption on the functional j, for any solution u 0 of (4), u 0 + u ′′ 0 is (locally) a finite sum of Dirac masses, so that Ω u 0 is (locally) a polygon: see Theorems 2.9, 2.12 and Corollary 2.13. The proof of this result is based on the second order optimality condition for the problem [START_REF] Ambrosio | PALLARA Functions of Bounded Variation and Free Discontinuity Problems[END_REF]. We apply this result to shape optimization problems where J(Ω) = R(Ω) -P (Ω) where R(Ω) = F (|Ω|, E f (Ω), λ 1 (Ω)) with the same notations as above, see Section 4.2. This application involves some sharp estimates on the second shape derivative of the energy which are interesting for themselves: see Section 4.3.2.

Our examples enlighten and exploit the fact that, in the context of shape optimization under convexity constraint, the perimeter is "stronger" than usual energies involving PDE, in terms of the influence on the qualitative properties of optimal shapes: if it appears in the energy as a positive term, it has a smoothing effect on optimal shapes, and on the opposite as a negative term, it leads to polygonal optimal shapes. Dual parametrization: Since our results are stated for the analytic functionals (4), we may apply them to the dual parametrization of convex sets instead of the parametrization with the gauge function: each convex shape can also be associated to its support function h Ω (θ) = max{x • e iθ , x ∈ Ω}, θ ∈ T and (1) again leads to the problem:

min j(h), h ′′ + h ≥ 0, h ∈ F ad , (5) 
where j(h) := J(Ω h ), Ω h being now the set whose support function is h, and F ad are all support functions of admissible shapes Ω ∈ S ad . In this framework, if j satisfies the suitable convexity property, the regularity result (i) above holds for h 0 minimizer of [START_REF] Carlier | Convex bodies of optimal shape[END_REF]. However, this regularity does not imply that the corresponding optimal shape Ω 0 := Ω h 0 is regular, but it exactly means that Ω 0 is strictly convex: see Section 3.4.

The situation is more similar to the gauge representation when exploiting the results (ii). Indeed, when they apply, they imply that the optimal shape is polygonal as well: see Remark 2.14.

Situation with respect to previous results:

The second family of results (ii) is an extension of previous results obtained in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF] by the two first authors for the specific following functionals of "local type":

J(Ω u ) = 2π 0 G θ, u(θ), u ′ (θ) dθ, (6) 
where

G = G(θ, u, q) : T × [0, ∞) × R → R is strictly concave in q.
Among these functionals, we find for instance the area |Ω|, the perimeter P (Ω) or also the famous Newton's problem of the body of minimal resistance as studied by T. Lachand-Robert and coauthors: see for example [START_REF] Carlier | Convex bodies of optimal shape[END_REF][START_REF] Lachand-Robert | Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Modeling, Analysis and Simulation[END_REF] and see also [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF][START_REF] Crouzeix | Une famille d'inégalités pour les ensembles convexes du plan[END_REF] for more examples arising in the operator theory. Actually, the techniques employed in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF], and here as well for (ii), are inspired from those introduced in [START_REF] Lachand-Robert | Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Modeling, Analysis and Simulation[END_REF]. The main novelty here in the results (ii) is that the functionals are not necessarily of the local form ( 6) and may include shape functionals defined through state functions which are solutions of partial differential equations (PDE). The "concavity condition" is then expressed in a functional way through the coercivity of the second derivative in an adequate functional space : see Theorem 2.9. In [START_REF] Bucur | Optimal convex shapes for concave functional[END_REF], a similar concavity phenomenon is used to get qualitative properties of minimizers in higher dimension, under assumptions about their regularity and convexity. We avoid here any assumption of this kind for the planar case.

The general optimality conditions including the infinite dimensional Lagrange multipliers were also provided (and exploited) in the same paper [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF]. They are revisited here in an W 1,∞ -context which is better adapted to our more general functionals (see e.g. Proposition 3.1).

Similar arguments to those used here to obtain the first family of results (i) may also be found in [START_REF] Carlier | Calculus of Variations with convexity constraint[END_REF] where optimality conditions with convexity constraints are developed in an N -dimensional setting. They are exploited for several examples in dimension 1 (or in radial situations) to obtain C 1 -regularity of the optimal shapes. With our approach here, we are able to reach W 2,∞ -regularity and this is valid for a rather general family of functionals.

About a localization of the approach: Let us mention that our two families of results may be mixed in the same functional: indeed, as often the case, it may be that the required convexity property for (i) is valid on some part of the boundary of the optimal shape, while the concavity property for (ii) is valid on the other part. Then, the techniques developed here may be locally applied to each part and we can obtain at the same time smooth and polygonal pieces in the boundary. However, as one expects, it remains difficult to understand the portion of the boundary which remains at the intersection of these two parts. We refer to Section 5.1 for more details.

To end this introduction, let us say that many questions are of interest in shape optimization among convex sets. Here, we try to exploit as much as possible analytical tools to obtain precise qualitative results for optimal shapes among convex planar sets. But many questions are left open in higher dimensions. Among them, and besides the Newton's problem already mentioned, we can quote the famous Mahler conjecture about the minimization of the so-called Mahler-product |K||K • | among symmetric convex bodies in R d (see [START_REF] Tao | [END_REF]), which is of great interest in convex geometry and functional analysis, and the Pólya-Szegö conjecture about the minimization of the Newtonian capacity among convex bodies of R 3 whose surface area is given (see for example [START_REF] Crasta | On a long-standing conjecture by Pólya-Szegö and related topics[END_REF] and reference therein).

This paper is structured as follows. In the following section we state our main results. In Section 3 we focus on the regularity result (i) and we apply it to some various examples. In Section 4, we deal with problems leading to polygonal solutions (result (ii)), and we again consider in detail some classical examples. We conclude with some remarks and perspectives.

Main results

Notations and problems

We set T := [0, 2π). Throughout the paper, any function defined on T is considered as the restriction to T of a 2πperiodic function on R. We define W 1,∞ (T) := {u ∈ W 1,∞ loc (R), u is 2π-periodic}, and similarly for any functional space. If u ∈ W 1,∞ (T), we say that

u ′′ + u ≥ 0 if ∀ v ∈ W 1,∞ (T) with v ≥ 0, T uv -u ′ v ′ dθ ≥ 0.
In this case, u ′′ + u is a nonnegative 2π-periodic measure on R and finite on [0, 2π].

We denote by S ad a class of open bounded sets in R 2 (including constraints besides convexity). We will focus on two problems: min{J(Ω), Ω ∈ S ad , Ω convex}, ( 7)

min{J(Ω), Ω ∈ S ad , Ω convex, M (Ω) = M 0 }, (8) 
where J : S ad → R is referred as the energy and M :

S ad → R d is an extra constraint (M 0 given in ∈ R d ).
In order to analyze the regularity of an optimal shape, we transform these problems into minimization problems in a functional analytic setting as follows: choosing an origin O and using parameterization (2), we define

F ad := {u ∈ W 1,∞ (T), Ω u ∈ S ad }, (9) 
the set of admissible gauge functions, endowed with the • W 1,∞ (T) -norm, and we assume that this set can be written

F ad = {u ∈ W 1,∞ (T) / k 1 ≤ u ≤ k 2 and u > 0}, (10) 
for some functions k 1 , k 2 : T → R + respectively upper-and lower-semicontinuous (see Remark 2.1 below for this assumption).

A simple calculus of the curvature shows that Ω u is convex if and only if u ′′ + u ≥ 0. Moreover, the support of the measure u ′′ + u gives a parametrization of the "strictly convex part" of the boundary, and a Dirac mass in this measure correspond to a corner of the associated shape; we have for instance that Ω u is a convex polygon if and only if u ′′ + u is a finite sum of positive Dirac masses.

If Ω 0 is a solution of problem (7) (resp. ( 8)), then its gauge function u 0 is respectively solution of:

j(u 0 ) = min j(u), u ′′ + u ≥ 0, u ∈ F ad , (11) 
resp. j(u 0 ) = min j(u) / u ∈ F ad , u ′′ + u ≥ 0 and m(u) = M 0 , (12) 
where j : F ad → R, j(u) := J(Ω u ), and m :

F ad → R, m(u) = M (Ω u ).
Our main goal in this paper is the analysis of the convexity constraint. Thus, given an optimal shape Ω 0 , we focus on the part of ∂Ω 0 which does not saturate the other constraints defined by S ad . We therefore define, for u 0 ∈ F ad and Ω 0 = Ω u 0 ,

T in := T in (F ad , u 0 ) = {θ ∈ T / k 1 (θ) < u 0 (θ) < k 2 (θ)}, (13) 
(∂Ω 0 ) in := x ∈ ∂Ω 0 / ∃θ ∈ T in , x = 1 u 0 (θ) (cos θ, sin θ) . (14) 
See Example 2.2 and Figure 1 for examples.

Remark 2.1

If k 1 or k 2 happened not to be semicontinuous, we could replace them by

k 1 = inf{k : T → R continuous , k ≥ k 1 }, k 2 = sup{k : T → R continuous , k ≤ k 2 } and we have {u ∈ W 1,∞ (T) / k 1 ≤ u ≤ k 2 } = {u ∈ W 1,∞ (T) / k 1 ≤ u ≤ k 2 }.
Therefore, the assumptions on k 1 and k 2 are not restrictive. Note that, thanks to the regularity of u 0 , k 1 , k 2 , the set 

T in is open. × O (∂Ω) in T in K 2 K 1 Ω (∂Ω) in (∂Ω) in T in T in
S ad := Ω bounded open set of R 2 / K 2 ⊂ Ω ⊂ K 1 ,
where K 2 and K 1 are two given bounded open sets. If for example K 1 and K 2 are starshaped with respect to a common point O, chosen as the origin, then

F ad = {u ∈ W 1,∞ (T) / k 1 ≤ u ≤ k 2 },
where k 1 , k 2 are the gauge functions of K 2 and K 1 respectively. In that case, given a set Ω ∈ S ad ,

(∂Ω) in = ∂Ω \ (∂K 1 ∪ ∂K 2 ),
see Figure 1.

The analysis of the optimal shape around the set {θ / u 0 (θ) ∈ {k 1 (θ), k 2 (θ)}} = T \ T in , where the inclusion constraint is saturated, may require more efforts, see [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF] for example. In this paper, we will not discuss this question.

Note that we can also consider the case K 2 = ∅ and/or K 1 = R 2 with k 1 = 0 and k 2 = +∞.

Example 2.3

With respect to the constraints m, M in (8), [START_REF] Jerison | The direct method in the calculus of variations for convex bodies[END_REF], a classical example is the area constraint:

m(u) := |Ω u | = A 0 ⇐⇒ T 1 2u 2 dθ = A 0 ,
where |Ω| denotes the area of Ω.

The main results

As explained in the introduction, Section 1, we will prove two types of results: they are described in the two following subsections.

"Optimal shapes are smooth"

First we consider the problem [START_REF] Crouzeix | Une famille d'inégalités pour les ensembles convexes du plan[END_REF] and its associated analytical version [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF]. We assume that J(Ω) = R(Ω) + C(Ω), R satisfying some "regularity" assumption, and C being written like in [START_REF] Carlier | Regularity of Solutions for Some Variational Problems Subject to Convexity Constraint[END_REF], and satisfying a convexity like property. More precisely:

Theorem 2.4 Let u 0 > 0 be an optimal solution of [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF] with F ad of the form [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF] and

j(u) := r(u) + T G θ, u(θ), u ′ (θ) dθ, ∀u ∈ W 1,∞ (Ω) ∩ {u > 0}, ( 15 
)
where r and G satisfy:

i) r : W 1,∞ (T) → R is C 1 around u 0 and G : (θ, u, q) ∈ T × (0, ∞) × R → R is C 2 around T × u 0 (T) × Conv(u ′ 0 (T))
, where Conv(u ′ 0 (T)) is the smallest (bounded) closed interval containing the values of the right-and left-derivatives

u ′ 0 (θ + ), u ′ 0 (θ -), θ ∈ T, ii) r ′ (u 0 ) ∈ L p (T) for some p ∈ [1, ∞], iii) G qq > 0 in T × u 0 (T) × Conv(u ′ 0 (T)). Then u 0 ∈ W 2,p (T in ),
where T in is defined in [START_REF] Kadlec | The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain[END_REF].

See Section 3.1 for the proof, and Section 3.2 for explicit examples.

Remark 2.5 A C 1 -regularity result has been proved for a similar problem with r = 0 in [START_REF] Carlier | Calculus of Variations with convexity constraint[END_REF] with different boundary conditions, with a proof which is also based on first order optimality conditions. Here, for periodic boundary conditions (but this is not essential), we improve this result to the C 1,1 -regularity, and generalize it to the case of non-trivial r, which is of great interest for our applications. Let us also refer to [START_REF] Carlier | Regularity of Solutions for Some Variational Problems Subject to Convexity Constraint[END_REF] for a higher dimensional result. Let us remark that the same result is valid, with the same proof, if we only assume that r ′ (u 0 ) is the sum of a function in L p (T) and of a nonpositive measure on T.

We can also get a similar result for the equality constrained problem [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and the associated problem [START_REF] Jerison | The direct method in the calculus of variations for convex bodies[END_REF] as follows.

Theorem 2.6 Let u 0 > 0 be an optimal solution of (12) with j, F ad as in Theorem 2.4,and 

m : W 1,∞ → R d a C 1 function around u 0 with m ′ (u 0 ) ∈ (L p (T)) d onto. Then u 0 ∈ W 2,p (T in ).
See Section 3.1 for the proof, and Section 3.2 for explicit examples.

For a shape functional, using parametrization (2), Theorems 2.4 and 2.6 lead to the following.

Corollary 2.7 Let S ad be a class of open sets in

R 2 such that F ad := {u / Ω u ∈ S ad } is of the form (10) (Ω u is defined in (2)
), and let J : S ad → R be a shape functional: i) Let Ω 0 be an optimal shape for problem [START_REF] Crouzeix | Une famille d'inégalités pour les ensembles convexes du plan[END_REF], and assume that J = R + C with:

∀u ∈ F ad , R(Ω u ) = r(u) and C(Ω u ) = T G(θ, u(θ), u ′ (θ))dθ,
where r and G satisfy assumptions of Theorem 2.4 for some p ∈ [1, ∞]. Then (∂Ω 0 ) in , as defined in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF], is C 1 and its curvature is in L p ((∂Ω 0 ) in ). ii) A similar results holds for the problem [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], if m(u) = M (Ω u ) satisfies the hypotheses in Theorem 2.6.

Remark 2.8

The results of this section are in an abstract analytical context, and do not depend on the characterization of the domain. Therefore, one could consider the classical characterization of a convex body with its support function instead of the gauge function. In Section 3.4, we give a geometrical interpretation of similar results associated to this parametrization.

"Optimal shapes are polygons"

Our second result is a generalization of Theorem 2.1 from [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF]. We give a sufficient condition on the shape functional J so that any solution of (1) be a polygon. In [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF], the first two authors only consider shape functionals of local type like [START_REF] Carlier | Regularity of Solutions for Some Variational Problems Subject to Convexity Constraint[END_REF]. The following results deal with non-local functionals, which allow a much larger class of applications, including shape functionals depending on a PDE. Theorem 2.9 Let u 0 > 0 be a solution for [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF] with F ad of the form [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF], and assume that j :

W 1,∞ (T) → R is C 2 around u 0 and satisfies (see Section 4.1 for definitions of H s -(semi-)norms): ∃s ∈ [0, 1), α > 0, β, γ ∈ [0, ∞), such that ∀v ∈ W 1,∞ (T), j ′′ (u 0 )(v, v) ≤ -α|v| 2 H 1 (T) + γ|v| H 1 (T) v H s (T) + β v 2 H s (T) . ( 16 
)
If I is a connected component of T in (defined in [START_REF] Kadlec | The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain[END_REF]), then 

u ′′ 0 + u 0 is a finite sum of
µ = u ′′ 0 + u 0 ): ∃ ϕ ∈ L ∞ (T, µ) with v ′′ + v = ϕ µ.
Indeed, the proof of Theorem 2.9 uses only this kind of perturbations v which preserve the convexity of the shape.

As in Section 2.2.1, we can also handle the problem with an equality constraint as follows.

Theorem 2.12 Let u 0 > 0 be any optimal solution of (12) with j, F ad as in Theorem 2.9, and the new assumptions:

j ′ (u 0 ) ∈ C 0 (T) ′ , and m : W 1,∞ → R d is C 2 around u 0 , m ′ (u 0 ) ∈ C 0 (T) ′ d is onto, m ′′ (u 0 )(v, v) ≤ β ′ v 2 H s (T) , for some β ′ ∈ R. Then, if I is a connected component of T in (defined in (13)), u ′′ 0 + u 0 is a finite sum of Dirac masses in I.
See Section 4.1 for the proof.

Again, using the parametrization (2), we get the following result.

Corollary 2.13

Let S ad be a class of open sets in R 2 such that F ad := {u / Ω u ∈ S ad } is of the form [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF], Ω 0 be an optimal shape for the problem (7) (or [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for the constrained problem), and assume that j : u ∈ F ad → J(Ω u ) satisfies assumptions of Theorem 2.9 (and m : u ∈ F ad → M (Ω u ) satisfies assumption in Theorem 2.12 in the case of the constrained problem). Then: each connected component of (∂Ω 0 ) in is polygonal.

Remark 2.14 When one uses the parametrization of convex sets by the gauge function u, Ω u is a polygon if and only if u ′′ + u is a sum of Dirac masses. When parametrizing Ω with the support function as in Section 3.4, one has the same characterization. Therefore, the results of this section hold if we work with the optimization problems as in Section 3.4.

Shape functionals containing a local-convex term

In this section, we give the proof of the results in Section 2.2.1, that is to say regularity results for solutions of [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF] or [START_REF] Jerison | The direct method in the calculus of variations for convex bodies[END_REF]. Using the parametrization (2), since the regularity of a shape and of its gauge functions are the same, we consider several applications of regularity for optimal shapes to classical examples of energies. We conclude with a few remarks about the application of our results when we use another parametrization of convex bodies, namely the support function. In that case, we get the regularity of the support function, which does not imply the regularity of the corresponding shape, but only the fact that this one is strictly convex.

Proof of Theorem 2.4 and 2.6 First order optimality condition:

A first optimality condition for the problem [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF] is stated in [14, Proposition 3.1, 3.2] when j is defined and differentiable in the Sobolev Hilbert space H 1 (T). We give here an adaptation to state this result in W 1,∞ instead (which is important for our applications involving a PDE, since the shape functionals are known to be differentiable for Lipschitz deformations only).

Proposition 3.1 Let u 0 > 0 be a solution of [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF] 

with j : W 1,∞ (T) → R of class C 1 and such that j ′ (u 0 ) ∈ C 0 (T) ′ . Then there exists ζ 0 ∈ W 1,∞ (T), such that      ζ 0 ≥ 0 on T, ζ 0 = 0 on Supp(u ′′ 0 + u 0 ), and 
∀ v ∈ W 1,∞ (T in ), j ′ (u 0 )v = ζ 0 + ζ ′′ 0 , v (W 1,∞ ) ′ ×W 1,∞ := T ζ 0 v -ζ ′ 0 v ′ . ( 17 
)
Remark 3.2 Without any assumption on j ′ (u 0 ), we would a priori get a Lagrange multiplier ζ 0 ∈ L ∞ (T) (see the proof below). The non-continuity of ζ 0 may lead to some difficulties, especially to state that ζ 0 = 0 on Supp(u ′′ 0 + u 0 ). Though a restriction, the assumption j ′ (u 0 ) ∈ C 0 (T) ′ will be satisfied in all of our applications.

Proof. We set

g : v ∈ W 1,∞ → v ′′ + v ∈ (W 1,∞ ) ′ in the sense that v ′′ + v, ϕ W 1,∞ ′ ×W 1,∞ = T vϕ -v ′ ϕ ′ , and we consider Y := Im(g) = {f ∈ W 1,∞ (T) ′ , f, cos (W 1,∞ ) ′ ×W 1,∞ = f, sin (W 1,∞ ) ′ ×W 1,∞ = 0}, which is a closed subspace of (W 1,∞ (T)) ′ .
Applying the same strategy as in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF], one gets l 0 ∈ Y ′ such that l 0 (g(u 0 )) = 0 and

∀f ∈ Y, f ≥ 0 ⇒ l 0 (f ) ≥ 0, and ∀v ∈ W 1,∞ , j ′ (u 0 ), v (W 1,∞ ) ′ ×W 1,∞ = l 0 , v ′′ + v Y ′ ×Y .
We restrict ourselves to v ∈ D(T) := C ∞ (T), and consider

ζ 0 : f ∈ D(T) ∩ Y → ζ 0 , f D ′ ×D := l 0 , f Y ′ ×Y .
Our aim is to prove that ζ 0 can be extended to a continuous linear form on

L 1 (T). First, for f ∈ D(T) ∩ Y = {f ∈ D(T), T f sin = T f cos = 0} we choose the unique v ∈ W 2,1 (T) such that { T v sin = T v cos = 0} and v ′′ + v = f in T. Then there exists C < ∞ independant of v or f such that v W 1,∞ (T) ≤ C f L 1 (T) . (18) 
Indeed, we first get an L ∞ -estimate using Fourier series:

if f = n∈Z f (n)e n with e n (θ) = e inθ and f (n) = T f (θ)e -inθ dθ 2π , then v = |n| =1 1 1-n 2 f (n)e n , and therefore v L ∞ ≤   |n| =1 1 |1 -n 2 |   max n | f (n)| ≤ C f L 1 ,
with C < ∞. Then we get a W 1,∞ -estimate by choosing θ 0 such that v ′ (θ 0 ) = 0 (which is always possible, thanks to regularity and periodicity of v), and getting from

v ′′ + v = f that |v ′ (θ)| = - θ θ 0 (f (s) -v(s))ds ≤ 2π ( v L ∞ + f L 1 ) ,
which concludes the proof of the estimate [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF].

Therefore, we can write (C may define different universal constants)

∀f ∈ Y ∩ D(T), | ζ 0 , f D ′ ×D | = | l, v ′′ + v Y ′ ×Y | = | j ′ (u 0 ), v (W 1,∞ ) ′ ×W 1,∞ | ≤ C v W 1,∞ ≤ C f L 1 . ( 19 
) We now extend ζ 0 on D(T) by ∀f ∈ D(T), ζ 0 , f D ′ ×D = ζ 0 , f -f (1)e 1 -f (-1)e -1 D ′ ×D .
Then, applying [START_REF] Tao | [END_REF] to

f -f (1)e 1 -f (-1)e -1 , we get ∀f ∈ D(T), | ζ 0 , f D ′ ×D | ≤ C f -f (1)e 1 -f (-1)e -1 L 1 ≤ C f L 1 ,
and therefore by density, we extend ζ 0 to a continuous linear form in L 1 , which can be identified with ζ 0 ∈ L ∞ . Moreover, in the sense of distributions:

ζ 0 , v ′′ + v D ′ ×D = j ′ (u 0 ), v D ′ ×D , that is to say ζ ′′ 0 + ζ 0 = j ′ (u 0 ).
From the hypothesis for j ′ (u 0 ) it follows

ζ ′′ 0 + ζ 0 ∈ (C 0 (T)) ′ which implies ζ 0 ∈ W 1,∞ (T).
Using the continuity of ζ 0 and the fact j ′ (u 0 )(u 0 ) = 0 we get T ζ 0 d(u ′′ 0 + u 0 ) = 0 by a density argument. Therefore, the rest of the proof stays as in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF], namely we prove that we can add a combination of cos and sin to ζ 0 so that ζ 0 ≥ 0.

Proof of Theorem 2.4.

Applying the previous proposition, and using the hypotheses on the functional j, we get:

∀v ∈ C ∞ c (T in ), j ′ (u 0 )v = r ′ (u)v + T G u (θ, u 0 , u ′ 0 )v + G q (θ, u 0 , u ′ 0 )v ′ = ζ 0 + ζ ′′ 0 , v (W 1,∞ (T)) ′ ×W 1,∞ (T) .
To integrate by part in this formula, since u ′ 0 is only in BV (T), we may look in [START_REF] Vol | PERT, Spaces BV and quasi-linear equations[END_REF] (see also [START_REF] Ambrosio | PALLARA Functions of Bounded Variation and Free Discontinuity Problems[END_REF]) to get:

r ′ (u 0 ) + G u (θ, u 0 , u ′ 0 ) -G θq (θ, u 0 , u ′ 0 ) -G uq (θ, u 0 , u ′ 0 )u ′ 0 -u ′′ 0 G qq (θ, u 0 , u ′ 0 ) = ζ 0 + ζ ′′ 0 in D ′ (T in ). ( 20 
)
where

G qq (θ, u 0 , u ′ 0 ) = 1 0 G qq (θ, u 0 (θ), (1 -t)u ′ 0 (θ + ) + tu ′ 0 (θ -))dt.
For simplicity, we will drop the indication of the dependence in (θ, u 0 , u ′ 0 ) and write more simply

r ′ (u 0 ) + G u -G θq -G uq u ′ 0 -u ′′ 0 G qq = ζ 0 + ζ ′′ 0 in D ′ (T in ). (21) 
Equality (21) implies that ζ ′′ 0 is a Radon measure, and also that the singular parts of the measures in the two sides of ( 21) are equal. To study the sign of these measures, we will use the following lemma.

Lemma 3.3 The measure ζ ′′ 0 satisfies: ζ ′′ 0 ≥ 0 on [ζ 0 = 0].
Proof of Lemma 3.3. Let ϕ ∈ C ∞ 0 (R), ϕ ≥ 0 and let p n : R + → R + be defined by

∀r ∈ [0, 1/n], p n (r) = 1 -nr; ∀r ∈ [1/n, +∞), p n (r) = 0. Recall that ζ 0 ∈ W 1,∞ (T) and ζ 0 ≥ 0. Then ϕp n (ζ 0 )d(ζ ′′ 0 ) = - ζ ′ 0 ϕ ′ p n (ζ 0 ) + ϕp ′ n (ζ 0 )ζ ′ 0 2 ≥ -ζ ′ 0 ϕ ′ p n (ζ 0 ).
Letting n tend to +∞ leads to 

[ζ 0 =0] ϕd(ζ ′′ 0 ) ≥ - [ζ 0 =0] ζ ′ 0 ϕ ′ = 0,
(u 0 ), G u , G θq , G uq u ′ 0 , u 0 G qq are at least L p - functions, we are led to -µ s G qq = n s in T in . Since G qq > 0, µ s ≥ 0, n s ≥ 0 on K ⊃ Supp(µ s ), we deduce µ s = 0 = n s in T in . Thus, u 0 ∈ W 2,1 (T in ) and u ′ 0 is absolutely continuous on T in . In particular, G qq = G qq on T in .
We can now obtain higher regularity, using again the multiplier ζ ′′ 0 . Indeed, on one hand, we deduce from Lemma 3.3, from (21) and from the inequality

-u ′′ 0 G qq ≤ u 0 G qq , that, on the set T in ∩ K 0 ≤ ζ ′′ 0 ≤ r ′ (u 0 ) + G u -G θq -G uq u ′ 0 + u 0 G qq ∈ L p (T).
Thus, ζ ′′ 0 ∈ L p (T in ∩ K). Going back to (21) and using that G qq = G qq is bounded from below on the compact set

T × u 0 (T) × Conv(u ′ 0 (T)), we deduce u ′′ 0 ∈ L p (T in ∩ K). On the other hand, in the open set T in \ K, we have u ′′ 0 + u 0 = 0 so that u ′′ 0 ∈ L ∞ (T in \ K). As a conclusion u ′′ 0 ∈ L p (T in ).
Proof of Theorem 2.6.

Optimality conditions are written with the Lagrangian (since m ′ (u 0 ) is onto, see also [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF]Proposition 2.3.3]):

∀v ∈ C ∞ c (T in ), j ′ (u 0 )v + µ • (m ′ (u 0 )v) = ζ 0 + ζ ′′ 0 , v (W 1,∞ ) ′ ×W 1,∞ ,
for some µ ∈ R d . The regularity of m ′ (u 0 ) implies that the strategy used in the proof of Theorem 2.4 remains valid.

Examples

In this section, we apply Corollary 2.7 to a number of classical energy functionals. For the proof of the differentiability of the shape functionals see Section 3.3. We start by reminding some classical PDE functionals that we use in our examples.

Dirichlet energy -Torsional rigidity

For Ω an open bounded set in R 2 , we consider the solution of the following PDE, in a variational sense:

U Ω ∈ H 1 0 (Ω), -∆U Ω = f in Ω, (22) 
and we define the Dirichlet energy of Ω by

E f (Ω) := Ω 1 2 |∇U Ω | 2 -f U Ω = min Ω 1 2 |∇U | 2 -f U , U ∈ H 1 0 (Ω) = - 1 2 Ω |∇U Ω | 2 = - 1 2 Ω U Ω f.
About the regularity of the state function, we are going to use the following classical result (see [START_REF] Kadlec | The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain[END_REF], [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]).

Lemma 3.4

Let Ω be convex, f ∈ L p loc (R 2 ) with p > 2, and U Ω be the solution of ( 22). Then U Ω ∈ W 1,∞ (Ω) ∩ H 2 (Ω). Remark 3.5 When f ≡ 1, the Dirichlet energy is linked to the so-called torsional rigidity T (Ω), with the formula T (Ω) = -2E 1 (Ω).

First Dirichlet-eigenvalue of the Laplace operator

We define λ 1 (Ω) as the first eigenvalue for the Laplacian with Dirichlet's boundary conditions on ∂Ω. It is wellknown that, if we define U Ω as a solution of the following minimization problem,

λ 1 (Ω) := Ω |∇U Ω | 2 = min Ω |∇U | 2 , U ∈ H 1 0 (Ω), Ω U 2 = 1 ,
then U Ω is (up to the sign) the positive first eigenfunction of -∆ in Ω:

U Ω ∈ H 1 0 (Ω), -∆U Ω = λ 1 (Ω)U Ω , Ω U 2 Ω = 1. Again, like in Lemma 3.4, if Ω is convex then U Ω ∈ H 2 (Ω) ∩ W 1,∞ (Ω) and U Ω > 0 in Ω.
We are now in position to state some applications of Corollary 2.7:

Example 3.6 (Penalization by perimeter) One can study

min{J(Ω) := F (|Ω|, E f (Ω), λ 1 (Ω)) + P (Ω) / Ω convex, D 1 ⊂ Ω ⊂ D 2 } (23)
where

F : (0, +∞) × (-∞, 0) × (0, ∞) → R is C 1 , f ∈ H 1 loc (R 2 ), D 1 , D 2 are bounded open sets, E f (Ω)
is the Dirichlet energy and λ 1 (Ω) is the first eigenvalue of -∆ defined as above.

Proposition 3.7

If Ω 0 is an optimal set for the problem (23), then the free boundary

∂Ω 0 ∩ (D 2 \ D 1 ) is C 1,1 (or equivalently W 2,∞ ), that is to say ∂Ω 0 ∩ (D 2 \ D 1 ) has a bounded curvature.
The proof is a simple consequence of Section 3.3, which asserts that R(Ω) = F (|Ω|, E f (Ω), λ 1 (Ω)) and C(Ω) = P (Ω) satisfy the assumptions in Corollary 2.7 with p = ∞.

Note that in Proposition 3.7 we could also add a dependence of F in the capacity of Ω or in any shape functional which is shape differentiable and whose shape derivative can be represented as a function of L ∞ (∂Ω) when Ω is convex.

Remark 3.8

The constraints D 1 ⊂ Ω ⊂ D 2 helps existence for the problem (23). Of course, if one can prove existence of an optimal shape without these constraints (mainly, one need to prove that a minimizing sequence remains bounded and does not converge to a segment), the result of Proposition 3.7 remains a fortiori true for the whole boundary of the optimal shape, i.e. ∂Ω 0 is C 1,1 .

Example 3.9 (Volume constraint and Perimeter penalization)

We can also consider a similar problem with a volume constraint:

min{J(Ω) := F (E f (Ω), λ 1 (Ω)) + P (Ω) / Ω convex, and |Ω| = V 0 }, V 0 ∈ (0, +∞).
In this case, the first optimality condition will be similar to the one for the problem (23) with F (E f (Ω), λ 1 (Ω)) + µ|Ω| + P (Ω where µ is a Lagrange multiplier for the constraint |Ω| = V 0 . Theorem 2.6 applies and one gets globally the same regularity result (but global) as in Proposition 3.7 on any optimal shape. where P 0 ∈ (0, +∞), one needs to be more careful. In this case, the first optimality condition will be similar to the one for the problem (23), with F (|Ω|, E f (Ω), λ 1 (Ω)) + µP (Ω), where µ is a Lagrange multiplier for the constraint P (Ω) = P 0 . Therefore if we are able to prove µ > 0 then we can apply the same strategy as in Theorem 2.4, and we therefore get the same regularity result as in Proposition 3.7. However, if µ < 0, we refer to Example 4.9.

Example 3.11

In a more abstract context, one can consider

min{J(Ω) -α|Ω| + P (Ω) / Ω convex ⊂ D}, ( 25 
)
where J is a shape differentiable functional, increasing with respect to the domain inclusion, D is an open set, and α > 0 (if α = 0, the empty set is clearly solution of the problem). Again, we get that ∂Ω 0 ∩ D has a locally bounded curvature. Indeed, the derivative of j(u) := J(Ω u ) is a nonpositive measure, thanks to the monotonicity of J (see [START_REF] Lamboley | Structure of shape derivatives around irregular domains and applications[END_REF]), and we apply Theorem 2.4 combined with the end of Remark 2.5.

Computation and estimate of first order shape derivatives

In this section we will prove the differentiability of the shape functionals involved in the examples of Section 3.2, which are needed in Proposition 3.7.

Volume and perimeter

About geometrical functionals, it is easy to write the area and the perimeter as functional of u, namely

a(u) := |Ω u | = T 1 2u 2 dθ, p(u) := P (Ω u ) = T √ u 2 + u ′2 u 2 dθ, u ∈ W 1,∞ (T) ∩ {u > 0}. ( 26 
) Note that p(u) = T G(θ, u(θ), u ′ (θ))dθ with G(θ, u, q) = √ u 2 +q 2 u 2
and one can easily check that G qq = 1 (u 2 +q 2 ) 3/2 > 0.

Dirichlet Energy -Torsional rigidity

We focus our analysis around a convex open set Ω 0 with parametrization u 0 > 0. For u -

u 0 W 1,∞ (T) small, consider e f : W 1,∞ (T) ∩ {u > 0} → R, u → E f (Ω u ).
In order to study the differentiability of e f near u 0 , we use the classical framework of shape derivatives. As usual, we need to work with an extension operator: the deformation ∂Ω 0 to ∂Ω u allows to define the vector field ξ(u) : ∂Ω 0 → R 2 such that ∂Ω u = (Id + ξ(u))(∂Ω 0 ). We will consider an extension to R 2 of this transformation, since we need to study the differentiability of u → Ûu := U Ωu • (Id + ξ(u)) ∈ H 1 0 (Ω 0 ), where U u := U Ωu (see [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF] for example).

If we consider a smooth extension operator ξ :

W 1,∞ (T) → W 1,∞ (R 2 ; R 2 ), we have (Id + ξ(u))(∂Ω 0 ) = ∂Ω u if ξ(u) 1 u 0 (θ) , θ = 1 u(θ) - 1 u 0 (θ) e iθ , ∀θ ∈ T, (27) 
where ( 1 u 0 (θ), θ) are polar coordinates (for simplicity, we will often write u 0 , u or ξ instead of u 0 (θ), u(θ) or ξ(u)(r, θ)).

Remark 3.12

The transformation ξ(u) can be extended to R 2 in different ways. The easiest way is to take

ξ(u)(r, θ) = 1 u(θ) - 1 u 0 (θ) e iθ η(r, θ) in R 2 , ( 28 
)
where η ∈ C ∞ 0 (R 2 ), η = 0 in a neighborhood of the origin and η = 1 in a neighborhood of ∂Ω 0 . This (polar) extension of ξ(u) is such that ξ ∈ C ∞ (W 1,∞ (T); W 1,∞ (R 2 ; R 2 )) near u 0 , and is sufficient for the results of this section. More work will be needed for the second order shape derivatives, see Section 4.3.2.

Let us point out that if ξ is C 2 in a neighborhood of u 0 and satisfies (27), then

∀v ∈ W 1,∞ (T) : ξ ′ (u 0 )(v) = - v u 2 0 e iθ , ξ ′′ (u 0 )(v, v) = 2 v 2 u 3 0 e iθ on ∂Ω 0 . ( 29 
)
Note also that the method used in the proof of Lemma 3.14, which is needed in the proof of Proposition 3.13, allows to say that the method a priori fails if we consider an extension operator ξ : H 1 (T) → H 1 (R 2 ; R 2 ). This explains our choice to work with v ∈ W 1,∞ (T) rather than v ∈ H 1 (T), even though it introduces extra difficulties (like in Proposition 3.1 and in the proof of Proposition 4.11).

The main result of this section is the following.

Proposition 3.13 Let Ω 0 = Ω u 0 convex, f ∈ H k loc (R 2 ), k ∈ N * and ξ ∈ C k (W 1,∞ (T); W 1,.∞ (R 2 ; R 2 )) near u 0 . We have: i) e f is C k near u 0 . ii) If ξ satisfies (27), then for any v ∈ W 1,∞ (T) we have e ′ f (u 0 )(v) = - ∂Ω 0 1 2 |∇U 0 | 2 (ξ ′ (u 0 )(v) • ν 0 )ds 0 = T 1 2 |∇U 0 (x θ )| 2 v(θ) u 3 0 (θ) dθ, ( 30 
)
where U 0 ∈ H 2 (Ω 0 ) is the solution of (22) in Ω 0 , ν 0 is the exterior unit normal vector on ∂Ω 0 ,

x θ = 1 u 0 (θ) (cos θ, sin θ) ∈ ∂Ω 0 . iii) Furthermore, e ′ f (u 0 ) ∈ L ∞ (T)
. The proof of this proposition is classical and uses the following lemma, which will be needed in the following section.

Lemma 3.14 Let u 0 ∈ W 1,∞ (T), u 0 > 0, f ∈ H k loc (R 2 ), k ∈ N * . We have: i) The map u ∈ W 1,∞ (T) → Ûu ∈ H 1 (Ω 0 ) is C k near u 0 . ii) For v ∈ W 1,∞ (T), set Û ′ 0 := Û ′ u (u 0 )(v), U ′ 0 := Û ′ 0 -∇U 0 • ξ ′ (u 0 )(v). ( 31 
)
Then

U ′ 0 ∈ L 2 (Ω 0 ), ∆U ′ 0 = 0 in D ′ (Ω 0 ), (32) 
U ′ 0 + ∇U 0 • ξ ′ (u 0 )(v) ∈ H 1 0 (Ω 0 ). ( 33 
) iii) Furthermore, if u ′′ 0 + u 0 ≥ 0, then U ′ 0 ∈ H 1 (Ω 0 ).
Remark 3.15 Here we are not interested in the differentiability of u → U u and the function U ′ 0 is directly defined by (31). In fact, the map u → U u (with U u extended by zero in R 2 ) is differentiable in L 2 (R 2 ) and its derivative equals U ′ 0 in Ω 0 , see Théorème 5.3.1, [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF] for example. Proof of Lemma 3.14:

i) The map θ ∈ W 1,∞ (R 2 ; R 2 ) → U (Id+θ)(Ω 0 ) • (Id + θ) ∈ H 1 0 (Ω 0 ) is C k in
a neighborhood of 0, see for example [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF]Proposition 5.3.7]. We conclude by using the composition of this map with ξ.

ii) It is clear that

U ′ 0 ∈ L 2 (Ω 0 ) and that U ′ 0 + ∇U 0 • ξ ′ (u 0 )(v) = Û ′ 0 ∈ H 1 0 (Ω 0 ). To prove ∆U ′ 0 = 0 we consider the map S : W 1,∞ (T) → W 1,∞ (R 2 ; R 2 ), S(u) = (Id + ξ(u)) -1 , which is well defined and C k in a neighborhood of u 0 . From S(u) • (Id + ξ(u)) = Id, it is easy to check that for v ∈ W 1,∞ (T) we have S ′ (u 0 )((v) = -ξ ′ (u 0 )(v), S ′′ (u 0 )(v, v) = 2∇ξ ′ (u 0 )(v) • ξ ′ (u 0 )(v) -ξ ′′ (u 0 )(v, v). (34) 
Let ϕ ∈ D(Ω 0 ). From ( 22), for all u near u 0 we have Ω 0 Ûu • S(u)∆ϕf ϕ = 0. Differentiating this equality on the direction v gives

Ω 0 Û ′ u • S(u) + ∇ Ûu • S(u) • S ′ (u 0 )(v) ∆ϕ = 0. (35) 
Replacing u = u 0 in (35) and using (34) gives

Ω 0 Û ′ 0 -∇U 0 • ξ ′ (u 0 )(v) ∆ϕ = 0, which proves ii). iii) If u ′′ 0 + u 0 ≥ 0 then Ω 0 is convex. From Lemma 3.4 we obtain U 0 ∈ H 2 (Ω 0 ), which implies U ′ 0 ∈ H 1 (Ω 0 ).

Proof of Proposition 3.13:

i) The functional u → e f (u) can be seen as e f (u

) = E f,Ω 0 • ξ(u)
, where E f,Ω 0 is a classical functional, introduced to compute shape derivatives:

E f,Ω 0 (θ) : W 1,∞ (R 2 ; R 2 ) → R θ → E f ((Id + θ)(Ω 0 )). ( 36 
)
As

ξ is C k near u 0 and E f,Ω 0 is C k near θ = 0 in W 1,∞ (R 2 ; R 2 ), see [10, Corollaire 5.3.8]
), the differentiability of e f (u) follows.

ii) As we have e f (u) = -1 2 Ωu Ûu • S(u)f and Ûu = 0 on ∂Ω 0 , from Corollaire 5.2.5, [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF], we obtain

e ′ f (u)(v) = - 1 2 Ωu Û ′ u • S(u) + ∇ Ûu • S(u) • S ′ (u)(v) f. (37) 
Taking u = u 0 in the last equality and using (34) gives

e ′ f (u 0 )(v) = - 1 2 Ω 0 ( Û ′ 0 -∇U 0 • ξ ′ (u 0 )(v))f = - 1 2 Ω 0 U ′ 0 f = - 1 2 ∂Ω 0 |∇U 0 | 2 (ξ ′ (u 0 )(v) • ν 0 )ds 0 .
Finally, by changing the variable s 0 = √

u 2 0 +(u ′ 0 ) 2 u 2 0 dθ, taking into account that ν 0 = 1 u 0 e iθ + u ′ 0 u 2 0 (ie iθ ) u 2 0 √ u 2 0 +u ′2 0 ,
and after using (29). we obtain (30

). iii) As k ∈ N * it follows f ∈ L p (Ω 0 ), for all p ∈ [1, ∞). Then Lemma 3.4 gives U 0 ∈ W 1,∞ (Ω 0 ), so e ′ f (u 0 ) ∈ L ∞ (T).

First eigenvalue of the Laplace operator with Dirichlet boundary conditions

We consider

l 1 : {u ∈ W 1,∞ (T), u > 0} → R u → l 1 (u) := λ 1 (Ω u )
and we have the same result as in Proposition 3.13, see for example Théorème 5.7.1, [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF], and (29), with

l ′ 1 (u 0 )(v) = T |∇U 0 | 2 (x θ ) v(θ) u 3 0 (θ) dθ, ∀v ∈ W 1,∞ (T).

Application with the dual parametrization

Instead of using parametrization by the gauge function, one can also use the well-known parametrization by the support function of a body, namely

∀θ ∈ T, h Ω (θ) := max{x • e iθ , x ∈ Ω}.
We get a characterization of the convexity in a similar way to (3):

Ω is convex ⇒ h ′′ Ω + h Ω ≥ 0.
Conversely, if h ∈ W 1,∞ (T) satisfies h ′′ + h ≥ 0, then one can find a unique (after a choice of an origin) open convex set, denoted Ω h , whose support function is h (see [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF] for example). This parametrization is the dual of the one with the gauge function. Indeed, the gauge function of Ω is the support function of the dual body of Ω and vice versa.

Therefore the optimization problem

min{J(Ω) / Ω ∈ S ad , Ω convex}, (38) 
where S ad is a class of open planar sets, becomes    find h 0 ∈ F ad such that j(h 0 ) = min{ j(h), h ∈ F ad , h ′′ + h ≥ 0}, where j(h) = J(Ω h ), and

F ad = {h ∈ W 1,∞ (T) / Ω h ∈ S ad }, (39) 
which is the same as [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF].

Again, if the set of admissible functions can be written

F ad = {h ∈ W 1,∞ (T) / k 1 ≤ h ≤ k 2 }, (40) 
we can define 

T in = {θ ∈ T / k 1 (θ) < h(θ) < k 2 (θ)},
(∂Ω) in = ∂Ω \ (∂K 1 ∪ ∂K 2 ).
Therefore one gets a dual version of Corollary 2.7 as follows.

Corollary 3. [START_REF] Lachand-Robert | Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Modeling, Analysis and Simulation[END_REF] Let Ω 0 = Ω h 0 be an optimal shape for the problem (38) with J = R + C, and assume that,

∀h ∈ F ad , R(Ω h ) = r(h) and C(Ω h ) = T G(θ, h(θ), h ′ (θ))dθ
where r and G satisfy the assumptions of Theorem 2.4 for some p ∈ [1, ∞]. Then

h 0 ∈ W 2,p ( T in ).
This implies in particular that (∂Ω 0 ) in is strictly convex.

Remark 3.17 This parametrization is especially interesting when one has to deal with the perimeter because in this case P (Ω h ) = T hdθ. An example of a function C(Ω h ) satisfying the hypotheses of Corollary 3.16 is now the opposite of the area, since

|Ω h | = 1 2 T (h 2 -h ′2 )dθ.
However, it is not easy to work now with functionals coming from PDE. Indeed, it is well-known for example, that the derivative of λ 1 in terms of h is not more regular than a measure on T, see [START_REF] Jerison | A Minkowski problem for electrostatic capacity[END_REF][START_REF] Jerison | The direct method in the calculus of variations for convex bodies[END_REF]. We think that this can be explained by the fact that some solutions of problems like (23) may not be strictly convex.

Optimization of concave non-local shape functionals

In this section, we prove the results of Section 2.2.2. The main proof relies on the analysis of the second order shape derivatives. Next we apply these results to various energy functionals involving the Dirichlet energy or the first eigenvalue of the Laplace-Dirichlet operator. Since the optimal shapes come with no a priori regularity except the convexity condition, one needs some delicate computations to check the required assumptions. This leads to rather sharp estimates on second derivatives which are interesting for themselves.

Proof of Theorems 2.9 and 2.12

We first introduce the classical Sobolev semi-norms on T. For s ∈ R + , we set: We also define H s (T) := {u ∈ L 2 (T) such that |u| H s (T) < +∞} and u 2

H s (T) := u 2 L 2 (T) + |u| 2 H s (T) .
Proof of Theorem 2.9.

The main idea is to prove that for a deformation supported by a small set, the estimate ( 16) is a concavity estimate, and so it violates the second order optimality condition. This relies of the following Poincaré-type inequality:

Lemma 4.1 Let s ∈ [0, 1) and ε ∈ (0, π). Then there exists a constant C = C(s) independant on ε such that,

∀u ∈ H 1 (T) such that Supp(u) ⊂ [0, ε], u H s (T) ≤ Cε 1-s |u| H 1 (T) . Proof of Lemma 4.1. Let u ∈ C ∞ (T) with Supp(u) ⊂ [0, ε].
If we first assume that s = 0, then we have the classical Poincaré inequality (with the optimal constant), proved using the fact that |u| 2 H 1 (T) = T u ′2 , so

u L 2 (T) ≤ ε π |u| H 1 (T) .
If one has now s ∈ (0, 1), one can proceed with an interpolation inequality, easily obtained by Hölder inequality:

|u| 2 H s (T) = n∈Z |n| 2s | u(n)| 2s | u(n)| 2(1-s) ≤ n∈Z |n| 2 | u(n)| 2 s n∈Z | u(n)| 2 1-s ,
and so

|u| H s (T) ≤ |u| s H 1 (T) u 1-s L 2 (T) ≤ ε 1-s π 1-s |u| H 1 (T) .
Let K := Supp(u ′′ 0 + u 0 ). Assume that, for a connected component I of T in , K ∩ I is infinite. Then, there exists θ 0 ∈ I an accumulation point of K ∩ I. Without loss of generality we can assume θ 0 = 0 and also that there exists a decreasing sequence (ε n ) tending to 0 such that K ∩ (0, ε n ) ⊂ I is infinite. Then, we follow an idea of T. Lachand-Robert and M.A. Peletier as in [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF] (see also [START_REF] Lachand-Robert | Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Modeling, Analysis and Simulation[END_REF]). We can always find 0 < ε i n < ε n , i = 1, . . . , 4, increasing with respect to i, such that Supp(u

′′ 0 + u 0 ) ∩ (ε i n , ε i+1 n ) = ∅, i = 1, 3. We consider v n,i ∈ W 1,∞ (T) solving v ′′ n,i + v n,i = ½ (ε i n ,ε i+1 n ) (u ′′ 0 + u 0 ), v n,i = 0 in (0, ε n ) c , i = 1, . . . , 3 
. Such v n,i exist since we avoid the spectrum of the Laplace operator with Dirichlet boundary conditions. Next, we look for λ n,i , i = 1, 3 such that v n = i=1,3

λ n,i v n,i satisfies v ′ n (0 + ) = v ′ n (ε - n ) = 0.
The above derivatives exist since v n,i are regular near 0 and ε n in (0, ε n ). We can always find such λ n,i so as they satisfy two linear equations. It implies that v ′′ n does not have any Dirac mass at 0 and ε n . It even implies that the

support of v n is included in [ε 1 n , ε 4 n ]. In particular, v ′′ n + v n = ϕ(u ′′ 0 + u 0 )
where ϕ is bounded and with support in

[ε 1 n , ε 4 n ]. As Supp(u 0 ) ∩ (ε i n , ε i+1 n ) = ∅, we also have v n = 0. Since Supp(v n ) ⊂ T in and v ′′ n + v n = ϕ(u ′′ 0 + u 0 )
, it follows that u 0 + tv n is admissible for |t| small enough (and n fixed). Consequently, since j(u 0 + tv n ) ≥ j(u 0 ) for |t| small, we have j ′ (u 0 )(v) = 0 and then by using the assumption [START_REF] Lachand-Robert | Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Modeling, Analysis and Simulation[END_REF] and Lemma 4.1, we get

0 ≤ j ′′ (u 0 )(v n , v n ) ≤ -α|v n | 2 H 1 (T) + γ|v n | H 1 (T) v n H s (T) + β v n 2 H s (T) (41) 
≤ (-α + Cγε 1-s n + C 2 β(ε n ) 2(1-s) )|v n | 2 H 1 (T) . (42) 
As ε n tends to 0, inequality (41) becomes impossible and proves that Supp(u ′′ 0 + u 0 ) has no accumulation points in T in . It follows that u ′′ 0 + u 0 is a finite sum of positive Dirac masses.

Remark 4.2 More precisely, we can get an estimate of the number of corners in each connected component I of T in :

#{Supp(u ′′ 0 + u 0 ) ∩ I} ≤ 2|I| A + 2 where A 1-s := -γ + γ 2 + 4αβ 2βC (C = 1 π 1-s appears in Lemma 4.1). Indeed, let us consider three consecutive Dirac masses θ 1 , θ 2 , θ 3 in I. Then • if β > 0, γ ≥ 0, we have (θ 3 -θ 1 ) 1-s ≥ -γ + γ 2 + 4αβ 2βC . (43) 
• if β = γ = 0, then we have a contradiction, that is to say u ′′ 0 + u 0 is the some of at most two Dirac masses I.

To prove this estimate, we define v ∈ H

1 0 (θ 1 , θ 3 ) satisfying v ′′ + v = δ θ 2 in (θ 1 , θ 3 ), v = 0 in T \ (θ 1 , θ 3 
). In T, the measure v ′′ + v is supported in {θ 1 , θ 2 , θ 3 }, and since these points are in Supp(u ′′ 0 + u 0 ), and [θ 1 , θ 3 ] ⊂ T in , u 0 + tv is admissible for small |t|. The second order optimality condition and then the assumption (16) together with Lemma 4.1 lead to

0 ≤ j ′′ (u 0 )(v, v) ≤ -α|v| 2 H 1 (T) + γ|v| H 1 (T) v H s (T) + β v 2 H s (T) ≤ (-α + CγX + C 2 βX 2 )|v| 2 H 1 (T) ,
where X = (θ 3θ 1 ) 

min{J(Ω) := F (E f (Ω), λ 1 (Ω)) -P (Ω) / Ω convex, and |Ω| = V 0 } (47) 
where V 0 ∈ (0, +∞). Again, Corollary 2.13 applies and leads to the fact that any optimal shape of (47) is a polygon. 

where P 0 ∈ (0, +∞). The optimality conditions are written for F (|Ω|, E f (Ω), λ 1 (Ω)) + µP (Ω), where µ is a Lagrange multiplier for the constraint P (Ω) = P 0 , so if we prove that µ < 0, then the strategy of this section applies, and we get that any optimal shape is polygonal.

Computations and estimates of second order shape derivatives 4.3.1 Volume and perimeter

Let a(u), p(u) be the area and perimeter functionals, see (26).

Proposition 4.10 Let 0 < u ∈ W 1,∞ (T). Then a and p are twice differentiable around u in W 1,∞ (T) and there exists some real numbers β 1 , β 2 , β 3 , γ and α > 0 (depending on u) such that, ∀v ∈ W 1,∞ (T)

   |a ′′ (u)(v, v)| ≤ β 1 v 2 L 2 (T) α|v| 2 H 1 (T) -γ|v| H 1 (T) v L 2 (T) -β 2 v 2 L 2 (T) ≤ p ′′ (u)(v, v) ≤ β 3 v 2 H 1 (T) (49) 
Proof. This is done by easy computations, using formulas of Section 3.3.1.

The Dirichlet energy -Torsional rigidity

We now analyze the second order derivative of e f (u) = E f (Ω u ) introduced in Section 3.3. The main result is the following.

Proposition 4.11 Assume Ω

0 := Ω u 0 , u 0 > 0, u ′′ 0 + u 0 ≥ 0, f ∈ H 2 loc (R 2 ). Then e f is C 2 in a neighborhood of u 0 (in W 1,∞ (T)). Furthermore, there exist β 1 , β 2 positive such that, for all v ∈ W 1,∞ (T), |e ′ f (u 0 )v| ≤ β 1 v L 2 (T) , (50) 
|e ′′ f (u 0 )(v, v)| ≤ β 2 ( v 2 H 1/2 (T) + v 2 L ∞ (T) ). (51) 
Proof of Proposition 4.11.

We will often write ξ, ξ ′ , ξ ′′ for ξ(0), ξ ′ (0), ξ ′′ (0). Let us rewrite (56) in the form e ′′ (0) = 1 2 (I 1 + I 2 ). The second term I 2 is easy to estimate: from (31) we have

I 2 := - ∂Ω 0 f U ′ 0 (ξ ′ • ν 0 ) = ∂Ω 0 f ∂ ν 0 U 0 (ξ ′ • ν 0 ) 2 ≤ C ξ ′ 2 L 2 (∂Ω) , C = C( f L ∞ (Ω 0 ) , U 0 W 1,∞ (Ω 0 ) ). (60) 
The first term I 1 = Ω 0 U ′′ 0 ∆U 0 requires more investigation. To go around the non regularity of Ω 0 , we introduce

U 0 = U 1 -U 2 , U i ∈ H 1 0 (Ω 0 ), -∆U 1 = f + , -∆U 2 = f -, U i > 0 on Ω 0 .
Recall that U i ∈ W 1,∞ (Ω 0 ) ∩ H 2 (Ω 0 ). We will compute on the level sets Ω i ε := {x ∈ Ω 0 , U i (x) > ǫ} (only on one of them if f + ≡ 0 or f -≡ 0). Indeed, by Sard's theorem, the Ω i ε are at least C 1 for a.e. ε. By strict positivity of U i , lim ε→0 ½ Ω i ε = ½ Ω 0 , so that

I 1 = lim ε→0 Ω 1 ε U ′′ 0 ∆U 1 - Ω 2 ε U ′′ 0 ∆U 2 .
Note that U ′ 0 , U ′′ 0 ∈ C ∞ loc (Ω 0 ) and as f ∈ H 2 loc (R 2 ) we have U 0 ∈ H 4 loc (Ω 0 ). We obtain

Ω i ε U ′′ 0 ∆U i = ∂Ω i ε U ′′ 0 ∂ νε U i = ∂Ωε Û ′′ 0 ∂ νε U i -2(∇U ′ 0 • ξ ′ )∂ νε U i -(ξ ′ • D 2 U 0 • ξ ′ )∂ νε U i -(∇U 0 • ξ ′′ )∂ νε U i =: I ε 1 + I ε 2 + I ε 3 + I ε 4 . (61) 
For the term I ε 1 , we have

I ε 1 = Ω i ε Û ′′ 0 ∆U i + ∇ Û ′′ 0 • ∇U i ε→0 ---→ Ω 0 Û ′′ 0 ∆U i + ∇ Û ′′ 0 • ∇U i = ∂Ω 0 Û ′′ 0 ∂ ν 0 U i = 0. (62) 
To deal with I ε 2 and I ε 3 , we will need the following generalized formula of integration by parts. where the operator ⊥ acts on a vector and is defined by ⊥ (a 1 , a 2 ) = (-a 2 , a 1 ). As a consequence

|J| ≤ ∇U L ∞ (Ω) g L 2 (Ω) ∆V L 2 (Ω) + 2 V H 1 (Ω) U H 2 (Ω) g L ∞ (Ω) + ∇U L ∞ (Ω) ∇g L 2 (Ω) . (64) 
Proof. If ν is the exterior normal unit vector to ∂Ω and τ = ⊥ ν the unit tangent vector, then, for ϕ ∈ H 1 (Ω) and a = (a 1 , a 2 ), using that ∇U • τ = 0 on ∂Ω 0 , we have

⊥ τ = -ν, (a • ν)∂ ν U = a • ∇U, (a • τ )∂ ν U = a • ∇ ⊥ U, τ • ∇ϕ = -ν • ∇ ⊥ ϕ.
Then we obtain

∂Ω ∂ ν U (g • ∇V ) = ∂Ω (∇U • ν)(g • ν)(∇V • ν) + (∇U • ν)(g • τ )(∇V • τ ) = ∂Ω (∇U • g)∇V -(∇ ⊥ U • g)∇ ⊥ V • ν (apply divergence theorem to both terms) = Ω ∇ • ((∇U • g)∇V ) -∇ • ((∇ ⊥ U • g)∇ ⊥ V ),

Very singular optimal shapes

In this paper, we gave some sufficient conditions on the shape functional so that an optimal shape be smooth or polygonal. But there exist convex sets which are not of this type, and in a certain sense have "intermediate regularity". Namely, there are convex sets which are singular in the sense that they do not have corners (they are C 1 ), but their curvature is zero almost everywhere. As an example, one may consider any convex set such that u ′′ + u is a Radon measure, without mass, but singular with respect the Lebesgue measure.

Let us mention a shape optimization problem whose solution is neither regular nor polygonal (see [START_REF] Lemenant | On convex sets that minimize the average distance[END_REF] for an analysis of this problem). Let Ω 0 be a convex set, V 0 = |Ω 0 |, P 0 = P (Ω 0 ) and D = (Ω 0 ) T = {x ∈ R 2 , d(x, Ω 0 ) < T }. Then Theorem 8 in [START_REF] Lemenant | On convex sets that minimize the average distance[END_REF] states that:

J(Ω 0 ) = min{J(Ω) / Ω ⊂ D convex such that P (Ω) = P 0 , |Ω| = V 0 }, ( 76 
)
where J is the distance functional:

J(Ω) := D d(x, Ω)dx.
Since Ω is any convex set, one cannot expect any geometrical property for a minimizer of (76) without extra conditions on D, V 0 and P 0 . Remark also that the box D = (Ω 0 ) T is C 1,1 here.

Problem without perimeter

An interesting problem, which has not been analyzed in this paper, is the following (we use the notation of Section 4.3):

max{E f (Ω), |Ω| = V 0 , Ω convex ⊂ D}. (77) 
It is easy to prove the existence of an optimal shape Ω 0 . In this situation, we expect the term E f (Ω) to be leading over |Ω| (whereas the perimeter was the stronger term in the examples solved in this paper). So we are naturally led to the following question : do there exist α > 0, β, γ ≥ 0 such that ∀v ∈ W 1,∞ (T), e ′′ (0) ≥ α|v| 2

H 1/2 -γ|v| H 1/2 v L 2 -β v 2 L 2 ? (78) 
A consequence of such an estimate, would be that any solution of (77) is locally polygonal inside D (the same strategy as in the proof of Theorem 2.9 would provide the result, we just need to adapt Lemma 4.1 to H 1/2 -norms).

It is easy to prove that (78) holds if v is supported by a subset of T which parametrizes a C 2 strictly convex part of ∂Ω 0 . Therefore, with the same proof as for Theorem 2.9, we are in position to deduce that ∂Ω 0 ∩ D is nowhere C 2 with a positive curvature. But it is not clear whether estimate (78) remains valid in a more general situation and, consequently, whether ∂Ω 0 ∩ D is a polygon or not.

Figure 1 :

 1 Figure 1: Inclusion constraints Example 2.2 A frequent example for admissible shapes S ad is:

4 :

 4 the last integral being equal to 0 thanks to the known property ζ ′ 0 = 0 a.e. on [ζ 0 = 0].End of the proof of Theorem 2.Denote K := Supp(u ′′ 0 + u 0 ). Recall that ζ 0 = 0 on K by Proposition 3.1. By Lemma 3.3, ζ ′′ 0 ≥ 0 on K. Let u ′′ 0 = µ ac + µ s and ζ ′′ 0 = n ac + n s be the Radon-Nikodym decompositions of the measures u ′′ 0 , ζ ′′ 0 in their absolutely continuous and singular parts. Note that: [u ′′ 0 + u 0 ≥ 0 ⇒ µ s ≥ 0] and n s ≥ 0 on K. Identifying the singular parts in the identity (21), and using that r ′

Example 3 . 10 (

 310 Perimeter constraint) If one considers again a problem with a perimeter constraint, min{J(Ω) := F (|Ω|, E f (Ω), λ 1 (Ω)) / Ω convex, and P (Ω) = P 0 } (24)

|u| 2 H

 2 s (T) := n∈Z |n| 2s | u(n)| 2 where u(n) := T u(θ)e -inθ dθ 2π .

Example 4 . 9 [

 49 Perimeter constraint] We consider again a problem with a perimeter constraint, as in Example 3.10 min{J(Ω) := F (|Ω|, E f (Ω), λ 1 (Ω)) / Ω convex, and P (Ω) = P 0 }

Lemma 4 .

 4 [START_REF] Kadlec | The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain[END_REF] LetΩ be a C 1 open set, U ∈ W 1,∞ 0 (Ω) ∩ H 2 (Ω), V ∈ H 1 (Ω) ∩ {∆V ∈ L 2 (Ω 0 }, g ∈ W 1,∞ (Ω; R 2 ). Then J := ∂Ω ∂ ν U (g • ∇V ) = Ω ∇(∇U • g) • ∇V + (∇U • g)∆V -∇(∇ ⊥ U • g) • ∇ ⊥ V,(63)

  and then (∂Ω) in = {x ∈ ∂Ω s.t. ∃θ ∈ T in , x • e iθ = h(θ)}, i.e. the set of points of ∂Ω whose supporting plane is orthogonal to (cos(θ), sin(θ)) with θ ∈ T in . As in Example 2.2, if S ad = {Ω / K 1 ⊂ Ω ⊂ K 2 }, where K 1 and K 2 are two convex open sets, then (40) is satisfied with k 1 , k 2 the supports functions of K 1 , K 2 , and in that case

  When one uses the parametrization of convex sets by the gauge function u, Ω u is a polygon if and only if u ′′ + u is a sum of Dirac masses. With the support function (see Section 3.4), one has the same characterization. Therefore, the conclusion is the same if we work with the optimization problem (39). Estimate (43) remains valid. However, θ i is no longer the polar angle of a corner of the shape, but is the angle of the normal vectors to the successive segments of the polygonal boundary of the shape.As in Section 2.2.1, one can also handle problem with the equality constraint.Proof. The proof is a direct consequence of Corollary 2.13 and of the estimates given in Section 4.3.2. Indeed, Proposition 4.11 for E f (Ω), the similar result for λ 1 (See Section 4.3.3) and Proposition 4.10 for the volume, imply|r ′′ (0)| ≤ C v 2 H 1/2+ε (T) ,wherer(t) = F (|Ω t |, E f (Ω t ), λ 1 (Ω t )), Ω t = Ω u 0 +tv and ε ∈ (0,1 2 ). Next, the estimate for the perimeter in Proposition 4.10 provides the concavity condition. As in Remark 3.8, if we consider problems of type (46) where the constraint D 1 ⊂ Ω ⊂ D 2 can be dropped, then the solution is a polygon.

	Remark 4.7 Example 4.8 (Volume constraint and negative perimeter penalization) We can also consider a similar problem
	with a volume constraint:

1-s 

, which implies (43) when β is positive, and gives a contradiction if β = γ = 0.

Remark 4.3

Acknowledgments

The work of J. Lamboley and M. Pierre is part of the project ANR-09-BLAN-0037 Geometric analysis of optimal shapes (GAOS) financed by the French Agence Nationale de la Recherche (ANR). A. Novruzi thanks the agency NSERC, Canada, for the financial support of this work, and ENS Cachan, Antenne de Bretagne, for the generous hospitality during his visits there.

Proof of Theorem 2.12.

We now need an abstract result for second order optimality conditions. Adapting [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF]Proposition 3.3] similarly to the first order condition given in Proposition 3.1 (this explains the assumption j ′ (u 0 ) ∈ (C 0 (T)) ′ ), we get that there exist ζ 0 ∈ W 1,∞ (T) nonnegative, µ ∈ R d such that

Furthermore, for all v ∈ H 1 (T in ) such that ∃λ ∈ R, with v ′′ +v ≥ λ(u ′′ 0 +u 0 ), and ζ 0 +ζ ′′ 0 , v -µ•m ′ (u 0 )(v) = 0,

Then we proceed as in the proof of [START_REF] Lamboley | Polygons as optimal shapes under convexity constraint[END_REF]Theorem 2.1]. Compared to the first step of the proof of Theorem 2.9, we add one degree of freedom introducing 4 functions v n,i on a partition of (0, ε n ), and we look for λ n,i , i = 1 . . . 4 such that v n = i=1,4 λ n,i v n,i satisfies

Such a choice of λ n,i is always possible as λ n,i satisfy three linear equations. Moreover, v n is not zero and using (44), we get

for λ ≪ 0, it follows that v n is eligible for the second order necessary condition (45). Then, it follows

As n tends to ∞, the inequality 0

) becomes impossible and this concludes the proof.

Remark 4. [START_REF] Crasta | On a long-standing conjecture by Pólya-Szegö and related topics[END_REF] An estimate similar to the one in Remark 4.2 is not straightforward anymore, since the Lagrange multiplier µ is unknown.

Examples

We analyze the same examples as in Section 3.2, with -P instead of P : 

where 

The differentiability of e f and the estimate (50) follow easily from Proposition 3.13. The estimate (51) is easy to prove when working with smooth sets and one can then even drop the L ∞ term. However, this result is more difficult for a general convex set and the rest of this section is devoted to its proof.

Let v be given as in Proposition 4.11. To prove the estimate (51), it is appropriate to consider a transformation ξ such that

Then, we will differentiate twice t ∈ (-η, η) → e(t) = E(Ω u 0 +tv ). We will use the following notation and identities:

Note that e(t) = e f (u 0 + tv) = E f,Ω 0 (ξ(t)) and we have

In the smooth case, e ′′ (0) can be written in terms of boundary integrals, which involve in particular the boundary trace of D 2 U 0 and ∇U ′ 0 . These terms are not well defined in the non-smooth setting (even in the case Ω 0 convex). To overcome this difficulty, our strategy will be to write all non-smooth terms of e ′′ (0) as "interior" integrals in Ω 0 .

Estimate of e ′′ (0): Note that we have proven in Section 3.

). We remind the following classical formulation of e ′′ (0)

where Û ′′ 0 := Û ′′ u (u 0 )(v, v) and U ′′ 0 is defined by

and satisfies

Proof. Differentiating (37) at u = u 0 (see Corollaire 5.2.5, [START_REF] Henrot | PIERRE -Variation et optimisation de formes : une analyse géométrique[END_REF]) and then using (34) gives

After replacing

To prove that ∆U ′′ 0 = 0 we differentiate (35) at u = u 0 and use (34). Then we obtain

Replacing Û ′ 0 as given by (31) gives Ω 0 U ′′ 0 ∆ϕ = 0, which proves (58).

which proves (63) because ∇ • ∇ ⊥ = 0. The estimate (64) follows.

End of the proof of Lemma 4.13.

We apply Lemma 4.13 on Ω = Ω i ε to estimate

Next, we apply the estimate (64) to each of these choices and we are obviously led to estimates independent of ε. For I ε 4 , we make a direct easy estimate. Together also with (60) and using Young inequality we obtain:

where

Now, let us write the estimate (65

(using the easy fact that H 1 (Ω 0 )∩L ∞ (Ω 0 ) is an algebra, and that the H 1/2 (∂Ω 0 )-norm is equivalent to the H 1 (Ω 0 )norm of the harmonic extension in Ω 0 ). Also, we point out that the transformation ψ = ψ(r, θ) := r u 0 (θ) e iθ is bi-Lipschitz near T and ψ(T) = ∂Ω 0 . Then γ ∈ H 1/2 (∂Ω) if and only if γ • ψ ∈ H 1/2 (T), and their H 1/2 -norms are equivalent.

Let us remind that, according to the choice of ξ in (52), we have ξ

Then we obtain, with the same dependence of the various constants C as in (66)

All these estimates are valid for all choices of ξ as in (52). Let

Given w ∈ W, let us choose ξ(t) := ζ(t) + t(wζ ′ (0)), where ζ is the W 1,∞ -extension as given in (28), namely

with η = 0 (resp. η = 1) in a neighborhood of the origin (resp. of ∂Ω 0 ). Then, ξ is as in (52) and ξ ′ (0) = w. Therefore, the estimate (65) together with (67), (68) leads to

Let us introduce

Let now δ n be a sequence of C ∞ 0 (Ω 0 )-functions converging to w 0ζ ′ (0) in H 1 0 (Ω 0 ) and let w n := inf{δ n + ζ ′ (0), w 0 L ∞ (Ω 0 ) }. Then, w n ∈ W and converges in H 1 (Ω 0 ) to w 0 . Applying (69) with w n in place of w and passing to the limit yields:

But, since w 0 is harmonic,

Finally, the estimate (70) leads to

First eigenvalue of the Laplace operator with Dirichlet boundary conditions

The estimate of Proposition 4.11 also holds for λ 1 (Ω u ), the first Laplace eigenvalue (see Section 3.3), namely

where l 1 (t) = λ 1 (Ω u 0 +tv ). As the computations are very similar, we will only sketch the proof.

Proof of (71).

As for e f , for v ∈ W 1,∞ (T) fixed and |t| small we consider l 1 (t) := λ 1 (Ω t ) and U t , the first eigenvalue and the corresponding eigenfunction of -∆ in Ω t := Ω u 0 +tv . As in Lemma 4.12 we can show that

Here U ′ 0 and U ′′ 0 satisfy

where

as in the proof of Proposition 4.11 (note that U 0 > 0 on Ω 0 here), we have :

Combining (72) with the last two equalities gives

Then we proceed exactly as in Proposition 4.11, and obtain for l ′′ 1 (0) an estimate exactly similar to (65). Next, we prove that

Using the convexity of Ω 0 and Fredholm alternative theorem, we can prove that the operator

defines an isomorphism (see for example [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), which together with the formula for l ′ 1 (0) provides the required estimate for Û ′ 0 . Therefore, as for e ′′ (0), for all ξ as in (52), we have

Then we complete the proof as in Proposition 4.11.

Remarks and perspectives

Localization of our two approaches

As explained in the introduction, the approaches leading to our two families of results are very "local" with respect to the boundary of the optimal shape. Indeed, each proof uses test functions v ∈ W 1,∞ whose support may be as small as we want and only covers the portion of the boundary that we want to analyze. To show how this can be exploited, we give now -without proof-, an example of a result which can be reached by the same two methods when applied locally. Let us consider the following optimization problem where G : (θ, u, q) ∈ T × R × R → R is assumed to be of class