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We study the behavior of the electromagnetic field in a biological cell modelled by a
medium surrounded by a thin layer and embedded in an ambient medium. We derive

approximate transmission conditions in order to replace the membrane by these condi-
tions on the boundary of the interior domain. Our approach is essentially geometric and
based on a suitable change of variables in the thin layer. Few notions of differential calcu-

lus are given in order to obtain the first order conditions in a simple way, and numerical
simulations validate the theoretical results. Asymptotic transmission conditions at any
order are given in the last section of the paper. This paper extends to the time-harmonic

Maxwell equations the previous works presented in [30, 33, 31, 6].
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1. Introduction and motivations

The electromagnetic modelling of biological cells has become extremely important

since several years, in particular in the biomedical research area. In the simple mod-

els [17, 19], the biological cell is a domain with a thin layer composed of a conducting

cytoplasm surrounded by a thin insulating membrane. When exposed to an electric

field, a potential difference is induced across the cell membrane. This transmem-

brane potential (TMP) may be of sufficient magnitude to be biologically significant.

In particular, if it overcomes a threshold value, complex phenomena such as elec-

tropermeabilization or electroporation may occur [38, 37, 25, 24]. The electrostatic

pressure becomes so high that the thin membrane is locally destructured: some

exterior molecules might be internalized inside the cell. This process holds great

promises particularly in oncology and gene therapy, to deliver drug molecules in

cancer treatment. This is the reason why an accurate knowledge of the distribution

of the electromagnetic field in the biological cell is necessary. Several papers in the

bioelectromagnetic research area deal with numerical electromagnetic modelling of

biological cells [26, 36, 34]. Actually the main difficulties of the numerical computa-

tions lie in the thinness of the membrane (the relative thickness of the membrane is
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one thousandth of the cell size) and in the high contrast of the electromagnetic pa-

rameters of the different cell constituents. We present here an asymptotic method to

replace the thin membrane by appropriate transmission conditions on the boundary

of the cytoplasm.

In previous papers [30, 33, 31, 6], an asymptotic analysis is proposed to com-

pute the electric potential in domains with thin layer, using the electroquasistatic

approximationa. However it is not clear whether the magnetic effects of the field

may be neglected. This is the reason why we present in this paper an asymptotic

analysis for the time-harmonic Maxwell equations in a domain with thin layer. Our

analysis is close to those performed in [30, 33, 31]. Roughly speaking, it is based

on a suitable change of variables in the membrane in order to write the explicit

dependence of the studied differential operator in terms of the small parameter (the

thinness of the membrane). The novelty of the paper lies in the use of differential

form formalism, which seems to be the good formalism to treat Maxwell’s equa-

tions in the time-harmonic regime according to Flanders [18], Warnick et al. [39, 40]

and Lassas et al. [20, 21]. The convenience of this formalism allows to consider the

Helmholtz equation and the Maxwel equations in a similar fashion.

Throughout this paper, we consider a material composed of an interior domain

surrounded by a thin membrane. This material, representing a biological cell, is em-

bedded in an ambient medium submitted to an electric current density. We study

the asymptotic behavior of the electromagnetic field in the three domains (the am-

bient medium, the thin layer and the cytoplasm) as the thickness of the membrane

tending to zero. We derive appropriate transmission conditions at first order on the

boundary of the cytoplasm in order to remove the thin layer from the problem.

Actually, the influence of the membrane is approached by these transmission con-

ditions. To justify our asymptotic expansion, we provide piecewise estimates of the

error between the exact solution and the approximate solution.

The paper is structured as follows. In Section 2, we present the studied problem

in the differential calculus formalism and we state the main results of the paper.

We then provide in Section 3 numerical simulations that validate the theoretical

results. In particular, we demonstrate that for biological cells, the membrane be-

havior dramatically changes with respect to the frequency. More precisely, we show

that if the “thin layer” model presented here is valid for quite large frequencies,

a “very resistive thin layer” model, as described in [32], has to be studied for low

frequencies. Section 4 is devoted to the geometry: we perform our change of vari-

ables and we write the problem in the so-called local coordinates. In Section 5 we

derive formally our asymptotic expansion, which is rigorously proved in Section 6.

In Section 7, we give recurrence formulae to obtain the asymptotic expansion at any

order. The Appendix is devoted to explicit formulae used to derive the conditions.

aThe electroquasistatic approximation consists in considering that the electric field comes from
a potential: E = −∇V . In this approximation the curl part of the electric field vanishes and the
magnetic field is neglected.
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2. Maxwell’s equations using differential forms

In the following we present the conventions of differential calculus formalism used

throughout this paper. We refer the reader to Schwarz [35] and Flanders [18] for

complete surveys of the differential calculus.

Notation 2.1. Let p equal 2 or 3 and let k be an integer smaller than p. For a

compact, connected and oriented Riemanian manifold of dimension p, (M, g), of R3

we denote by Ωk(M) the space of k–forms defined on M .

• The exterior product between two differential forms ω and η is denoted by ω ∧ η.
• The inner product on Ωk(M) is denoted by

〈
·, ·
〉
Ωk .

• The Hodge star operator is denoted by ⋆.

• The interior product of a differential form ω with a smooth vector field Y is

written int(Y )ω.

• The L2-scalar product of two k–differential forms u and v is defined by

(u, v)L2Ωk(M) =

∫

M

〈
u, v
〉
Ωk dvolM ,

and ‖ · ‖L2Ωk(M) denotes the induced norm.

The exterior differential and codifferential operators are respectively denoted by d,

δ. The Laplace-Beltrami operator ∆ is defined by ∆ = −dδ − δd.

L2Ωk(M) is the space of the square integrable k− forms of M while for s ∈ R,

HsΩk(M) is the usual Sobolev space of k-forms. Let HΩk(d,M) and HΩk(δ,M)

denote

HΩk(d,M) =
{
ω ∈ L2Ωk(M) : dω ∈ L2Ωk+1(M)

}
, (2.1)

HΩk(δ,M) =
{
ω ∈ L2Ωk(M) : δω ∈ L2Ωk−1(M)

}
, (2.2)

that are Hilbert spaces when associated with their respective norms

‖ω‖HΩk(d,M) = ‖ω‖L2Ωk(M) + ‖dω‖L2Ωk+1(M),

‖ω‖HΩk(δ,M) = ‖ω‖L2Ωk(M) + ‖δω‖L2Ωk−1(M).

We also denote by HΩk(d, δ,M) the space HΩk(d,M)∩HΩk(δ,M) equipped with

the norm

‖ω‖HΩk(d,δ,M) = ‖ω‖L2Ωk(M) + ‖dω‖L2Ωk+1(M) + ‖δω‖L2Ωk−1(M).

Hs(M) and L2(M) denotes the respective spaces HsΩ0(M) and L2Ω0(M). Observe

that for k = 0 (i.e. for functions), the space HΩ0(d, δ,M) is exactly the usual

Sobolev space H1(M), while HΩ1(d, δ,M) cannot be identified to
(
H1(M)

)3
.

2.1. Statement of the problem

Let Γ be a compact oriented surface of R3 without boundary. Consider the smooth

connected bounded domain Oc enclosed by Γ; Oc is surrounded by a thin layer Oε
m

with constant thickness ε. This material with thin layer is embedded in an ambient
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smooth connected domain Oε
e
with compact oriented boundary. We denote by O

the ε-independent domain defined by

O = Oε
e
∪ Oε

m
∪ Oc.

Moreover, we denote by Γε the boundary of Oc ∪ Oε
m
(see Fig. 1). Let µc, µm and µe

be three positive constants and let qe, qc and qm be three complex numbers. Define

the two piecewise functions µ and q on O by

∀x ∈ O, µ(x) =





µe, in Oε
e
,

µm, in Oε
m
,

µc, in Oc,

∀x ∈ O, q(x) =





qe, in Oε
e
,

qm, in Oε
m
,

qc, in Oc.

The function µ is the dimensionless permeability of O while the function q denotes

its dimensionless complex permittivityb.

O

Oε
e

(µe, qe)

Oc
(µc, qc)

Oε
m

Γ

Γε

(µm, qm)

Fig. 1. Geometry of the model

Let d0 > 0 be such that for each point q of Γ, the normal lines of Γ passing

through q, with center at q and length 2d0 are disjoints. In the following, we suppose

that ε ∈ (0, d0). We denote by Od0
e

the set of points x ∈ Oε
e
at distance greater than

d0 of Γ. We suppose that the current density J is imposed to the ambient medium, J

being compactly supported in Od0
e
. Throughout the paper the following hypothesis

holds.

Hypothesis 2.2. (i) There exists c1, c2 > 0 such that for all x ∈ O,

c1 6 −ℑ(q(x)) 6 c2, 0 < ℜ(q(x)) 6 c2. (2.3)

bUsing the notations of the electrical engineeering community, q = ω2
(
ǫ− i σ

ω

)
, where ω is the

frequency, ǫ the permittivity and σ the conductivity of the domain [3].
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(ii) The source current density J is a 1–form that satisfies

supp(J) ⋐ Od0

e
, J ∈ L2Ω1 (O) , δJ = 0, in O.

Maxwell’s equations describe the behavior of the electromagnetic field in O. De-

note by E and H the 1–forms representing respectively the electric and the magnetic

fields in O in time-harmonic regime. Denote by N∂O the normal vector field of ∂O
outwardly directed from O. In the following, the normal vector field and the corre-

sponding normal 1–form are identified. Maxwell’s equations in the time-harmonic

regime write [20, 21, 39, 4] (with i2 = −1)

dE = i ⋆ (µH) , dH = −i ⋆ (qE+ J) , in O, (2.4a)

N∂O ∧ E|∂O = 0, on ∂O. (2.4b)

Using the idempotence of ⋆ in R3, we may infer the vector wave equation on E

⋆ d

(
1

µ
⋆ dE

)
− qE = J, in O, N∂O ∧ E|∂O = 0, on ∂O.

Since µ is a scalar functionc of O, we infer

δ

(
1

µ
dE

)
− qE = J, in O, N∂O ∧ E|∂O = 0, on ∂O. (2.5)

Problem (2.5) is the so-called vector wave equation in the time-harmonic regime [3].

Observe the power the differential form formalism. In equation (2.5) suppose now

that E and J are functions. Since the coderivative applied to the functions identically

vanishes, equation (2.5) is nothing but the well-known Helmholtz equation:

− div

(
1

µ
∇E

)
− qE = J, in O, E|∂O = 0, on ∂O,

therefore using differential forms enables to link the Helmholtz equation and the

vector wave equations in one formalism.

Remark 2.3. Denote E in Euclidean coordinates by Exdx + Eydy + Ezdz and

similarly for H and J. Problem (2.4) and problem (2.5) write now

curlE = iµH, curlH = −i (qE+ J) , in O, N∂O × E|∂O = O, on ∂O,
and

curl

(
1

µ
curlE

)
− qE = J, in O, N∂O × E|∂O = 0, on ∂O,

which is the tensorial formulation of the vector wave equation in the time-harmonic

regime. △
The aim of this paper is to derive transmission conditions equivalent to Oε

m
in

order to avoid its meshing. Hereafter, it is demonstrated that writing these condi-

tions with differential forms enables to consider similarly the Helmholtz equation

cIf µ is a tensor the previous equation (2.5) becomes δ
(
⋆µ−1 ⋆ dE

)
− qE = J.
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and the vector wave equations. For the sake of clarity, and since the case of functions

is much simpler, we only provide the detailed proofs of the results for 1–forms (i.e.

for the vector wave equation), and we let the reader verify that the corresponding

results hold for the Helmholtz equation.

2.2. Regularized variational formulation.

Our functional space X(q) is defined as

X(q) =
{
u ∈ HΩ1(d,O), δ(qu) ∈ L2(O), N∂O ∧ u|∂O = 0

}
,

associated with its graph norm

‖u‖X(q) = ‖u‖HΩ1(d,O) + ‖δ(qu)‖L2(O).

Define the sesquilinear form aq in X(q) adapted to a regularized variational formu-

lation of the problem (2.5) by

aq(u, v) =

∫

O

(
1

µ

〈
du, dv

〉
Ω2 +

〈
δ(qu), δ(qv)

〉
Ω0 − q

〈
u, v
〉
Ω1

)
dvolO .

Using inequalities (2.3), the following lemma holds.

Lemma 2.4. There exists a constant c0 > 0 and α ∈ C such that for all ε ∈ (0, d0),

ℜ
(
αaq(u, u)

)
> c0‖u‖2X(q). (2.6)

For all ε ∈ (0, d0), we consider the variational problem: find E ∈ X(q) such that

∀u ∈ X(q), aq(E, u) =

∫

O

〈
J, u
〉
Ω1 dvolO . (2.7)

Using Hypothesis 2.2 the following theorem holds.

Theorem 2.5 (Equivalent problems). Let Hypothesis 2.2 hold.

(i) There is at most one solution E ∈ X(q) to problem (2.7).

(ii) The solution E satisfies (2.5) in a weak sense

δdE− µqE = J, in Oε
e
∪ Oε

m
∪ Oc, N∂O ∧ E|∂O = 0,

with the divergence condition

δ(qE) = 0, in O (2.8)

and the following equalitiesd hold for S ∈ {Γ,Γε}
[
1

µ
int(NS )dE

]

S

= 0, [NS ∧ E]
S

= 0, [q int(NS )E]
S

= 0. (2.9)

dFor an oriented surface S without boundary and for a differential form u defined in a neigh-
borhood of S we denote by [u]

S
the jump across S . NS denotes the normal of S outwardly

directed from the domain enclosed by S to the exterior.
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(iii) If (E,H) ∈
(
L2Ω1(O)

)2
is solution to problem (2.4) then E ∈ X(q) sat-

isfies (2.5). Conversely, if E ∈ X(q) satisfies (2.5) then the couple of 1–forms

(E,−(i/µ) ⋆ dE) belongs to
(
L2Ω1(O)

)2
and satisfies problem (2.4).

Remark 2.6. For the Helmholtz equation, the appropriate space is H1(O). Since

δf ≡ 0 for any function f , equation (2.7) is exactly the variational formulation

of (2.5) applied to 0–form. Therefore the Lax-Milgram lemma ensures straightfor-

wardly the equivalences of the above theorem, replacing 1–forms by 0–forms.

Proof. Unlike Remark 2.6, when dealing with 1–forms, equation (2.7) is not the

variational formulation of equation (2.5), hence the theorem is not obvious. Its proof

is based on an idea of Costabel et al..

(i) According to estimate (2.6), a straightforward application of the well-known

Lax-Milgram theorem leads to existence and uniqueness of the solution E to the

regularized variational problem (2.7).

(ii) The proof is precisely worked out in full details in [7, 8] in a very slightly different

configuration. We just give here the sketch of the proof. The first transmission

condition of (2.9) easily come from the Green formula (see Schwarz [35]) and since

E ∈ X(q), then NS ∧ E and q int(NS )E are continuous across S ∈ {Γ,Γε}.
It remains to prove that E satisfies δ(qE) = 0. Denote by H∆(O) the space

of functions φ ∈ H1
0 (O) such that δ(qdφ) belongs to L2(O). Integrations by parts

imply

∀φ ∈ H∆(O), aq(E, dφ) =

∫

O

〈
δ(qE), δ(qdφ) + φ

〉
Ω0 dvolO .

Since ℑ(q) ≤ −c1 < 0, the function δ(qdφ)+φ runs through the whole L2(O) space

as φ runs through H∆(O). Moreover, since δ(J) vanishes we have
∫

O

〈
J, dφ

〉
Ω1 dvolO = 0,

from which we infer that δ(qE) identically vanishes in L2(O) according to (2.7).

Therefore the solution E of problem (2.7) solves problem (2.5).

(iii) If (E,H) solves problem (2.4) we straightforwadly infer (2.5), since ⋆ is idem-

potent and since µ is a scalar function. Conversely, defining H by

H = − i

µ
⋆ dE,

we infer that (E,H) solves problem (2.4).

Denote by Oe the domain Oe = O \ Oc. Define µ̃ and q̃ by

∀x ∈ O, µ̃(x) =

{
µc, in Oc,

µe, in Oe,
∀x ∈ O, q̃(x) =

{
qc, in Oc,

qe, in Oe.
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Let E0 ∈ X(q̃) be the “background” solution defined by

∀u ∈ X(q̃), aq̃(E
0, u) =

∫

O

〈
J, u
〉
Ω1 dvolO,

which means in a weak sense

δ

(
1

µ̃
dE0

)
− q̃ E0 = J, in O, N∂O ∧ E

0|∂O = 0. (2.10)

We have the following regularity result.

Proposition 2.7. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and J belong to

HsΩ1(Od0
e
). Then the 1-form E0 exists and is unique in X(q̃). Moreover, denoting

by Ec,0 and Ẽe,0 its respective restrictions to Oc and Oe, we have

Ẽ
e,0 ∈ H2+sΩ1 (Oe) , E

c,0 ∈ H2+sΩ1 (Oc) .

Proof. The 1–form E0 satisfies (2.10). The proof of the existence and the unique-

ness of E0 in X(q̃) is very similar to the one performed in Theorem 2.5, by replacing

X(q) by X(q̃) and aq by aq̃. Since δJ vanishes, we infer δ(q̃E0) = 0 and therefore

E0 satisfies

−∆E
0 − µ̃q̃ E0 = J, in Oe ∪ Oc, N∂O ∧ E

0|∂O = 0,

with transmission conditions
[
NΓ ∧ dE0

]
Γ
= 0,

[
q̃ int(NΓ)E

0
]
Γ
= 0,

[
1

µ̃
int(NΓ)dE

0

]

Γ

= 0,
[
δ(q̃E0)

]
Γ
= 0.

The same calculations as performed in Proposition 2.1 of Costabel et al. [8] im-

ply that the set of the above transmission and boundary conditions coverse the

Laplacian in Oc and in Oe, in the sense of Definition 1.5 at page 125 of Lions and

Magenes [23]. Therefore we infer the piecewise elliptic regularity of E0, which ends

the proof of the lemma.

The following estimates, which ensure that E0 is the zeroth order approximation

of E, hold.

Proposition 2.8. Under Hypothesis 2.2, there exists C > 0 such that for any small

parameter ε ∈ (0, d0)

‖E‖X(q) 6 C, (2.11)

‖E− E
0‖HΩ1(d,O) 6 C

√
ε. (2.12)

eAccording to the appendix of the paper of Li and Vogelius [22] the regularity of E0 may also be
obtained by using a reflection to reduce the problem to an elliptic system with complementing

boundary conditions in the sense of Agmon et al.[1, 2].
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Proof. Using (2.6), estimates (2.11) are obvious since ℑ(q) 6 −c1 < 0. Prove

now (2.12). We first mention that E0 belongs to H2Ω1(̟) for ̟ ∈ {Oe,Oc}, ac-
cording to Proposition 2.7; hence E0 ∈ L∞Ω1(̟) and dE0 ∈ L∞Ω2(̟). Denoting

by U = E− E0 we infer
∫

O

1

µ
〈dU, dU〉Ω2 − q〈U,U〉Ω1 dvolO = qm

∫

Oε
m

〈E0,U〉Ω1 dvolOε
m

− 1

µm

∫

Oε
m

〈dE0, dU〉Ω2 dvolOε
m
.

Therefore using (2.11) and using the assumption (2.3) on q, we infer

‖dU‖L2Ω2(O) + ‖U‖L2Ω1(O) 6 C
√
ε.

2.3. Main result

Consider the inclusion J : Γ −→ O, and J ∗ its pull-back J ∗ : Ωk(O) −→ Ωk(Γ), for

k ∈ {0, 1, 2, 3}. Denote by dΓ and δΓ the exterior differential and the codifferential

operators defined on Ωk(Γ). Define S and T byf

S = (qm − qe)J ∗(E0) +

(
1

µm

− 1

µe

)
δΓdΓ

(
J ∗(E0)

)
, (2.13)

T =

(
1

qm
− 1

qe

)
d
(
int(NΓ)

(
q̃E0

)
|Γ
)
+ (µm − µe) int(NΓ)

(
1

µ̃
dE0

)∣∣∣∣
Γ

. (2.14)

The explicit expressions of S and T in local coordinates are given in Section 6. Let

E1 be the 1–forms defined by

δdE1 − µ̃q̃E1 = 0, in Oe ∪ Oc, N∂O ∧ E
1|∂O = 0,

with the following transmission conditions on Γ

1

µe

int(NΓ)dE
1|Γ+ − 1

µc

int(NΓ)dE
1|Γ− = S, (2.15)

NΓ ∧ E
1|Γ+ −NΓ ∧ E

1|Γ− = NΓ ∧ T. (2.16)

The aim of this paper is to prove the following theorem.

Theorem 2.9. Under Hypothesis 2.2, if moreover the current density J belongs to

H3Ω1(Od0
e
), there exists ε0 > 0 and a constant C, independent on ε such that

∀ε ∈ (0, ε0), ‖E− (E0 + εE1)‖HΩ1(d,δ,Oc) 6 Cε2,

and for any domain ̟ compactly embedded in Oe, there exists ε̟ > 0 and a constant

C̟ > 0 independent on ε such that

∀ε ∈ (0, ε̟), ‖E− (E0 + εE1)‖HΩ1(d,δ,̟) 6 C̟ε
2.

fFor a sufficiently smooth k-form φ defined in O, we denote by φ|Γ its restriction to Γ. In addition,
if φ is regular in Oe and Oc but not in O, we denote by φ|Γ+ (resp. φ|Γ− ) the restriction to Γ of

φ from the domain Oe (resp. Oc).
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Remark 2.10. It is possible to give a precise behavior of E in a neighborhood of

Γ by defining a 1–form in the thin membrane (see Theorem 6.3). △

In this paper we choose to deal with differential forms, in accordance with Flan-

ders [18]. This point of view has the convenience of considering both electric and

magnetic fields as 1–forms, i.e. they are physically similar in accordance with elec-

trical engineering considerations [3]. We point out few arguments to enlight the

convenience of the differential calculus formalism.

(i) Anisotropy. For sake of simplicity, we deal here with isotropic materials, al-

though the anisotropic case may be interesting for applications. In this case, µ and

q are matrices and the vector wave equation becomes

δ
((
⋆µ−1⋆

)
dE
)
− qE = J, in O N∂O ∧ E|∂O = 0, on ∂O,

and the following transmission conditions hold on S ∈ {Γ,Γε}
[
int(NS )

(
⋆µ−1 ⋆ dE

)]
S

= 0, [NS ∧ E]
S

= 0.

To obtain the approximate transmission conditions equivalent to the thin layer, we

just have to write the tensor ⋆µ−1⋆ in local coordinates, with the help of the explicit

formulae given in Appendix. The calculations are more tedious but we are confident

that the reader has all the tools to perform the analysis.

(ii) Non-constant thickness. We consider here a thin layer with constant thick-

ness. As mentionned in Section 1 a high electric field may destabilize the cell mem-

brane, possibly leading to the apparition of pores. Hence the thickness of the mem-

brane is no longer constant with respect to the tangential variable. As performed

in [31], the change of variables would lead to additional terms in the transmission

conditions. These terms would come from the fact that the coefficients gi3 of the

matrix (gij) given in Section 4 by (4.1) do not vanish. The derivation of the asymp-

totics would be more tedious but, once again, we are confident that all the tools are

given in the present paper to perform the calculation. In the case of a rough thin

layer, the present analysis may not be applied. We have to introduce appropriate

correctors as performed in [6].

(iii) Link with the Helmholtz equation. As previously mentionned, equa-

tions (2.5) are well-defined if E and J are functions, since operators d and δ are

defined for k–forms and the exterior product between a 1–form and a function is

also well-defined. Moreover, since δ acting on functions is zero, the operator −δd co-

incides with Laplace-Beltrami operator ∆. In addition, the above differential forms

S and T are well-defined even if E0 is a function, and in this case we have

S = (qm − qe)E
0|Γ +

(
1

µm

− 1

µe

)
δΓdΓ

(
E
0
)
|Γ,

T =
µm − µe

µc

int(NΓ)
(
dE0

)∣∣
Γ−

,

since the interior product int(NΓ) acting on functions is zero. Writing our asymptotic

transmission conditions for functions in tensor calculus formalism, we infer that the
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function u solution to

−∇ ·
(
1

µ
∇u
)
− qu = j, in O, u|∂O = 0,

is approached by u0 + εu1 where (uk)k=0,1 satisfy

−∆uk − µ̃q̃uk = δk0 j, in Oc ∪ Oe, uk|∂O = 0,

with the following transmission conditions

[u0]Γ = 0,

[
1

µ̃
∂nu

0

]

Γ

= 0, u1|Γ+ − u1|Γ− =
µm − µe

µc

∂nu
0|Γ− ,

1

µe

∂nu
1|Γ+ − 1

µc

∂nu
1|Γ− = (qm − qe)u

0|Γ −
(

1

µm

− 1

µe

)
∆Γu

0|Γ.

This approximation is rigorously proved in [29] (see equations (4) page 4 of [29]).

Therefore the differential calculus provides transmission conditions that are valid

for the Helmholtz equation and the Maxwell equations. It is also possible to derive

our asymptotics by tensor calculus considerations, as used in linear elasticity of thin

shells [10, 15, 16]. This approach is worked out in full details in the thesis [28] of the

second author and in [5, 9].

Remark 2.11. [The tensor calculus formulation] Since we are confident that our

result might be useful for bioelectromagnetic computations, and since the electrical

engineering community may feel uncomfortable with the differential calculus formal-

ism, we translate our result with the help of “usual” differential operators. Denote

by ∇Γ and ∇Γ· the respective gradient and divergence operators on Γ. Define RotΓ
and rotΓ by

∀f ∈ C∞(Γ), RotΓ f = (∇Γf)×NΓ,

∀f ∈ (C∞(Γ))
3
, rotΓ f = ∇Γ · (f ×NΓ) .

Then (Ek)k=0,1 (seen as vector field) satisfies the following equations

curl curlEk − µ̃q̃Ek = δk0J, in Oe ∪ Oc, N∂O × E
k|∂O = 0,

with the following transmission conditions on Γ

NΓ × E
0|Γ+ = NΓ × E

0|Γ− ,
1

µe

(
NΓ × curlE0

)
|Γ+ =

1

µc

(
NΓ × curlE0

)
|Γ− , (2.17)

NΓ × E
1|Γ+ ×NΓ = NΓ × E

1|Γ− ×NΓ + qc

(
1

qm
− 1

qe

)
∇Γ

(
E
0|Γ− ·NΓ

)

+
µm − µe

µc

(
curlE0 ×NΓ

)
|Γ− ,

(2.18)

1

µe

(
curlE1 ×NΓ

)
|Γ+ =

1

µc

(
curlE1 ×NΓ

)
|Γ− + (qm − qe)

(
NΓ × E

0 ×NΓ

)
|Γ

+

(
1

µm

− 1

µe

)
RotΓ rotΓ

(
NΓ × E

0 ×NΓ

)
|Γ.
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△

Remark 2.12. [The impedance boundary condition of Engquist–Nédélec [14]] Let

J be supported in Oc (and be divergence free) and suppose that Oε
e
is a perfectly

conducting domain. Therefore qe = +∞ and µe = 0. An homogeneous Dirichlet

condition is then imposed on Γε

NΓε × E|Γε = 0.

We are now in the same configuration as the problem studied by Engquist and

Nédélec [14], page 18. According to (2.17)–(2.18), writing the condition satisfied

by E0 + εE1 and neglecting the terms of order ε2, we infer the following boundary

condition for the first-order approximation Ea of the field

NΓ × Ea|Γ− ×NΓ = −ε
(
qc
qm

∇Γ (Ea|Γ− ·NΓ) +
µm

µc

(curlEa ×NΓ) |Γ−

)
.

According to Maxwell’s equations, curlE = iµcH and curlH = −iqcE. Therefore

qcE ·NΓ = i curlH ·NΓ. The definition of ∇Γ· (see for example equation (2.22) page

5 of [14]) leads tog

∇Γ · (H×NΓ) = curlH ·NΓ = −iqcE ·NΓ, (2.19)

and the impedance boundary condition follows

NΓ × Ea|Γ− ×NΓ = −iε

(
1

qm
∇Γ (∇Γ · (Ha ×NΓ)) + µm (Ha ×NΓ) |Γ−

)
.

Observe that this is the impedance boundary condition given in [14] page 19, since

they took the normal interior to their domain Ω∞, hence n = −NΓ. △

3. Numerical simulations

We have tested the model when Γ is a sphere of radius 0.04. The outside bound-

ary of O is a sphere of radius 0.08. We impose a Silver-Muller condition on this

outer boundary. Hexahedral mesh has been used for experiments, as presented in

Fig. 2. The current source is a Gaussian source polarized along x-coordinate and

centered around the point (0, 0, 0.06). The exact solution is computed numerically

on a similar mesh, where a thin layer made of hexahedra is inserted between the

two domains. Edge finite elements of fourth order (Nedelec’s first family) are used

with curved elements in order to correctly approximate the geometry. We have ob-

served that the numerical error between fourth order and fifth order is below 0.1

%. According to [17], we chose the biological electrical parameters :

εm = 10, εe = εc = 80, σm = 10−5, σe = σc = 0.5, (3.1)

gUsing differential forms and since dN = 0 equality (8.1) implies

int(NΓ)E
0|Γ− = −

1

iqc
int(NΓ)δ

(
⋆H0

)
= −

1

iqc
δΓ

(
int(N) ⋆ H

0|Γ
)
, which is exactly equality (2.19).
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Fig. 2. Hexahedral mesh used for experiments.

and the frequency is equal to 1.2 GHz. The numerical values of E0 and E1 are

displayed in Fig. 3. We have displayed the convergence of the model in Fig. 4.

Fig. 3. Real part of the electric field (x-component) for E0 (left) and E1 (right).

Observe that the numerical convergence rate, which is of order ε2, coincides with

the theory for small values of ε only. This is in accordance with the assumption

“ε goes to zero” to be imposed, since at the crossingpoint of Fig. 4, ε equal 0.001

which is not small compared with the sphere radius of 0.04.

In addition, the frequency range for which the thin layer model is valid has

been studied. Actually, observe that in (3.1), the cell membrane conductivity is

very low compared with the outer and inner conductivities, while the permittivity

of the three domains are quite similar, compared with the membrane thickness.

Moreover, for large frequency, the displacement currents are dominant, meaning that

the permittivities have to be mainly considered. Therefore, for large frequencies,

the cell is a soft contrast material with a thin layer, and the theroretical results
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Fig. 4. Relative error between the model and the exact solution.

presented in this paper hold. However, if the frequency dramatically decreases, the

conduction currents dominate. In this case, the conductivities have to be used,

and since the membrane conductivity is very low, the cell is then a high contrast

medium with a thin layer: two small parameters are then involved in the equation,

and the asymptotic analysis presented here is no longer valid. This phenomenon is

illustrated by Fig. 5, where we have checked the accuracy of the model versus

the frequency when ε is chosen constant, and equal to 0.0002: above 100MHz,

the approximate transmission conditions precisely replace the membrane but below

10MHz, the conditions are no longer valid and another analysis has to be performed.

Observe that above 2.108 Hz both errors increase: this is due to the fact that the

membrane thickness ǫ remains constant while the wavelength decreases.
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Fig. 5. Relative error between the model and the exact solution versus frequency.
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4. Geometry

Let VΓ be the tubular open neighborhood of Γ composed by the points at distance

d0 of Γ. In the following, it will be convenient to write the involved differential form

E in local coordinates in the tubular neighborhood VΓ of Γ. We denote by V ε
e

and

Vc the respective intersections VΓ ∩ Oε
e
and VΓ ∩ Oc.

4.1. Parameterization of Γ.

Let xT = (x1, x2) be a system of local coordinates on Γ = {ψ(xT)} . By abuse of

notations, we denote by xT ∈ Γ the point of Γ equal to ψ(xT). In the (x1, x2)–

coordinates, we denote by NΓ the outward vector normal to Γ defined by

NΓ =
∂1ψ ∧ ∂2ψ
‖∂1ψ ∧ ∂2ψ‖

,

and we define by Φ the following map

∀(xT, x3) ∈ Γ× R, Φ(xT, x3) = ψ(xT) + x3NΓ(xT).

Notation 4.1. In the following ∂j stands for ∂xj for j = 1, 2, 3. Moreover we use

the summation indices convention aibi =
∑

i=1,2,3 aibi. Observe that according to

our change of variables, xT denotes the tangential variables and x3 is the normal

direction. In order to stress the difference between xT and x3, the Greek letters α

and β (and possibly γ, ι, κ and λ) denote the indices in {1, 2}, while the letters

i, j, k denote the indices in {1, 2, 3}. Eventually it is convenient to introduce the

Levi-Cività symbol ǫijk defined by

ǫijk =





+1, if {i, j, k} is an even permutation of {1, 2, 3},
−1, if {i, j, k} is an odd permutation of {1, 2, 3},
0, if any two labels are the same.

According to the definition of d0, the tubular neighborhood VΓ of Γ may be

parameterized by

VΓ = {Φ(xT, x3), (xT, x3) ∈ Γ× (−d0, d0)} .

The (xT, x3)–system of coordinates is the so-called local coordinates of VΓ. The

Euclidean metric of VΓ written in (xT, x3)–coordinates is given by the following

matrix (gij)i,j=1,2,3

(gij)i,j=1,2,3 =



g11 g12 0

g12 g22 0

0 0 1


 , (4.1)

where the coefficient gαβ equals gαβ = 〈∂αΦ, ∂βΦ〉. Here 〈·, ·〉 denotes the Euclidean
scalar product of R3. Denote by (gij) the inverse matrix of (gij) , and by g the

determinant of (gij). The coefficients gαβ might be written with the help of the
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coefficients of the first, the second and of the third fundamental forms of Γ in the

basis (∂1ψ, ∂2ψ) (see Do Carmo [11])

gαβ(xT, x3) = g0αβ(xT)− 2x3bαβ(xT) + x23cαβ(xT).

The mean curvature H of Γ equals

H = −1

2

∂3
(√
g
)

√
g

∣∣∣∣∣
x3=0

. (4.2)

4.2. The transmission conditions in local coordinates

In the (xT, x3)–coordinates, write E = Eidx
i. NΓ is the outward normal field of

Γ, which is identified to the 1–form dx3. Applying straightforward the formulas of

Appendix we infer

NΓ ∧ E = Eαdx
3dxα, int(NΓ)E = E3, int(NΓ)dE = (∂3Eα − ∂αE3) dx

α.

Hence transmission conditions (2.9) write for h ∈ {0, ε}

[Eα]x3=h = 0,

[
1

µ
(∂3Eα − ∂αE3)

]

x3=h

= 0, [q E3]x3=h = 0. (4.3)

4.3. Rescaling in the thin layer

Denote by Ee

j and by Ec

j the respective restrictions of Ej to V ε
e

and to Vc. In Oε
m

we perform the rescaling x3 = εη, η ∈ (0, 1), and we denote by Em

j , by g
m

ij and by

gm the following functions

∀η ∈ (0, 1),





Em

j (xT, η) = Ej(xT, εη)

gmij(xT, η) = gij(xT, εη), for i, j = 1, 2, 3

gm(xT, η) = g(xT, εη)

.

Observe that gmαβ(xT, η) = g0αβ(xT) − 2εηbαβ(xT) + ε2η2cαβ(xT), hence for l ∈ N,

∂lηg
m

αβ = O(εl), while ∂lαg
m

ικ = O(1). Denote by

δdE = ami (xT, η)dx
i, in Oε

m
.

Applying formula (8.5) with the metric given by (4.1), and performing the rescaling

x3 = εη, we infer,

amλ = − 1

ε2
∂2ηEm

λ +
1

ε

(
∂η∂λEm

3 + ǫαβ3ǫικ3
gmλι√
gm

∂η
ε

(
gmακ√
gm

)
∂ηEm

β

)

+ ǫαβ3ǫικ3
gmλι√
gm

(
∂κ

(
1√
gm
∂αEm

β

)
− ∂η

ε

(
gmακ√
gm

)
∂βEm

3

)
,

(4.4)

am3 =
1

ε
ǫαβ3ǫικ3∂κ

(
gmαι√
gm
∂ηEm

β

)
+ ǫαβ3ǫικ3∂α

(
gmβι√
gm
∂κEm

3

)
. (4.5)
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The divergence free condition δEm = 0 with equality (8.3) writes then

1

ε
∂ηEm

3 +
1√
gm

∂η
ε
(
√
gm)Em

3 + ǫαβ3ǫικ3
1√
gm
∂α

(
gmκβ√
gm

Em

ι

)
= 0. (4.6)

The transmission conditions (4.3) in x3 = ε become

1

µe

(∂3Eλ − ∂λE3) |x3=ε+ =
1

µm

(
1

ε
∂ηEm

λ − ∂λEm

3

)∣∣∣∣
η=1

(4.7a)

Eλ|x3=ε+ = Em

λ |η=1. (4.7b)

The transmission conditions (4.3) in x3 = 0 write

1

µm

(
1

ε
∂ηEm

λ − ∂λEm

3

)∣∣∣∣
η=0

=
1

µc

(∂3Eλ − ∂λE3) |x3=0− (4.8a)

Em

λ |η=0 = Eλ|x3=0− , (4.8b)

and the transmission conditions for the normal components E3 are

qeE3|x3=ε+ = qmEm

3 |η=1, qmEm

3 |η=0 = qcE3|x3=0− . (4.9)

5. Ansatz and formal expansion

We now set our Ansatz. We look for solutions written as formal series in ε

E|Oε
e
= Ẽ

e,0|Oε
e
+ εẼe,1|Oε

e
+ · · · , in Oε

e
, (5.1a)

E|Oc
= E

c,0 + εEc,1 + · · · , in Oc, (5.1b)

and in the cylinder Γ× (0, 1),

E|Oε
m
◦Φ(xT, εη) = Em,0(xT, η) + εEm,1(xT, η) + · · · , (5.1c)

where the 1–forms (Ẽe,n)n∈N, and (Ec,n)n∈N are defined in ε–independent domains.

We emphasize that the sequence (Ẽe,n)n∈N is defined in (Oε
m
)
N
even if its associated

serie does not approach E in the thin layer.

Remark 5.1. The 1–forms (Em,n)n∈N are profiles defined in the cylinder Γ×(0, 1);

note the difference with the 1–forms (Ec,n)n∈N and (Ẽe,n)n∈N. These profiles are the

key-point of the following asymptotic expansion. △

In VΓ, for n ∈ N, we denote by

Ẽ
e,n = Ẽe,n

i (xT, x3)dx
i, E

c,n = Ec,n
i (xT, x3)dx

i,

Em,n = Em,n
i (xT, η)dx

i, η = x3/ε.

Our aim is to identify the first two terms of the sequences and to estimate the

remainder term. Suppose that for n ∈ N, the forms
(
Ẽe,n

k

)
k=1,2,3

are as regular as

necessary. Using formal Taylor expansion, we infer for l = 0, 1

∂ljẼ
e,n
k |x3=ε+ = ∂ljẼ

e,n
k |x3=0+ + ε∂3∂

l
jẼ

e,n
k |x3=0+ + · · · (5.2)



18 Duruflé, Péron, and Poignard

It is convenient to define En for n ∈ N by

E
n = Ẽ

e,n, in Oe, E
n = E

c,n, in Oc.

We are now ready to derive formally our asymptotics. Replace the coefficients

(Em

j )j=1,···3 and (Ej)j=1,···3 in equations (4.4)–(4.5)–(4.6) and in transmission con-

ditions (4.7)–(4.8)–(4.9) by their respective formal expansion (5.1), and use the

formal Taylor expansion (5.2). Observe that for any n ∈ N, we necessarily have

δdEn − µ̃q̃En = δn0 J, in Oe ∪ Oc, N∂O ∧ E
n|∂O = 0, on ∂O. (5.3a)

Observe that δEn = 0, in Oc ∪ Oe, (5.3b)

since δJ = 0. It remains to build the appropriate transmission conditions by iden-

tifying the terms with the same power of ε.

5.1. Order 0

The term of order -2 in (4.4) vanishes hence ∂2ηEm,0
α = 0. From the divergence free

condition (4.6) we infer ∂ηEm,0
3 = 0. Equality (4.7a) implies ∂ηEm,0

α = 0. Therefore

the coefficients Em,0
j depend only on xT. From (4.7b)–(4.8b)–(4.9) we infer for n =

0, 1

∂nβ Ẽ
e,0
α |x3=0+ = ∂nβE

c,0
α |x3=0− , (5.4a)

qe∂
n
β Ẽ

e,0
3 |x3=0+ = qc∂

n
βE

c,0
3 |x3=0− . (5.4b)

5.2. Order 1

Since ∂ηEm,0
α and the terms of order -1 in (4.4) vanish, we infer

∂2ηEm,1
α = 0. (5.5)

Hence ∂ηEm,1
α is constant with respect to η. Therefore, according to (4.7a)

1

µe

(
∂3Ẽ

e,0
α − ∂αẼ

e,0
3

)
|x3=0+ =

1

µc

(
∂3E

c,0
α − ∂αE

c,0
3

)
|x3=0− . (5.6)

According to (5.3)–(5.4)–(5.6) the 1–forms Ẽe,0 and Ec,0 satisfy the elliptic prob-

lem (2.10). According to (4.8b) and to (4.9), we infer

Em,0
α (xT, η) = Ec,0

α (xT, 0), (5.7a)

Em,0
3 (xT, η) =

qc
qm
Ec,0

3 (xT, 0). (5.7b)

Therefore the terms of order 0 are entirely determined. According to (4.8a), us-

ing (5.7) and since ∂ηEm,1
α does not depend on η according to (5.5), we infer

∂ηEm,1
α (xT, η) =

qc
qm
∂αE

c,0
3 |x3=0− +

µm

µc

(
∂3E

c,0
α − ∂αE

c,0
3

)
|x3=0− . (5.8)
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The transmission conditions follow

Ẽe,1
α |x3=0+ + ∂3Ẽ

e,0
α |x3=0+ = ∂ηEm,1

α + Em,1
α |η=0,

and

Em,1
α |η=0 = Ec,1

α |x3=0− .

Therefore we infer

Ẽe,1
α |x3=0+ − Ec,1

α |x3=0− = ∂ηEm,1
α − ∂3Ẽ

e,0
α |x3=0+ .

Using (5.8) and according to (5.4) and (5.6) we infer

Ẽe,1
α |x3=0+ − Ec,1

α |x3=0− =

(
qc
qm

− qc
qe

)
∂αE

c,0
3 |x3=0−

+
µm − µe

µc

(
∂3E

c,0
α − ∂αE

c,0
3

)
|x3=0− .

(5.9)

The divergence free condition leads to

∂ηEm,1
3 = − 1√

g0
ǫαβ3ǫικ3∂α

(
g0κβ√
g0
Ec,0

ι

)
|x3=0− + 2H

qc
qm
Ec,0

3 |x3=0− , (5.10)

where H is given by (4.2). Transmission condition (4.9) implies

qeẼ
e,1
3 |x3=0+ + qe∂3Ẽ

e,0
3 |x3=0+ = qm∂ηEm,1

3 + qcE
c,1
3 |x3=0− . (5.11)

According to (2.10) Ec,0 satisfy the divergence free condition hence

− 1√
g0
ǫαβ3ǫικ3 ∂α

(
g0κβ√
g0
Ec,0

ι

)∣∣∣∣∣
x3=0−

= ∂3E
c,0
3 |x3=0− − 2H Ec,0

3 |x3=0− , (5.12)

and similarly for Ẽe,0 by replacing Ec,0
i by Ẽe,0

i . From (5.10)–(5.12) we infer

∂ηEm,1
3 = ∂3E

c,0
3 |x3=0− + 2H

(
qc
qm

− 1

)
Ec,0

3 |x3=0− . (5.13)

Moreover using (5.4) in (5.12) we infer

qe∂3Ẽ
e,0
3 |x3=0+ = qe∂3E

c,0
3 |x3=0− − 2H (qe − qc)E

c,0
3 |x3=0− ,

and therefore (5.11) with equality (4.2) implies

qeẼ
e,1
3 |x3=0+ − qcE

c,1
3 |x3=0− = (qm − qe)

1√
g|x3=0

∂3

(√
gẼe,0

3

)∣∣∣∣∣
x3=0+

. (5.14)
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5.3. Order 2

Since ∂ηEm,0
α = 0 we identify the terms in ε2 in (4.4) to infer

∂2ηEm,2
λ = ∂η∂λEm,1

3 + ǫαβ3ǫικ3
g0λι√
g0

{
∂η
ε

(
gmακ√
gm

)∣∣∣∣
η=0

∂ηEm,1
β

+

(
∂κ

(
1√
g0
∂αEm,0

β

)
− ∂η

ε

(
gmακ√
gm

)∣∣∣∣
η=0

∂βEm,0
3

)}
+ µmqm

√
g0Em,0

λ .

(5.15)

Since the right-hand side of the previous equality does not depend on η, we have

1

µe

(
∂3Ẽ

e,1
λ − ∂λẼ

e,1
3

)∣∣∣
x3=0+

− 1

µc

(
∂3E

c,1
λ − ∂λE

c,1
3

)∣∣∣
x3=0−

=
1

µm

(
∂2ηEm,2

λ

− ∂λ∂ηEm,1
3

)
− 1

µe

(
∂23Ẽ

e,0
λ |x3=0+ − ∂λ∂3Ẽ

e,0
3 |x3=0+

)
.

Since δdẼe,0 − µeqeẼ
e,0 = 0, explicit formulae of Appendix imply

∂23Ẽ
e,0
j |x3=0+ =

[
µeqe

√
gẼe,0

j + ∂3∂λẼ
e,0
3 + ǫαβ3ǫικ3

gλι√
g
∂3

(
gακ√
g

)
∂3Ẽ

e,0
β

+ ǫαβ3ǫικ3
gλι√
g

(
∂κ

(
1√
g
∂αẼ

e,0
β

)
− ∂3

(
gακ√
g

)
∂αẼ

e,0
3

)]∣∣∣∣∣
x3=0+

.

According to the transmission condition at the order 0, the following equalities hold

1

µe

(
∂λẼ

e,0
3 − ∂3Ẽ

e,0
λ

)
|x3=0+ =

1

µm

(
∂λEm,0

3 − ∂ηEm,1
λ

)
|η=0 , Ẽe,0

λ |x3=0+ = Em,0
λ |η=0,

hence we infer the following transmission conditions

1

µe

(
∂3Ẽ

e,1
λ − ∂λẼ

e,1
3

)
− 1

µc

(
∂3E

c,1
λ − ∂λE

c,1
3

)
= (qm − qe) Ẽ

e,0
λ |x3=0+

+

(
1

µm

− 1

µe

)
ǫαβ3ǫικ3

gλα√
g
∂β

(
1√
g
∂ιẼ

e,0
κ

)∣∣∣∣∣
x3=0+

.
(5.16)

Therefore E1 satisfies (5.3) for n = 1 with the transmission conditions (5.9)–(5.16)

written in local coordinates. Equalities (5.8)–(5.13) lead to

Em,1
λ (xT, η) = η∂ηEm,1

λ + Ec,1
λ |x3=0− , Em,1

3 (xT, η) = η∂ηEm,1
3 +

qc
qm
Ec,1

3 |x3=0− .

Remark 5.2. The coefficients at order 1 are now uniquely determined. Since

∂ηEm,2
α |η=0 = ∂αEm,1

3 |η=0 −
µm

µc

(
∂αE

c,1
3 − ∂3E

c,1
α

)
|x3=0− ,

∂ηEm,2
λ is uniquely determined by (5.15), namely

∂ηEm,2
λ = η∂2ηEm,2

λ + ∂αEm,1
3 |η=0 −

µm

µc

(
∂αE

c,1
3 − ∂3E

c,1
α

)
|x3=0− . (5.17)
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△

Remark 5.3. Transmission condition (5.14) might be obtained straightforward

from (5.3)–(5.9)–(5.16). Writing δdẼe,1 = ãe,1i dxi and δdEc,1 = ac,1i dxi we infer

ac,13 =
1√
g
ǫαβ3ǫικ3∂α

(
gβκ√
g

(
∂3E

c,1
ι − ∂ιE

c,1
3

))
,

and similarly for ãe,13 by replacing Ec,1 by Ẽe,1. According to (5.16) we have

1

µe

ãe,13 |x3=0+ − 1

µc

ac,13 |x3=0− =
(qm − qe)√

g
ǫαβ3ǫικ3∂α

(
gβκ√
g
Ẽe,1

ι

)∣∣∣∣∣
x3=0+

.

The divergence free property of Ẽe,0 applied in x3 = 0+ implies

1

µe

ae,13 |x3=0+ − 1

µc

ac,13 |x3=0− = −(qm − qe)
1√
g|x3=0

∂3

(√
gẼe,0

3

)
|x3=0+ .

Moreover we have

1

µe

ae,13 |x3=0+ + qeẼ
e,1
3 |x3=0+ =

1

µc

ac,13 |x3=0− + qcE
c,1
3 |x3=0− = 0,

therefore, we infer

qeẼ
e,1
3 |x3=0+ − qcE

c,1
3 |x3=0− = (qm − qe)

1√
g|x3=0

∂3

(√
gẼe,0

3

)∣∣∣∣∣
x3=0+

,

which is exactly condition (5.14). △

6. Justification of the expansion

Let us rewrite the equations satisfied by the first two terms of the asymptotic

expansion of E in terms of differential forms. Denote by S and T the following

forms

S =

(
(qm − qe) Ẽ

e,0
λ |x3=0+ +

(
1

µm

− 1

µe

)
ǫαβ3ǫικ3

gλα√
g
∂β

(
1√
g
∂ιẼ

e,0
κ |x3=0+

))
dxλ

T =

((
qc
qm

− qc
qe

)
∂αE

c,0
3 |x3=0− +

µm − µe

µc

(
∂3E

c,0
α − ∂αE

c,0
3

)
|x3=0−

)
dxα.

The reader easily verifies that the definitions (2.13)–(2.14) coincide with the above

expressions of S and T. The 1–form E0 satisfies (2.10) in a weak sense and E1

satisfy (5.3) with the following transmission conditions on Γ according to (5.9)–

(5.14)

1

µe

int(NΓ)dẼ
e,1|Γ+ − 1

µc

int(NΓ)dE
c,1|Γ− = S, (6.1a)

NΓ ∧ Ẽ
e,1|Γ+ −NΓ ∧ E

c,1|Γ− = NΓ ∧ T. (6.1b)
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Observeh that according to (5.14)

δS = −(qm − qe)
1√
g|x3=0

∂3

(√
gẼe,0

3

)∣∣∣∣∣
x3=0+

. (6.2)

In the cylinder Γ× (0, 1), the 1–form Em,0 equals

Em,0 = Ec,0
α |x3=0−dx

α +
qc
qm
Ec,0

3 |x3=0−dx
3, (6.3)

while the 1–form Em,1 equals

Em,1 =

{
Ec,1

α |x3=0− + η

(
qc
qm
∂αE

c,0
3 +

µm

µc

(
∂3E

c,0
α − ∂αE

c,0
3

))∣∣∣∣
x3=0−

}
dxα

+

{
qc
qm
Ec,1

3 |x3=0− + η

(
∂3E

c,0
3 + 2H

(
qm
qc

− 1

)
Ec,0

3

)∣∣∣∣
x3=0−

}
dx3.

(6.4)

6.1. Regularity results

We now present the regularity of the 1-forms E0 and E1.

Proposition 6.1. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and J belong to

H1+sΩ1(Od0
e
). Then the 1-forms E0 and E1 exist and are unique. Moreover the

following regularity results hold

Ẽ
e,0 ∈ H3+sΩ1 (Oe) , E

c,0 ∈ H3+sΩ1 (Oc) ,

Ẽ
e,1 ∈ H2+sΩ1 (Oe) , E

c,1 ∈ H2+sΩ1 (Oc) .

Proof. All the assertions concerning E0 are proved in the above Proposition 2.7.

Since Ẽe,0 and Ec,0 belong respectively to H3+sΩ1 (Oe) and H
3+sΩ1 (Oc), the forms

S and T belong to the following Sobolev spaces

S ∈ H1/2+sΩ1 (Γ) , T ∈ H3/2+sΩ1 (Γ) .

Moreover according to (6.2), δS ∈ H3/2+s(Γ). Let C ∈ H2+sΩ1 (Oc) such that

δC = 0, in Oc,




NΓ ∧ C|Γ = NΓ ∧ T,
1

µc

int(NΓ)dC|Γ = S,
,

{
qcint(NΓ)C|Γ = δS,

δ(qcC|Γ) = 0.

Observe that δdC−µcqcC belongs to HsΩ1 (Oc) . Denote by U the following 1-form

U = Ẽ
1,e, in Oe, U = E

1,c − C, in Oc.

hSince qeint(NΓ)Ẽ
e,1|Γ+ = int(NΓ)

(
(1/µe)δdẼe,1|Γ+

)
using (8.1) since dNΓ = 0 we infer

int(NΓ)
(
(1/µe)δdẼe,1|Γ+

)
= −δ

(
(1/µe)int(NΓ)dẼ

e,1|Γ+

)
, and similarly for Ec,1. Therefore ac-

cording to (6.1a) we infer qeint(NΓ)Ẽ
e,1|Γ+ − qcint(NΓ)E

c,1|Γ− = −δS, hence(6.2) according
to (5.14).
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Then U satisfies

δdU− µeqeU = 0, in Oe,

δdU− µcqcU = −δdC + µcqcC, in Oc,

N∂O ∧ U|∂O = 0,

with the following homogeneous transmission conditions on Γ

[NΓ ∧ U]Γ = 0,

[
1

µ̃
int(NΓ)dU

]

Γ

= 0, [q̃ int(NΓ)U]Γ = 0.

Arguing as in Proposition 2.7, we infer Proposition 6.1.

The next Proposition gives the regularity of the 1-form Em,0, Em,1 and Em,2. Its

proof easily comes from Proposition 6.1 and from the explicit expressions of the

components of Em,n, for n = 0, 1, 2, given in Section 5.

Proposition 6.2. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and suppose that J

belongs to H1+sΩ1
(
Od0

e

)
. By abuse of notationsi, we define Em,2 using (5.17) by

Em,2 =

∫ x3/ε

0

∂ηEm,2
α dη dxα.

Denote by C∞Ω1
(
[0, 1], H5/2+s−nΩ1 (Γ)

)
is the space of the 1-forms, which

are smooth in the normal variable η, and which belong to H5/2+s−nΩ1 (Γ) at

given η ∈ [0, 1]. Then for n = 0, 1, 2, the profile terms belong to Em,n ∈
C∞Ω1

(
[0, 1], H5/2+s−nΩ1 (Γ)

)
.

6.2. Convergence

Suppose that Hypothesis 2.2 holds, and let the source current density J belong to

H3Ω1
(
Od0

e

)
, with δJ = 0. It is convenient to define

E
e

app = Ẽ
e,0 + εẼe,1, in Oε

e
, E

c

app = E
c,0 + εEc,1, in Oc,

∀
(
xT, x3

)
∈ Γ× (0, ε), Em

app ◦Φ(xT, x3) =
2∑

n=0

εnEm,n(xT, x3/ε),

and let Eapp equal to Ee

app in Oε
e, E

c

app in Oc and to Em

app in Oε
m. According to the

construction of the coefficients (Em,n)n=0,1,2 and using Proposition 6.2, there exists

a 1-form G ∈ C∞Ω1
(
[0, 1], H1/2Ω1 (Γ)

)
, such that

δdEm

app − µmqmE
m

app = εG ◦Φ−1, in Oε
m
,

and for an ε–independent constant C > 0,

sup
η∈[0,1]

‖G(., η)‖H1/2Ω1(Γ) 6 C, sup
η∈[0,1]

‖δG(., η)‖H3/2(Γ) 6 C.

iSince Em,2 vanishes in x3 = 0, it is not the third coefficient of the profile in Γ× (0, 1).
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DefineW byW = E−Eapp and denote byWe,Wm andWc the respective restrictions

of W to Oε
e
, Oε

m
and Oc. In local coordinates, We = W e

i dx
i, Wm = Wm

i dxi and

Wc =W c

i dx
i. Theorem 2.9 is a straightforward corollary of the following result.

Theorem 6.3. There exists an ε–independent constant C > 0 such that

‖We‖HΩ1(d,δ,Oε
e
) +

√
ε‖Wm‖HΩ1(d,δ,Oε

m
) + ‖Wc‖HΩ1(d,δ,Oc) 6 Cε2.

Proof. The 1–form W satisfies

δdW− µqW = ε1Oε
m
G, in Oε

e
∪ Oε

m
∪ Oc, N∂O ∧W

e|∂O = 0, on ∂O,

with the following transmission conditions for S ∈ {Γε,Γ}

[NS ∧W]
S

= − [NS ∧ Eapp]S , (6.5a)
[
1

µ
int(NS )dW

]

S

= −
[
1

µ
int(NS )dEapp

]

S

. (6.5b)

Let Ee

app = Ee,app
i dxi. According to Proposition 6.1 Ee

app ∈ H4Ω1 (Oe). Hence there

exists fα ∈ H1/2(Γ) and gj ∈ H3/2(Γ) such that

(∂3E
e,app
α − ∂αE

e,app
3 ) |x3=ε =

∑

l=0,1

εl∂l3 (∂3E
e,app
α − ∂αE

e,app
3 ) |x3=0+ + ε2fα,

Ee,app
j |x3=ε = Ee,app

j |x3=0+ + ε∂3E
e,app
j |x3=0+ + ε2gj .

Moreover there exists a ε–independent constant C > 0 such that

|fα|H1/2(Γ) 6 C, |gj |H3/2(Γ) 6 C. (6.6)

After simple calculations involving the explicit expressions of (Em,n)n=0,1,2 in local

coordinates, transmission conditions (6.5) are written

1

µe

(∂3W
e

α − ∂αW
e

3 ) |x3=ε+ =
1

µm

(∂3W
m

α − ∂αW
m

3 ) |x3=ε− +
ε2

µe

fα,

1

µc

(∂3W
c

α − ∂αW
c

3 ) |x3=0− =
1

µm

(∂3W
m

α − ∂αW
m

3 ) |x3=0+ ,

W e

α|x3=ε+ =Wm

α |x3=ε− + ε2gα, and W c

α|x3=0− =Wm

α |x3=0+ .

Observe that δW = − ε

µmqm
1Oε

m
δG, and the following equalities hold

qeW
e

3 |x3=ε+ = qmW
m

3 |x3=ε− + qeε
2g3, qcW

c

3 |x3=0− = qmW
m

3 |x3=0+ .

We choose P = pidx
i in H2Ω1(Oε

e
) such that

N∂O ∧ P|∂O = 0, and P|x3=ε+ = gi(xT)dx
i.

Since for ε ∈ (0, d0/2), the domain Oε
e
satisfies Oe \ (VΓ ∩ Oe) ⊂ Oε

e
⊂ Oe, and

according to (6.6), there exists an ε–independent constant C > 0 such that

‖P‖H2Ω1(Oε
e
) 6 C.
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Defining W̃ = W+ ε21Oε
e
P, we infer

δdW̃− µqW̃ = ε21Oε
e
(δdP− µeqeP) + ε1Oε

m
G, in O, N∂O ∧ W̃|∂O = 0, on ∂O,

and the following transmission conditions hold

1

µe

(
∂3W̃

e

α − ∂αW̃
e

3

)
|x3=ε+ =

1

µm

(
∂3W̃

m

α − ∂αW̃
m

3

)
|x3=ε− +

ε2

µe

f̃α,

1

µc

(
∂3W̃

c

α − ∂αW̃
c

3

)
|x3=0− =

1

µm

(
∂3W̃

m

α − ∂αW̃
m

3

)
|x3=0+ ,

W̃ e

α|x3=ε+ = W̃m

α |x3=ε− , W̃ c

α|x3=0− = W̃m

α |x3=0+ ,

where f̃α = fα − (∂3pα − ∂αp3) |x3=ε+ . Moreover

qeW̃
e

3 |x3=ε+ = qmW̃
m

3 |x3=ε− , qcW̃
c

3 |x3=0− = qmW̃
m

3 |x3=0+ .

Since the functions f̃α are defined on Γ, it is convenient to define F̃α on Γε by

∀xT ∈ Γ, F̃α ◦Φ(xT, ε) = f̃α(xT).

Denoting by G̃ and F̃ the following 1–forms defined by

G̃ = ε1Oε
m
G+ ε21Oε

e
(δdP− µeqeP) , F̃ = F̃αdx

α,

there exists an ε–independent constant C > 0 such that

‖G̃‖L2Ω1(O) 6 Cε3/2, ‖δG̃‖L2(O) 6 Cε3/2 and ‖F̃‖H−1/2Ω1(Γε) 6 C.

The 1-form W̃ satisfies the following equalities

δdW̃− µqW̃ = G̃, in Oε
e
∪ Oε

m
∪ Oc, N∂O ∧ W̃

e|∂O = 0, on ∂O, (6.7a)

with the following transmission conditions on Γε and on Γ

1

µe

int(NΓε
)dW̃e|Γ+

ε
=

1

µm

int(NΓε
)dW̃m|Γ−

ε
+
ε2

µe

F̃, (6.7b)

1

µm

int(NΓ)dW̃
m|Γ+ =

1

µc

int(NΓ)dW̃
c|Γ− , (6.7c)

NΓε ∧ W̃
e|Γ+

ε
= NΓε ∧ W̃

m|Γ−

ε
, and NΓ ∧ W̃

m|Γ+ = NΓ ∧ W̃
c|Γ− . (6.7d)

Moreover

δW̃ =
1

µq
δG̃, in Oε

e
∪ Oε

m
∪ Oc, (6.8)

and G̃ and F̃ are such that

qeint(NΓε
)W̃e|Γ+

ε
= qmint(NΓε

)W̃m|Γ−

ε
, qcint(NΓ)W̃

c|Γ− = qmint(NΓ)W̃
m|Γ+ .

Multiply (6.7) by W̃ and integrate by parts with the help of (6.8) to infer

‖W̃e‖HΩ1(d,δ,Oε
e
) +

√
ε‖W̃m‖HΩ1(d,δ,Oε

m
) + ‖W̃c‖HΩ1(d,δ,Oc) 6 Cε2,

for an ε–independent constant C. Morever W̃ = W+ ε21Oε
e
P implies

‖We‖HΩ1(d,δ,Oε
e
) +

√
ε‖Wm‖HΩ1(d,δ,Oε

m
) + ‖Wc‖HΩ1(d,δ,Oc) 6 Cε2, (6.9)

from which we infer Theorem 2.9.
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7. Asymptotic expansion at any order

We may extend our derivation principle to obtain asymptotic transmission condi-

tions at any order. Actually, there exists a recurrence formula, which is given in

this section. The sketch of the proof of the expansion, which is similar to the proof

of Theorem 6.3 is left to the reader. For (α, β, ι, κ) ∈ {1, 2}4 define the following

sequences (Al
αβικ)l∈N, (B

l
αβικ)l∈N, (C

l
αβικ)l∈N and (Dl

αβικ)l∈N by





Al
αβικ =

∂lη
εl

(
gmαι√
gm

∂η
ε

(
gmβκ√
gm

))∣∣∣∣∣
η=0

Bl
αβκ =

∂lη
εl

(
gmαβ√
gm
∂κ

(
1√
gm

))∣∣∣∣∣
η=0

Cl
αβ =

∂lη
εl

(
gαβ
gm

)∣∣∣∣∣
η=0

,





Dl =
∂lη
εl

(
1√
gm

∂η
ε

(√
gm
))
∣∣∣∣∣
η=0

El
αβκ =

∂lη
εl

(
1√
gm
∂α

(
gβκ√
gm

))∣∣∣∣∣
η=0

.

Using (4.4)-(4.6), for k ≥ 1 we define ∂2ηEm,k+2
λ and ∂ηEm,k+1

3 respectively by

∂2ηEm,k+2
λ = ∂η∂λEm,k+1

3 + ǫαβ3ǫικ3A
0
λαικ∂ηEm,k+1

β − µmqmEm,k
λ

+ ǫαβ3ǫικ3

k∑

l=1

{(
Bl

λικ∂α + Cl
λι∂κ∂α

)
Em,k−l
β

+Al
λαικ

(
∂ηEm,k+1−l

β − ∂βEm,k−l
3

)}
,

∂ηEm,k+1
3 = −

k∑

l=0

(
DlEm,k−l

3 + ǫαβ3ǫικ3
(
Cl

κβ∂α + El
αβκ

)
Em,k−l
ι

)

Define now the differential forms Sk+1 and Tk+1 by

Sk+1 =

{
1

µm

∫ 1

0

(
∂2ηEm,k+2

λ − ∂λ∂ηEm,k+1
3

)
dη

− 1

µe

k∑

l=0

∂lx3

(
∂3Ẽ

e,k−l
λ − ∂λẼ

e,k−l
3

)∣∣∣
x3=0+

}
dxλ,

Tk+1 =

{∫ 1

0

∂ηEm,k+1
λ dη −

k∑

l=0

∂lx3
Ẽ
e,k−l
λ

}
dxλ.

The 1–forms Ẽe,k+1 and Ec,k+1 are therefore defined by

δdẼe,k+1 − µeqeẼ
e,k+1 = 0, in Oe,

δdEc,k+1 − µcqcE
c,k+1 = 0, in Oc,

N∂O ∧ Ẽ
e,k+1|∂O = 0,
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with the following transmission conditions on Γ

1

µe

int(NΓ)dẼ
e,k+1|Γ+ − 1

µc

int(NΓ)dE
c,k+1|Γ− = Sk+1,

NΓ ∧ Ẽ
e,k+1|Γ+ −NΓ ∧ E

c,k+1|Γ− = NΓ ∧ Tk+1.

Since for n = 0, 1 the 1–forms (Em,n,Ec,n, Ẽe,n)n=0,1 are determined by (2.10)–(6.3)–

(6.1)–(6.4), and since ∂ηEm,2
λ is also known according to Remark 5.2, the recurrence

process is initialized. The reader could prove that outside a neighborhood of Oε
m

the following estimate holds E =
∑n

k=0 ε
kEk +O(εn).

Acknowledgements

We thank very warmly Monique Dauge for her well–advised suggestions. C.P. has

deep thoughts and memories of Michelle Schatzman, who tought him the ropes of

differential calculus.

8. Appendix: Explicit formulae

We refer the reader to [18, 35] for the basic notions of differential calculus for a

general compact connected oriented Riemannian manifold (M, g) of Rn with smooth

compact boundary ∂M . The following property has been used throughout the paper.

Property 8.1 (Useful equality). Suppose that M is a compact connected ori-

ented Riemanian manifold without boundary of Rn, and let k be an integer smaller

that n. Let ω is a k–form and Y is a smooth 1–form such that dY = 0. Then ap-

plying the above Green formula with the help of the definition of the inner product

we infer that for ω ∈ HΩk(δ,M)

int(Y )δω = (−1)kδ (int(Y )ω) . (8.1)

Proof. Actually, for any η ∈ HΩk−2(d,M), we have
∫

M

〈int(Y )δω, η〉Ωk−2 dvolM =

∫

M

〈δω, Y ∧ η〉Ωk−1 dvolM

=

∫

M

〈ω, d(Y ∧ η)〉Ωk dvolM ,

= (−1)k−2

∫

M

〈ω, Y ∧ dη〉Ωk dvolM

= (−1)k−2

∫

M

〈int(Y )ω, dη〉Ωk−1 dvolM

= (−1)k−2

∫

M

〈δ (int(Y )ω) , η〉Ωk−2 dvolM .

We now present explicit formulae of the differential calculus for a manifoldM ⊂
R3 endowed with the Euclidean metric. Denote by (x, y, z) the usual Euclidean

coordinates of M and let (y1, y2, y3) another system of coordinates: there exists a
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C∞–diffeomrphism ψ such that ψ(y1, y2, y3) = (x, y, z). The Euclidean metric in

(y1, y2, y3)–coordinates is given by the matrix (gij)i,j=1,2,3 : gij = ∂yiψ · ∂yjψ,

where · denotes the Euclidean scalar product of R3. The inverse matrix of (gij)ij is

denoted by (gij)ij and let g denote by its determinant g = det
(
(gij)i,j=1,2,3

)
.

Denote by (dy1, dy2, dy3) the basis of Ω1(M) associated to (y1, y2, y3). It is

clear that 2–forms (dy2 ∧ dy3, dy3 ∧ dy1, dy1 ∧ dy2) is a basis of Ω2(M). Since

M is equipped with the Euclidean metric, we perform the change of coordinates

ψ(y1, y2, y3) = (x, y, z) to infer that the inner product 〈., .〉Ωk for k = 0, 1, 2, is

determined in (y1, y2, y3)–coordinates by
j the following equalities





〈F,G〉Ω0 = FG , 〈dyi, dyj〉Ω1 = gij ,

〈dyidyk, dyjdyl〉Ω2 = gijgkl − gilgjk,

〈Fdy1dy2dy3, Gdy1dy2dy3〉Ω3 =
1

g
FG,

(8.2)

where F and G are smooth functions on M , and g is the determinant of (gij).

• Exterior products on R3. The exterior product between a k–form and a l–form

equals zero as soon a k + l > 3. Moreover, for k ∈ {0, · · · , 3}, the exterior product

between a 0–form and a k–form is the usual scalar multiplication between a function

and a k–form. The following formulae hold (see Flanders [18]).

⊲ Exterior product of 1–forms. Let λ = λidy
i and µ = µidy

i be two 1-forms, then

λ ∧ µ = λiµjdy
idyj =

ǫijk
2

(ǫklmλlµm) dyidyj .

⊲ Exterior product between a 2–form and a 1–form. Let λ =
ǫijk
2
λkdy

idyj and

µ = µidy
i, then

λ ∧ µ = λkµkdy
1dy2dy3.

• Expression of d. A straigthforward application of the reccurence formula for d

given Schwarz [35] implies the following formulae.

⊲ d on 0–forms. Let λ be a 0–form, i.e. λ is a function. Then

dλ =
∂λ

∂yi
dyi.

⊲ d on 1–forms. Let µ = µidy
i, then dµ equals

dµ =
∂µj

∂yi
dyidyj =

ǫijk
2

(
ǫklm

∂µm

∂yl

)
dyidyj .

⊲ d on 2–forms. Let λ =
ǫijk
2
λkdy

idj be a 2–form, then we have

dλ =
∂λk
∂yk

dy1dy2dy3.

jTo simplify notations, we omit the sign ∧ between the differential forms dyi and dyj , for i, j =

1, 2, 3.
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Proposition 8.2 (Star Hodge operator). Star Hodge operator is defined in R3

by the following formula.

• Hodge on functions and 3–forms. Let S be a 0-form and T = τ dy1dy2dy3

be a 3-form. Then

⋆S =
√
gS dy1dy2dy3, ⋆T =

1√
g
τ.

• Hodge on 1–forms. Let R = Ri dy
i be a 1-form. Then ⋆R is the 2-form defined

by

⋆R =
ǫijk
2

√
ggklRl dy

idyj .

• Hodge on 2–forms. Let S =
ǫijk
2
Sk dy

idyj be a 2-form. Then ⋆S is the 1-form

equal to

⋆S =
1√
g
gikSk dy

i.

Proof. If ω is a k–form in R3, then ⋆ω is the 3− k form such that

∀η ∈ Ωk(M), η ∧ ⋆ω = 〈η, ω〉Ωk(M)
√
g dy1dy2dy3.

Applying the above formulae of the exterior products, and equalities (8.2), we infer

the proposition.

Proposition 8.3 (The codifferential operator δ). According to the codifferen-

tial definition (see Schwarz [35]) the following formulae hold.

• Codifferential of 1-forms. Let µ = µidy
i, then

δµ = − 1√
g

∂

∂yk

(√
ggklµl

)
. (8.3)

• Codifferential of 2–forms. Let λ =
ǫijk
2
λkdy

idyj , then

δλ = ǫjkl
gij√
g

∂

∂yk

(
glm√
g
λm

)
dyi.

Proof. Since the codifferential on k–forms in R3 is defined by δ = (−1)3k ⋆ d⋆, a

straightforward application of the formulae of the differential operator d and the

use of Proposition 8.2 lead to the formulae of the codifferential operator.

Proposition 8.3 with the formulae of d differential operator implies the following

corollary.

Corollary 8.4 (δd and ∆ operators on functions and on 1–forms). Recall

that ∆ = − (δd + dδ).
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• Let f be a function. Then

∆f = −δdf =
1√
g

∂

∂yk

(√
ggkl

∂

∂yl
f

)
. (8.4)

• Let λ = λidy
i be a 1–form, then

δdλ = ǫijkǫlmn
gri√
g

∂

∂yj

(
gkl√
g

∂

∂ym
λn

)
dyr, (8.5)

∆λ = −
(
ǫijkǫlmn

gri√
g

∂

∂yj

(
gkl√
g

∂

∂ym
λn

)
− ∂

∂yr

(
1√
g

∂

∂yk

(√
ggklλl

))
)
dyr. (8.6)

Using duality between the interior and the exterior product [35], we infer the

following proposition.

Proposition 8.5 (Interior product). Let N be a vector-field identified with the

corresponding 1–form N = Nidy
i.

• Interior product of a vector-field on a 1–form. Let µ = µidy
i. Then

int(N)µ = gijNjµi. (8.7)

• Interior product of a vector-field on a 2–form. Let µ = µij dy
idyj, then

int(N)µ = grlµijNk

(
gikgjl − gilgjk

)
dyr. (8.8)
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l’épaisseur de peau en électromagnétisme. C.R.Acad. Sci. Paris Sér. I Math., (348):385–
390, 2010.



Time-harmonic Maxwell equations in biological cells 31
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38. D. Šel, D. Cukjati, D. Batiuskaite, T. Slivnik, L.M. Mir, and D. Miklavčič. Sequen-
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