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Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer

Introduction and motivations

The electromagnetic modelling of biological cells has become extremely important since several years, in particular in the biomedical research area. In the simple models [START_REF] Fear | Modelling assemblies of biological cells exposed to electric fields[END_REF][START_REF] Foster | Dielectric properties of tissues and biological materials: a critical review[END_REF], the biological cell is a domain with a thin layer composed of a conducting cytoplasm surrounded by a thin insulating membrane. When exposed to an electric field, a potential difference is induced across the cell membrane. This transmembrane potential (TMP) may be of sufficient magnitude to be biologically significant.

In particular, if it overcomes a threshold value, complex phenomena such as electropermeabilization or electroporation may occur [START_REF] Šel | Sequential finite element model of tissue electropermeabilization[END_REF][START_REF] Tsong | Electroporation of cell membranes[END_REF][START_REF] Mir | Electroporation of cells in tissues. Methods for detecting cell electropermeabilisation in vivo[END_REF][START_REF] Miklavčič | A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy[END_REF]. The electrostatic pressure becomes so high that the thin membrane is locally destructured: some exterior molecules might be internalized inside the cell. This process holds great promises particularly in oncology and gene therapy, to deliver drug molecules in cancer treatment. This is the reason why an accurate knowledge of the distribution of the electromagnetic field in the biological cell is necessary. Several papers in the bioelectromagnetic research area deal with numerical electromagnetic modelling of biological cells [START_REF] Muñoz | Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields[END_REF][START_REF] Sebastián | Analysis of the influence of the cell geometry and cell proximity effects on the electric field distribution from direct rf exposure[END_REF][START_REF] Pucihar | Numerical determination of transmembrane voltage induced on irregularly shaped cells[END_REF]. Actually the main difficulties of the numerical computations lie in the thinness of the membrane (the relative thickness of the membrane is one thousandth of the cell size) and in the high contrast of the electromagnetic parameters of the different cell constituents. We present here an asymptotic method to replace the thin membrane by appropriate transmission conditions on the boundary of the cytoplasm.

In previous papers [START_REF] Poignard | Asymptotics for steady state voltage potentials in a bidimensional highly contrasted medium with thin layer[END_REF][START_REF] Poignard | Approximate condition replacing thin layer[END_REF][START_REF] Poignard | Approximate transmission conditions through a weakly oscillating thin layer[END_REF][START_REF] Ciuperca | Approximate transmission conditions through a rough thin layer. The case of the periodic roughness[END_REF], an asymptotic analysis is proposed to compute the electric potential in domains with thin layer, using the electroquasistatic approximation a . However it is not clear whether the magnetic effects of the field may be neglected. This is the reason why we present in this paper an asymptotic analysis for the time-harmonic Maxwell equations in a domain with thin layer. Our analysis is close to those performed in [START_REF] Poignard | Asymptotics for steady state voltage potentials in a bidimensional highly contrasted medium with thin layer[END_REF][START_REF] Poignard | Approximate condition replacing thin layer[END_REF][START_REF] Poignard | Approximate transmission conditions through a weakly oscillating thin layer[END_REF]. Roughly speaking, it is based on a suitable change of variables in the membrane in order to write the explicit dependence of the studied differential operator in terms of the small parameter (the thinness of the membrane). The novelty of the paper lies in the use of differential form formalism, which seems to be the good formalism to treat Maxwell's equations in the time-harmonic regime according to Flanders [START_REF] Flanders | Differential forms wih applications to the physical sciences[END_REF], Warnick et al. [START_REF] Warnick | Electromagnetic Green functions using differential forms[END_REF][START_REF] Warnick | Teaching electromagnetic field Green functions using differential forms[END_REF] and Lassas et al. [START_REF] Kurylev | Reconstruction of a manifold from electromagnetic boundary measurements[END_REF][START_REF] Kurylev | Maxwell's equations with a polarization independent wave velocity: direct and inverse problems[END_REF]. The convenience of this formalism allows to consider the Helmholtz equation and the Maxwel equations in a similar fashion.

Throughout this paper, we consider a material composed of an interior domain surrounded by a thin membrane. This material, representing a biological cell, is embedded in an ambient medium submitted to an electric current density. We study the asymptotic behavior of the electromagnetic field in the three domains (the ambient medium, the thin layer and the cytoplasm) as the thickness of the membrane tending to zero. We derive appropriate transmission conditions at first order on the boundary of the cytoplasm in order to remove the thin layer from the problem. Actually, the influence of the membrane is approached by these transmission conditions. To justify our asymptotic expansion, we provide piecewise estimates of the error between the exact solution and the approximate solution.

The paper is structured as follows. In Section 2, we present the studied problem in the differential calculus formalism and we state the main results of the paper. We then provide in Section 3 numerical simulations that validate the theoretical results. In particular, we demonstrate that for biological cells, the membrane behavior dramatically changes with respect to the frequency. More precisely, we show that if the "thin layer" model presented here is valid for quite large frequencies, a "very resistive thin layer" model, as described in [START_REF] Poignard | About the transmembrane voltage potential of a biological cell in timeharmonic regime[END_REF], has to be studied for low frequencies. Section 4 is devoted to the geometry: we perform our change of variables and we write the problem in the so-called local coordinates. In Section 5 we derive formally our asymptotic expansion, which is rigorously proved in Section 6. In Section 7, we give recurrence formulae to obtain the asymptotic expansion at any order. The Appendix is devoted to explicit formulae used to derive the conditions.

a The electroquasistatic approximation consists in considering that the electric field comes from a potential: E = -∇V . In this approximation the curl part of the electric field vanishes and the magnetic field is neglected.

Maxwell's equations using differential forms

In the following we present the conventions of differential calculus formalism used throughout this paper. We refer the reader to Schwarz [START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF] and Flanders [START_REF] Flanders | Differential forms wih applications to the physical sciences[END_REF] for complete surveys of the differential calculus. Notation 2.1. Let p equal 2 or 3 and let k be an integer smaller than p. For a compact, connected and oriented Riemanian manifold of dimension p, (M, g), of R 3 we denote by Ω k (M ) the space of k-forms defined on M .

• The exterior product between two differential forms ω and η is denoted by ω ∧ η.

• The inner product on Ω k (M ) is denoted by •, • Ω k .
• The Hodge star operator is denoted by ⋆.

• The interior product of a differential form ω with a smooth vector field Y is written int(Y )ω.

• The L 2 -scalar product of two k-differential forms u and v is defined by

(u, v) L 2 Ω k (M ) = M u, v Ω k dvol M , and • L 2 Ω k (M ) denotes the induced norm.
The exterior differential and codifferential operators are respectively denoted by d, δ. The Laplace-Beltrami operator ∆ is defined by ∆ = -dδ -δd.

L 2 Ω k (M ) is the space of the square integrable k -f orms of M while for s ∈ R, H s Ω k (M ) is the usual Sobolev space of k-forms. Let HΩ k (d, M ) and HΩ k (δ, M ) denote

HΩ k (d, M ) = ω ∈ L 2 Ω k (M ) : dω ∈ L 2 Ω k+1 (M ) , (2.1) 
HΩ k (δ, M ) = ω ∈ L 2 Ω k (M ) : δω ∈ L 2 Ω k-1 (M ) , (2.2) 
that are Hilbert spaces when associated with their respective norms

ω HΩ k (d,M ) = ω L 2 Ω k (M ) + dω L 2 Ω k+1 (M ) , ω HΩ k (δ,M ) = ω L 2 Ω k (M ) + δω L 2 Ω k-1 (M ) .
We also denote by

HΩ k (d, δ, M ) the space HΩ k (d, M ) ∩ HΩ k (δ, M ) equipped with the norm ω HΩ k (d,δ,M ) = ω L 2 Ω k (M ) + dω L 2 Ω k+1 (M ) + δω L 2 Ω k-1 (M ) .
H s (M ) and L 2 (M ) denotes the respective spaces H s Ω 0 (M ) and L 2 Ω 0 (M ). Observe that for k = 0 (i.e. for functions), the space HΩ 0 (d, δ, M ) is exactly the usual Sobolev space H 1 (M ), while HΩ 1 (d, δ, M ) cannot be identified to H 1 (M ) 3 .

Statement of the problem

Let Γ be a compact oriented surface of R 

O = O ε e ∪ O ε m ∪ O c . Moreover, we denote by Γ ε the boundary of O c ∪ O ε
m (see Fig. 1). Let µ c , µ m and µ e be three positive constants and let q e , q c and q m be three complex numbers. Define the two piecewise functions µ and q on O by

∀x ∈ O, µ(x) =        µ e , in O ε e , µ m , in O ε m , µ c , in O c , ∀x ∈ O, q(x) =        q e , in O ε e , q m , in O ε m , q c , in O c .
The function µ is the dimensionless permeability of O while the function q denotes its dimensionless complex permittivity b .

O O ε e (µ e ,q e ) O c (µ c ,q c ) O ε m Γ Γ ε (µ m ,q m )
Fig. 1. Geometry of the model Let d 0 > 0 be such that for each point q of Γ, the normal lines of Γ passing through q, with center at q and length 2d 0 are disjoints. In the following, we suppose that ε ∈ (0, d 0 ). We denote by O d0 e the set of points x ∈ O ε e at distance greater than d 0 of Γ. We suppose that the current density J is imposed to the ambient medium, J being compactly supported in O d0 e . Throughout the paper the following hypothesis holds.

Hypothesis 2.2. (i)

There exists c 1 , c 2 > 0 such that for all x ∈ O,

c 1 -ℑ(q(x)) c 2 , 0 < ℜ(q(x)) c 2 .
(2.3)

(ii) The source current density J is a 1-form that satisfies supp(J) ⋐ O d0 e , J ∈ L 2 Ω 1 (O) , δJ = 0, in O.
Maxwell's equations describe the behavior of the electromagnetic field in O. Denote by E and H the 1-forms representing respectively the electric and the magnetic fields in O in time-harmonic regime. Denote by N ∂O the normal vector field of ∂O outwardly directed from O. In the following, the normal vector field and the corresponding normal 1-form are identified. Maxwell's equations in the time-harmonic regime write [START_REF] Kurylev | Reconstruction of a manifold from electromagnetic boundary measurements[END_REF][START_REF] Kurylev | Maxwell's equations with a polarization independent wave velocity: direct and inverse problems[END_REF][START_REF] Warnick | Electromagnetic Green functions using differential forms[END_REF][START_REF] Boffi | Discrete compactness for the p-version of discrete differential forms[END_REF] (with i 2 = -1)

dE = i ⋆ (µH) , dH = -i ⋆ (qE + J) , in O, (2.4a 
)

N ∂O ∧ E| ∂O = 0, on ∂O. (2.4b)
Using the idempotence of ⋆ in R 3 , we may infer the vector wave equation on E

⋆ d 1 µ ⋆ dE -qE = J, in O, N ∂O ∧ E| ∂O = 0, on ∂O.
Since µ is a scalar function c of O, we infer

δ 1 µ dE -qE = J, in O, N ∂O ∧ E| ∂O = 0, on ∂O. (2.5) 
Problem (2.5) is the so-called vector wave equation in the time-harmonic regime [START_REF] Balanis | Advanced Engineering Electromagnetics[END_REF].

Observe the power the differential form formalism. In equation (2.5) suppose now that E and J are functions. Since the coderivative applied to the functions identically vanishes, equation (2.5) is nothing but the well-known Helmholtz equation: 

-div 1 µ ∇E -qE = J, in O, E| ∂O = 0,
E = iµH, curl H = -i (qE + J) , in O, N ∂O × E| ∂O = O, on ∂O,
and

curl 1 µ curl E -qE = J, in O, N ∂O × E| ∂O = 0, on ∂O,
which is the tensorial formulation of the vector wave equation in the time-harmonic regime. △

The aim of this paper is to derive transmission conditions equivalent to O ε m in order to avoid its meshing. Hereafter, it is demonstrated that writing these conditions with differential forms enables to consider similarly the Helmholtz equation c If µ is a tensor the previous equation (2.5) becomes δ ⋆µ -1 ⋆ dE -qE = J. and the vector wave equations. For the sake of clarity, and since the case of functions is much simpler, we only provide the detailed proofs of the results for 1-forms (i.e. for the vector wave equation), and we let the reader verify that the corresponding results hold for the Helmholtz equation.

Regularized variational formulation.

Our functional space X(q) is defined as

X(q) = u ∈ HΩ 1 (d, O), δ(qu) ∈ L 2 (O), N ∂O ∧ u| ∂O = 0 , associated with its graph norm u X(q) = u HΩ 1 (d,O) + δ(qu) L 2 (O) .
Define the sesquilinear form a q in X(q) adapted to a regularized variational formulation of the problem (2.5) by

a q (u, v) = O 1 µ du, dv Ω 2 + δ(qu), δ(qv) Ω 0 -q u, v Ω 1 dvol O .
Using inequalities (2.3), the following lemma holds.

Lemma 2.4. There exists a constant c 0 > 0 and α ∈ C such that for all ε ∈ (0, d 0 ),

ℜ αa q (u, u) c 0 u 2 X(q) . (2.6) 
For all ε ∈ (0, d 0 ), we consider the variational problem: find E ∈ X(q) such that ∀u ∈ X(q), a q (E, u)

= O J, u Ω 1 dvol O . (2.7) 
Using Hypothesis 2.2 the following theorem holds.

Theorem 2.5 (Equivalent problems). Let Hypothesis 2.2 hold.

(i) There is at most one solution E ∈ X(q) to problem (2.7).

(ii) The solution E satisfies (2.5) in a weak sense

δdE -µqE = J, in O ε e ∪ O ε m ∪ O c , N ∂O ∧ E| ∂O = 0, with the divergence condition δ(qE) = 0, in O (2.8)
and the following equalities d hold for S ∈ {Γ, Γ ε }

1 µ int(N S )dE S = 0, [N S ∧ E] S = 0, [q int(N S )E] S = 0.
(2.9)

d For an oriented surface S without boundary and for a differential form u defined in a neighborhood of S we denote by [u] S the jump across S . N S denotes the normal of S outwardly directed from the domain enclosed by S to the exterior.

(iii)

If (E, H) ∈ L 2 Ω 1 (O)
2 is solution to problem (2.4) then E ∈ X(q) satisfies (2.5). Conversely, if E ∈ X(q) satisfies (2.5) then the couple of 1-forms (ii) The proof is precisely worked out in full details in [START_REF] Costabel | Singularities of eddy currents problems[END_REF][START_REF] Costabel | Corner singularities of Maxwell interface and eddy current problems[END_REF] in a very slightly different configuration. We just give here the sketch of the proof. The first transmission condition of (2.9) easily come from the Green formula (see Schwarz [START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF]) and since E ∈ X(q), then N S ∧ E and q int(N S )E are continuous across S ∈ {Γ, Γ ε }.

(E, -(i/µ) ⋆ dE) belongs to L 2 Ω 1 (O)
It remains to prove that E satisfies δ(qE) = 0. Denote by H∆(O) the space of functions φ ∈ H 1 0 (O) such that δ(qdφ) belongs to L 2 (O). Integrations by parts imply

∀φ ∈ H∆(O), a q (E, dφ) = O δ(qE), δ(qdφ) + φ Ω 0 dvol O .
Since ℑ(q) ≤ -c 1 < 0, the function δ(qdφ) + φ runs through the whole L 2 (O) space as φ runs through H∆ (O). Moreover, since δ(J) vanishes we have

O J, dφ Ω 1 dvol O = 0,
from which we infer that δ(qE) identically vanishes in L 2 (O) according to (2.7). Therefore the solution E of problem (2.7) solves problem (2.5).

(iii) If (E, H) solves problem (2.4) we straightforwadly infer (2.5), since ⋆ is idempotent and since µ is a scalar function. Conversely, defining H by 

H = - i µ ⋆ dE, we infer that (E, H) solves problem (2.
∀x ∈ O, μ(x) = µ c , in O c , µ e , in O e , ∀x ∈ O, q(x) = q c , in O c , q e , in O e .
Let E 0 ∈ X(q) be the "background" solution defined by

∀u ∈ X(q), a q (E 0 , u) = O J, u Ω 1 dvol O ,
which means in a weak sense

δ 1 μ dE 0 -q E 0 = J, in O, N ∂O ∧ E 0 | ∂O = 0. (2.10)
We have the following regularity result.

Proposition 2.7. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and J belong to

H s Ω 1 (O d0 e ).
Then the 1-form E 0 exists and is unique in X(q). Moreover, denoting by E c,0 and E e,0 its respective restrictions to O c and O e , we have

E e,0 ∈ H 2+s Ω 1 (O e ) , E c,0 ∈ H 2+s Ω 1 (O c ) .
Proof. The 1-form E 0 satisfies (2.10). The proof of the existence and the uniqueness of E 0 in X(q) is very similar to the one performed in Theorem 2.5, by replacing X(q) by X(q) and a q by a q . Since δJ vanishes, we infer δ(qE 0 ) = 0 and therefore E 0 satisfies

-∆E 0 -μq E 0 = J, in O e ∪ O c , N ∂O ∧ E 0 | ∂O = 0, with transmission conditions N Γ ∧ dE 0 Γ = 0, q int(N Γ )E 0 Γ = 0, 1 μ int(N Γ )dE 0 Γ = 0, δ(qE 0 ) Γ = 0.
The same calculations as performed in Proposition 2.1 of Costabel et al. [START_REF] Costabel | Corner singularities of Maxwell interface and eddy current problems[END_REF] imply that the set of the above transmission and boundary conditions covers e the Laplacian in O c and in O e , in the sense of Definition 1.5 at page 125 of Lions and Magenes [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]. Therefore we infer the piecewise elliptic regularity of E 0 , which ends the proof of the lemma.

The following estimates, which ensure that E 0 is the zeroth order approximation of E, hold. Proposition 2.8. Under Hypothesis 2.2, there exists C > 0 such that for any small parameter ε ∈ (0, d 0 )

E X(q) C, (2.11) 
E -E 0 HΩ 1 (d,O) C √ ε.
(2.12)

e According to the appendix of the paper of Li and Vogelius [START_REF] Li | Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients[END_REF] the regularity of E 0 may also be obtained by using a reflection to reduce the problem to an elliptic system with complementing boundary conditions in the sense of Agmon et al. [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF][START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF].

Proof. Using (2.6), estimates (2.11) are obvious since ℑ(q) -c 1 < 0. Prove now (2.12). We first mention that E 0 belongs to

H 2 Ω 1 (̟) for ̟ ∈ {O e , O c }, ac- cording to Proposition 2.7; hence E 0 ∈ L ∞ Ω 1 (̟) and dE 0 ∈ L ∞ Ω 2 (̟). Denoting by U = E -E 0 we infer O 1 µ dU, dU Ω 2 -q U, U Ω 1 dvol O = q m O ε m E 0 , U Ω 1 dvol O ε m - 1 µ m O ε m dE 0 , dU Ω 2 dvol O ε m .
Therefore using (2.11) and using the assumption (2.3) on q, we infer

dU L 2 Ω 2 (O) + U L 2 Ω 1 (O) C √ ε.

Main result

Consider the inclusion J : Γ -→ O, and J * its pull-back

J * : Ω k (O) -→ Ω k (Γ), for k ∈ {0, 1, 2, 3}.
Denote by d Γ and δ Γ the exterior differential and the codifferential operators defined on Ω k (Γ). Define S and T by f

S = (q m -q e ) J * (E 0 ) + 1 µ m - 1 µ e δ Γ d Γ J * (E 0 ) , (2.13) 
T = 1 q m - 1 q e d int(N Γ ) qE 0 | Γ + (µ m -µ e ) int(N Γ ) 1 μ dE 0 Γ . (2.14)
The explicit expressions of S and T in local coordinates are given in Section 6. Let E 1 be the 1-forms defined by

δdE 1 -μqE 1 = 0, in O e ∪ O c , N ∂O ∧ E 1 | ∂O = 0,
with the following transmission conditions on Γ

1 µ e int(N Γ )dE 1 | Γ + - 1 µ c int(N Γ )dE 1 | Γ -= S, (2.15) 
N Γ ∧ E 1 | Γ + -N Γ ∧ E 1 | Γ -= N Γ ∧ T. (2.16)
The aim of this paper is to prove the following theorem.

Theorem 2.9. Under Hypothesis 2.2, if moreover the current density J belongs to

H 3 Ω 1 (O d0 e ), there exists ε 0 > 0 and a constant C, independent on ε such that ∀ε ∈ (0, ε 0 ), E -(E 0 + εE 1 ) HΩ 1 (d,δ,Oc) Cε 2 ,
and for any domain ̟ compactly embedded in O e , there exists ε ̟ > 0 and a constant

C ̟ > 0 independent on ε such that ∀ε ∈ (0, ε ̟ ), E -(E 0 + εE 1 ) HΩ 1 (d,δ,̟) C ̟ ε 2 .
Remark 2.10. It is possible to give a precise behavior of E in a neighborhood of Γ by defining a 1-form in the thin membrane (see Theorem 6.3). △

In this paper we choose to deal with differential forms, in accordance with Flanders [START_REF] Flanders | Differential forms wih applications to the physical sciences[END_REF]. This point of view has the convenience of considering both electric and magnetic fields as 1-forms, i.e. they are physically similar in accordance with electrical engineering considerations [START_REF] Balanis | Advanced Engineering Electromagnetics[END_REF]. We point out few arguments to enlight the convenience of the differential calculus formalism. (i) Anisotropy. For sake of simplicity, we deal here with isotropic materials, although the anisotropic case may be interesting for applications. In this case, µ and q are matrices and the vector wave equation becomes

δ ⋆µ -1 ⋆ dE -qE = J, in O N ∂O ∧ E| ∂O = 0, on ∂O,
and the following transmission conditions hold on S ∈ {Γ,

Γ ε } int(N S ) ⋆µ -1 ⋆ dE S = 0, [N S ∧ E] S = 0.
To obtain the approximate transmission conditions equivalent to the thin layer, we just have to write the tensor ⋆µ -1 ⋆ in local coordinates, with the help of the explicit formulae given in Appendix. The calculations are more tedious but we are confident that the reader has all the tools to perform the analysis. (ii) Non-constant thickness. We consider here a thin layer with constant thickness. As mentionned in Section 1 a high electric field may destabilize the cell membrane, possibly leading to the apparition of pores. Hence the thickness of the membrane is no longer constant with respect to the tangential variable. As performed in [START_REF] Poignard | Approximate transmission conditions through a weakly oscillating thin layer[END_REF], the change of variables would lead to additional terms in the transmission conditions. These terms would come from the fact that the coefficients g i3 of the matrix (g ij ) given in Section 4 by (4.1) do not vanish. The derivation of the asymptotics would be more tedious but, once again, we are confident that all the tools are given in the present paper to perform the calculation. In the case of a rough thin layer, the present analysis may not be applied. We have to introduce appropriate correctors as performed in [START_REF] Ciuperca | Approximate transmission conditions through a rough thin layer. The case of the periodic roughness[END_REF].

(iii) Link with the Helmholtz equation. As previously mentionned, equations (2.5) are well-defined if E and J are functions, since operators d and δ are defined for k-forms and the exterior product between a 1-form and a function is also well-defined. Moreover, since δ acting on functions is zero, the operator -δd coincides with Laplace-Beltrami operator ∆. In addition, the above differential forms S and T are well-defined even if E 0 is a function, and in this case we have

S = (q m -q e ) E 0 | Γ + 1 µ m - 1 µ e δ Γ d Γ E 0 | Γ , T = µ m -µ e µ c int(N Γ ) dE 0 Γ -,
since the interior product int(N Γ ) acting on functions is zero. Writing our asymptotic transmission conditions for functions in tensor calculus formalism, we infer that the function u solution to

-∇ • 1 µ ∇u -qu = j, in O, u| ∂O = 0, is approached by u 0 + εu 1 where (u k ) k=0,1 satisfy -∆u k -μqu k = δ k 0 j, in O c ∪ O e , u k | ∂O = 0, with the following transmission conditions [u 0 ] Γ = 0, 1 μ ∂ n u 0 Γ = 0, u 1 | Γ + -u 1 | Γ -= µ m -µ e µ c ∂ n u 0 | Γ -, 1 µ e ∂ n u 1 | Γ + - 1 µ c ∂ n u 1 | Γ -= (q m -q e ) u 0 | Γ - 1 µ m - 1 µ e ∆ Γ u 0 | Γ .
This approximation is rigorously proved in [START_REF] Poignard | Rigorous asymptotics for the electric field in tm mode at mid-frequency in a bidimensional medium with a thin layer[END_REF] (see equations ( 4) page 4 of [START_REF] Poignard | Rigorous asymptotics for the electric field in tm mode at mid-frequency in a bidimensional medium with a thin layer[END_REF]). Therefore the differential calculus provides transmission conditions that are valid for the Helmholtz equation and the Maxwell equations. It is also possible to derive our asymptotics by tensor calculus considerations, as used in linear elasticity of thin shells [START_REF] Dauge | Eigenmode asymptotics in thin elastic plates[END_REF][START_REF] Faou | Elasticity on a thin shell: formal series solution[END_REF][START_REF] Faou | Multiscale expansions for linear clamped elliptic shells[END_REF]. This approach is worked out in full details in the thesis [START_REF] Péron | Modélisation mathématique de phénomènes électromagnétiques dans des matériaux à fort contraste[END_REF] of the second author and in [START_REF] Caloz | On the influence of the geometry on skin effect in electromagnetism[END_REF][START_REF] Dauge | Comportement asymptotique à haute conductivité de l'épaisseur de peau en électromagnétisme[END_REF].

Remark 2.11. [The tensor calculus formulation] Since we are confident that our result might be useful for bioelectromagnetic computations, and since the electrical engineering community may feel uncomfortable with the differential calculus formalism, we translate our result with the help of "usual" differential operators. Denote by ∇ Γ and ∇ Γ • the respective gradient and divergence operators on Γ. Define Rot Γ and rot Γ by

∀f ∈ C ∞ (Γ), Rot Γ f = (∇ Γ f ) × N Γ , ∀f ∈ (C ∞ (Γ)) 3 , rot Γ f = ∇ Γ • (f × N Γ ) .
Then (E k ) k=0,1 (seen as vector field) satisfies the following equations

curl curl E k -μqE k = δ k 0 J, in O e ∪ O c , N ∂O × E k | ∂O = 0, with the following transmission conditions on Γ N Γ × E 0 | Γ + = N Γ × E 0 | Γ -, 1 µ e N Γ × curl E 0 | Γ + = 1 µ c N Γ × curl E 0 | Γ -, (2.17 
)

N Γ × E 1 | Γ + × N Γ = N Γ × E 1 | Γ -× N Γ + q c 1 q m - 1 q e ∇ Γ E 0 | Γ -• N Γ + µ m -µ e µ c curl E 0 × N Γ | Γ -, (2.18) 1 µ e curl E 1 × N Γ | Γ + = 1 µ c curl E 1 × N Γ | Γ -+ (q m -q e ) N Γ × E 0 × N Γ | Γ + 1 µ m - 1 µ e Rot Γ rot Γ N Γ × E 0 × N Γ | Γ . △ Remark 2.
12. [The impedance boundary condition of Engquist-Nédélec [START_REF] Engquist | Effective boundary condition for acoustic and electromagnetic scattering thin layer[END_REF]] Let J be supported in O c (and be divergence free) and suppose that O ε e is a perfectly conducting domain. Therefore q e = +∞ and µ e = 0. An homogeneous Dirichlet condition is then imposed on Γ ε

N Γε × E| Γε = 0.
We are now in the same configuration as the problem studied by Engquist and Nédélec [START_REF] Engquist | Effective boundary condition for acoustic and electromagnetic scattering thin layer[END_REF], page 18. According to (2.17)-(2.18), writing the condition satisfied by E 0 + εE 1 and neglecting the terms of order ε 2 , we infer the following boundary condition for the first-order approximation E a of the field

N Γ × E a | Γ -× N Γ = -ε q c q m ∇ Γ (E a | Γ -• N Γ ) + µ m µ c (curl E a × N Γ ) | Γ -.
According to Maxwell's equations, curl E = iµ c H and curl H = -iq c E. Therefore

q c E • N Γ = i curl H • N Γ . The definition of ∇ Γ • (see for example equation (2.22) page 5 of [14]) leads to g ∇ Γ • (H × N Γ ) = curl H • N Γ = -iq c E • N Γ , (2.19) 
and the impedance boundary condition follows

N Γ × E a | Γ -× N Γ = -iε 1 q m ∇ Γ (∇ Γ • (H a × N Γ )) + µ m (H a × N Γ ) | Γ -.
Observe that this is the impedance boundary condition given in [START_REF] Engquist | Effective boundary condition for acoustic and electromagnetic scattering thin layer[END_REF] page 19, since they took the normal interior to their domain Ω ∞ , hence n = -N Γ . △

Numerical simulations

We have tested the model when Γ is a sphere of radius 0.04. The outside boundary of O is a sphere of radius 0.08. We impose a Silver-Muller condition on this outer boundary. Hexahedral mesh has been used for experiments, as presented in Fig. 2. The current source is a Gaussian source polarized along x-coordinate and centered around the point (0, 0, 0.06). The exact solution is computed numerically on a similar mesh, where a thin layer made of hexahedra is inserted between the two domains. Edge finite elements of fourth order (Nedelec's first family) are used with curved elements in order to correctly approximate the geometry. We have observed that the numerical error between fourth order and fifth order is below 0.1 %. According to [START_REF] Fear | Modelling assemblies of biological cells exposed to electric fields[END_REF], we chose the biological electrical parameters :

ε m = 10, ε e = ε c = 80, σ m = 10 -5 , σ e = σ c = 0.5, (3.1) 
g Using differential forms and since dN = 0 equality (8.1) implies and the frequency is equal to 1.2 GHz. The numerical values of E 0 and E 1 are displayed in Fig. 3. We have displayed the convergence of the model in Fig. 4. Observe that the numerical convergence rate, which is of order ε 2 , coincides with the theory for small values of ε only. This is in accordance with the assumption "ε goes to zero" to be imposed, since at the crossingpoint of Fig. 4, ε equal 0.001 which is not small compared with the sphere radius of 0.04. In addition, the frequency range for which the thin layer model is valid has been studied. Actually, observe that in (3.1), the cell membrane conductivity is very low compared with the outer and inner conductivities, while the permittivity of the three domains are quite similar, compared with the membrane thickness. Moreover, for large frequency, the displacement currents are dominant, meaning that the permittivities have to be mainly considered. Therefore, for large frequencies, the cell is a soft contrast material with a thin layer, and the theroretical results presented in this paper hold. However, if the frequency dramatically decreases, the conduction currents dominate. In this case, the conductivities have to be used, and since the membrane conductivity is very low, the cell is then a high contrast medium with a thin layer: two small parameters are then involved in the equation, and the asymptotic analysis presented here is no longer valid. This phenomenon is illustrated by Fig. 5, where we have checked the accuracy of the model versus the frequency when ε is chosen constant, and equal to 0.0002: above 100MHz, the approximate transmission conditions precisely replace the membrane but below 10MHz, the conditions are no longer valid and another analysis has to be performed. Observe that above 2.10 8 Hz both errors increase: this is due to the fact that the membrane thickness ǫ remains constant while the wavelength decreases. 

int(N Γ )E 0 | Γ -= - 1 iqc int(N Γ )δ ⋆H 0 = - 1 iqc δ Γ int(N ) ⋆ H 0 | Γ ,

Geometry

Let V Γ be the tubular open neighborhood of Γ composed by the points at distance d 0 of Γ. In the following, it will be convenient to write the involved differential form E in local coordinates in the tubular neighborhood V Γ of Γ. We denote by V ε e and V c the respective intersections V Γ ∩ O ε e and V Γ ∩ O c .

Parameterization of Γ.

Let x T = (x 1 , x 2 ) be a system of local coordinates on Γ = {ψ(x T )} . By abuse of notations, we denote by x T ∈ Γ the point of Γ equal to ψ(x T ). In the (x 1 , x 2 )coordinates, we denote by N Γ the outward vector normal to Γ defined by

N Γ = ∂ 1 ψ ∧ ∂ 2 ψ ∂ 1 ψ ∧ ∂ 2 ψ ,
and we define by Φ the following map

∀(x T , x 3 ) ∈ Γ × R, Φ(x T , x 3 ) = ψ(x T ) + x 3 N Γ (x T ).
Notation 4.1. In the following ∂ j stands for ∂ xj for j = 1, 2, 3. Moreover we use the summation indices convention a i b i = i=1,2,3 a i b i . Observe that according to our change of variables, x T denotes the tangential variables and x 3 is the normal direction. In order to stress the difference between x T and x 3 , the Greek letters α and β (and possibly γ, ι, κ and λ) denote the indices in {1, 2}, while the letters i, j, k denote the indices in {1, 2, 3}. Eventually it is convenient to introduce the Levi-Cività symbol ǫ ijk defined by

ǫ ijk =       
+1, if {i, j, k} is an even permutation of {1, 2, 3}, -1, if {i, j, k} is an odd permutation of {1, 2, 3}, 0, if any two labels are the same.

According to the definition of d 0 , the tubular neighborhood V Γ of Γ may be parameterized by

V Γ = {Φ(x T , x 3 ), (x T , x 3 ) ∈ Γ × (-d 0 , d 0 )} .
The (x T , x 3 )-system of coordinates is the so-called local coordinates of V Γ . The Euclidean metric of V Γ written in (x T , x 3 )-coordinates is given by the following matrix (g ij ) i,j=1,2,3

(g ij ) i,j=1,2,3 =   g 11 g 12 0 g 12 g 22 0 0 0 1   , (4.1) 
where the coefficient g αβ equals g αβ = ∂ α Φ, ∂ β Φ . Here •, • denotes the Euclidean scalar product of R 3 . Denote by (g ij ) the inverse matrix of (g ij ) , and by g the determinant of (g ij ). The coefficients g αβ might be written with the help of the coefficients of the first, the second and of the third fundamental forms of Γ in the basis (∂ 1 ψ, ∂ 2 ψ) (see Do Carmo [START_REF] Carmo | Differential geometry of curves and surfaces[END_REF])

g αβ (x T , x 3 ) = g 0 αβ (x T ) -2x 3 b αβ (x T ) + x 2 3 c αβ (x T ).
The mean curvature H of Γ equals

H = - 1 2 ∂ 3 √ g √ g x3=0 . (4.2)

The transmission conditions in local coordinates

In the (x T , x 3 )-coordinates, write E = E i dx i . N Γ is the outward normal field of Γ, which is identified to the 1-form dx 3 . Applying straightforward the formulas of Appendix we infer

N Γ ∧ E = E α dx 3 dx α , int(N Γ )E = E 3 , int(N Γ )dE = (∂ 3 E α -∂ α E 3 ) dx α .
Hence transmission conditions (2.9) write for h ∈ {0, ε}

[E α ] x3=h = 0, 1 µ (∂ 3 E α -∂ α E 3 ) x3=h = 0, [q E 3 ] x3=h = 0. (4.3) 

Rescaling in the thin layer

Denote by E e j and by E c j the respective restrictions of E j to V ε e and to V c . In O ε m we perform the rescaling x 3 = εη, η ∈ (0, 1), and we denote by E m j , by g m ij and by g m the following functions ∀η ∈ (0, 1),

       E m j (x T , η) = E j (x T , εη) g m ij (x T , η) = g ij (x T , εη), for i, j = 1, 2, 3 g m (x T , η) = g(x T , εη) . Observe that g m αβ (x T , η) = g 0 αβ (x T ) -2εηb αβ (x T ) + ε 2 η 2 c αβ (x T ), hence for l ∈ N, ∂ l η g m αβ = O(ε l ), while ∂ l α g m ικ = O(1). Denote by δdE = a m i (x T , η)dx i , in O ε m .
Applying formula (8.5) with the metric given by (4.1), and performing the rescaling x 3 = εη, we infer,

a m λ = - 1 ε 2 ∂ 2 η E m λ + 1 ε ∂ η ∂ λ E m 3 + ǫ αβ3 ǫ ικ3 g m λι √ g m ∂ η ε g m ακ √ g m ∂ η E m β + ǫ αβ3 ǫ ικ3 g m λι √ g m ∂ κ 1 √ g m ∂ α E m β - ∂ η ε g m ακ √ g m ∂ β E m 3 , (4.4 
)

a m 3 = 1 ε ǫ αβ3 ǫ ικ3 ∂ κ g m αι √ g m ∂ η E m β + ǫ αβ3 ǫ ικ3 ∂ α g m βι √ g m ∂ κ E m 3 . ( 4 

.5)
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The divergence free condition δE m = 0 with equality (8.3) writes then

1 ε ∂ η E m 3 + 1 √ g m ∂ η ε ( √ g m )E m 3 + ǫ αβ3 ǫ ικ3 1 √ g m ∂ α g m κβ √ g m E m ι = 0. (4.6)
The transmission conditions (4.3) in

x 3 = ε become 1 µ e (∂ 3 E λ -∂ λ E 3 ) | x3=ε + = 1 µ m 1 ε ∂ η E m λ -∂ λ E m 3 η=1
(4.7a)

E λ | x3=ε + = E m λ | η=1 . (4.7b)
The transmission conditions (4.3) in x 3 = 0 write

1 µ m 1 ε ∂ η E m λ -∂ λ E m 3 η=0 = 1 µ c (∂ 3 E λ -∂ λ E 3 ) | x3=0 - (4.8a) E m λ | η=0 = E λ | x3=0 -, (4.8b) 
and the transmission conditions for the normal components E 3 are

q e E 3 | x3=ε + = q m E m 3 | η=1 , q m E m 3 | η=0 = q c E 3 | x3=0 -.
(4.9)

Ansatz and formal expansion

We now set our Ansatz. We look for solutions written as formal series in ε

E| O ε e = E e,0 | O ε e + ε E e,1 | O ε e + • • • , in O ε e , (5.1a 
)

E| Oc = E c,0 + εE c,1 + • • • , in O c , (5.1b) 
and in the cylinder Γ × (0, 1),

E| O ε m • Φ(x T , εη) = E m,0 (x T , η) + εE m,1 (x T , η) + • • • , (5.1c)
where the 1-forms ( E e,n ) n∈N , and (E c,n ) n∈N are defined in ε-independent domains. We emphasize that the sequence ( E e,n ) n∈N is defined in (O ε m ) N even if its associated serie does not approach E in the thin layer.

Remark 5.1. The 1-forms (E m,n ) n∈N are profiles defined in the cylinder Γ×(0, 1); note the difference with the 1-forms (E c,n ) n∈N and ( E e,n ) n∈N . These profiles are the key-point of the following asymptotic expansion. △

In V Γ , for n ∈ N, we denote by

E e,n = E e,n i (x T , x 3 )dx i , E c,n = E c,n i (x T , x 3 )dx i , E m,n = E m,n i (x T , η)dx i , η = x 3 /ε.
Our aim is to identify the first two terms of the sequences and to estimate the remainder term. Suppose that for n ∈ N, the forms E e,n k k=1,2,3 are as regular as necessary. Using formal Taylor expansion, we infer for l = 0, 1

∂ l j E e,n k | x3=ε + = ∂ l j E e,n k | x3=0 + + ε∂ 3 ∂ l j E e,n k | x3=0 + + • • • (5.2)
It is convenient to define E n for n ∈ N by

E n = E e,n , in O e , E n = E c,n , in O c .
We are now ready to derive formally our asymptotics. Replace the coefficients

(E m j ) j=1,•••3 and (E j ) j=1,•••3 in equations (4.4)-(4.5)-(4.6
) and in transmission conditions (4.7)-(4.8)-(4.9) by their respective formal expansion (5.1), and use the formal Taylor expansion (5.2). Observe that for any n ∈ N, we necessarily have

δdE n -μqE n = δ n 0 J, in O e ∪ O c , N ∂O ∧ E n | ∂O = 0, on ∂O. (5.3a) Observe that δE n = 0, in O c ∪ O e , (5.3b) 
since δJ = 0. It remains to build the appropriate transmission conditions by identifying the terms with the same power of ε.

Order 0

The term of order -2 in (4.4) vanishes hence ∂ 2 η E m,0 α = 0. From the divergence free condition (4.6) we infer ∂ η E m,0 3 = 0. Equality (4.7a) implies ∂ η E m,0 α = 0. Therefore the coefficients E m,0 j depend only on x T . From (4.7b)-(4.8b)-(4.9) we infer for n = 0, 1

∂ n β E e,0 α | x3=0 + = ∂ n β E c,0 α | x3=0 -, (5.4a 
)

q e ∂ n β E e,0 3 | x3=0 + = q c ∂ n β E c,0 3 | x3=0 -.
(5.4b)

Order 1

Since ∂ η E m,0 α and the terms of order -1 in (4.4) vanish, we infer

∂ 2 η E m,1 α = 0. (5.5) Hence ∂ η E m,1
α is constant with respect to η. Therefore, according to (4.7a)

1 µ e ∂ 3 E e,0 α -∂ α E e,0 3 
| x3=0 + = 1 µ c ∂ 3 E c,0 α -∂ α E c,0 3 | x3=0 -. (5.6)
According to (5.3)-(5.4)-(5.6) the 1-forms E e,0 and E c,0 satisfy the elliptic problem (2.10). According to (4.8b) and to (4.9), we infer

E m,0 α (x T , η) = E c,0 α (x T , 0), (5.7a) E m,0 3 (x T , η) = q c q m E c,0 3 (x T , 0). (5.7b)
Therefore the terms of order 0 are entirely determined. According to (4.8a), using (5.7) and since ∂ η E m,1 α does not depend on η according to (5.5), we infer

∂ η E m,1 α (x T , η) = q c q m ∂ α E c,0 3 | x3=0 -+ µ m µ c ∂ 3 E c,0 α -∂ α E c,0 3 | x3=0 -.
(5.8)

The transmission conditions follow

E e,1 α | x3=0 + + ∂ 3 E e,0 α | x3=0 + = ∂ η E m,1 α + E m,1 α | η=0 , and 
E m,1 α | η=0 = E c,1 α | x3=0 -.
Therefore we infer

E e,1 α | x3=0 + -E c,1 α | x3=0 -= ∂ η E m,1 α -∂ 3 E e,0 α | x3=0 + .
Using (5.8) and according to (5.4) and (5.6) we infer

E e,1 α | x3=0 + -E c,1 α | x3=0 -= q c q m - q c q e ∂ α E c,0 3 | x3=0 - + µ m -µ e µ c ∂ 3 E c,0 α -∂ α E c,0 3 | x3=0 -. (5.9) 
The divergence free condition leads to

∂ η E m,1 3 = - 1 g 0 ǫ αβ3 ǫ ικ3 ∂ α g 0 κβ g 0 E c,0 ι | x3=0 -+ 2H q c q m E c,0 3 | x3=0 -, (5.10) 
where H is given by (4.2). Transmission condition (4.9) implies

q e E e,1 3 | x3=0 + + q e ∂ 3 E e,0 3 | x3=0 + = q m ∂ η E m,1 3 + q c E c,1 3 | x3=0 -. (5.11) 
According to (2.10) E c,0 satisfy the divergence free condition hence

- 1 g 0 ǫ αβ3 ǫ ικ3 ∂ α g 0 κβ g 0 E c,0 ι x3=0 - = ∂ 3 E c,0 3 | x3=0 --2H E c,0 3 | x3=0 -, (5.12) 
and similarly for E e,0 by replacing E c,0

i by E e,0 i . From (5.10)-(5.12) we infer

∂ η E m,1 3 = ∂ 3 E c,0 3 | x3=0 -+ 2H q c q m -1 E c,0 3 | x3=0 -. (5.13) 
Moreover using (5.4) in (5.12) we infer

q e ∂ 3 E e,0 3 | x3=0 + = q e ∂ 3 E c,0 3 | x3=0 --2H (q e -q c )E c,0 3 | x3=0 -,
and therefore (5.11) with equality (4.2) implies

q e E e,1 3 | x3=0 + -q c E c,1 3 | x3=0 -= (q m -q e ) 1 g| x3=0 ∂ 3 √ g E e,0 3 x3=0 + 
.

(5.14)

Order 2

Since ∂ η E m,0 α = 0 we identify the terms in ε 2 in (4.4) to infer

∂ 2 η E m,2 λ = ∂ η ∂ λ E m,1 3 + ǫ αβ3 ǫ ικ3 g 0 λι g 0 ∂ η ε g m ακ √ g m η=0 ∂ η E m,1 β + ∂ κ 1 g 0 ∂ α E m,0 β - ∂ η ε g m ακ √ g m η=0 ∂ β E m,0 3 + µ m q m g 0 E m,0 λ . (5.15) 
Since the right-hand side of the previous equality does not depend on η, we have

1 µ e ∂ 3 E e,1 λ -∂ λ E e,1 3 x3=0 + - 1 µ c ∂ 3 E c,1 λ -∂ λ E c,1 3 
x3=0 -= 1 µ m ∂ 2 η E m,2 λ -∂ λ ∂ η E m,1 3 - 1 µ e ∂ 2 3 E e,0 λ | x3=0 + -∂ λ ∂ 3 E e,0 3 | x3=0 + .
Since δd E e,0 -µ e q e E e,0 = 0, explicit formulae of Appendix imply

∂ 2 3 E e,0 j | x3=0 + = µ e q e √ g E e,0 j + ∂ 3 ∂ λ E e,0 3 + ǫ αβ3 ǫ ικ3 g λι √ g ∂ 3 g ακ √ g ∂ 3 E e,0 β + ǫ αβ3 ǫ ικ3 g λι √ g ∂ κ 1 √ g ∂ α E e,0 β -∂ 3 g ακ √ g ∂ α E e,0 3 x3=0 + 
.

According to the transmission condition at the order 0, the following equalities hold

1 µ e ∂ λ E e,0 3 -∂ 3 E e,0 λ | x3=0 + = 1 µ m ∂ λ E m,0 3 -∂ η E m,1 λ | η=0 , E e,0 λ | x3=0 + = E m,0 λ | η=0 ,
hence we infer the following transmission conditions

1 µ e ∂ 3 E e,1 λ -∂ λ E e,1 3 - 1 µ c ∂ 3 E c,1 λ -∂ λ E c,1 3 = (q m -q e ) E e,0 λ | x3=0 + + 1 µ m - 1 µ e ǫ αβ3 ǫ ικ3 g λα √ g ∂ β 1 √ g ∂ ι E e,0 κ x3=0 + . (5.16) 
Therefore E 1 satisfies (5.3) for n = 1 with the transmission conditions (5.9)-(5.16) written in local coordinates. Equalities (5.8)-(5.13) lead to

E m,1 λ (x T , η) = η∂ η E m,1 λ + E c,1 λ | x3=0 -, E m,1 3 (x T , η) = η∂ η E m,1 3 + q c q m E c,1 3 | x3=0 -.
Remark 5.2. The coefficients at order 1 are now uniquely determined. Since

∂ η E m,2 α | η=0 = ∂ α E m,1 3 | η=0 - µ m µ c ∂ α E c,1 3 -∂ 3 E c,1 α | x3=0 -, ∂ η E m,2
λ is uniquely determined by (5.15), namely

∂ η E m,2 λ = η∂ 2 η E m,2 λ + ∂ α E m,1 3 | η=0 - µ m µ c ∂ α E c,1 3 -∂ 3 E c,1 α | x3=0 -. (5.17) 
Observe h that according to (5.14)

δS = -(q m -q e ) 1 g| x3=0 ∂ 3 √ g E e,0 3 x3=0 + . ( 6.2) 
In the cylinder Γ × (0, 1), the 1-form E m,0 equals

E m,0 = E c,0 α | x3=0 -dx α + q c q m E c,0 3 | x3=0 -dx 3 , (6.3) 
while the 1-form E m,1 equals

E m,1 = E c,1 α | x3=0 -+ η q c q m ∂ α E c,0 3 + µ m µ c ∂ 3 E c,0 α -∂ α E c,0 3 x3=0 - dx α + q c q m E c,1 3 | x3=0 -+ η ∂ 3 E c,0 3 + 2H q m q c -1 E c,0 3 x3=0 - dx 3 . 
(6.4)

Regularity results

We now present the regularity of the 1-forms E 0 and E 1 . Proposition 6.1. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and J belong to

H 1+s Ω 1 (O d0 e ).
Then the 1-forms E 0 and E 1 exist and are unique. Moreover the following regularity results hold

E e,0 ∈ H 3+s Ω 1 (O e ) , E c,0 ∈ H 3+s Ω 1 (O c ) , E e,1 ∈ H 2+s Ω 1 (O e ) , E c,1 ∈ H 2+s Ω 1 (O c ) .
Proof. All the assertions concerning E 0 are proved in the above Proposition 2.7. Since E e,0 and E c,0 belong respectively to H 3+s Ω 1 (O e ) and H 3+s Ω 1 (O c ), the forms S and T belong to the following Sobolev spaces

S ∈ H 1/2+s Ω 1 (Γ) , T ∈ H 3/2+s Ω 1 (Γ) . Moreover according to (6.2), δS ∈ H 3/2+s (Γ). Let C ∈ H 2+s Ω 1 (O c ) such that δC = 0, in O c ,    N Γ ∧ C| Γ = N Γ ∧ T, 1 µ c int(N Γ )dC| Γ = S, , q c int(N Γ )C| Γ = δS, δ(q c C| Γ ) = 0.
Observe that δdC -µ c q c C belongs to H s Ω 1 (O c ) . Denote by U the following 1-form Then U satisfies δdU -µ e q e U = 0, in O e , δdU -

U = E 1,e , in O e , U = E 1,c -C, in O c . h Since qeint(N Γ ) E e,1 | Γ + = int(N Γ ) (1/
µ c q c U = -δdC + µ c q c C, in O c , N ∂O ∧ U| ∂O = 0,
with the following homogeneous transmission conditions on Γ

[N Γ ∧ U] Γ = 0, 1 μ int(N Γ )dU Γ = 0, [q int(N Γ )U] Γ = 0.
Arguing as in Proposition 2.7, we infer Proposition 6.1.

The next Proposition gives the regularity of the 1-form E m,0 , E m,1 and E m,2 . Its proof easily comes from Proposition 6.1 and from the explicit expressions of the components of E m,n , for n = 0, 1, 2, given in Section 5. Proposition 6.2. Let Hypothesis 2.2 hold. Moreover let s ≥ 0 and suppose that J belongs to H 1+s Ω 1 O d0 e . By abuse of notations i , we define E m,2 using (5.17) by

E m,2 = x3/ε 0 ∂ η E m,2 α dη dx α .
Denote by C ∞ Ω 1 [0, 1], H 5/2+s-n Ω 1 (Γ) is the space of the 1-forms, which are smooth in the normal variable η, and which belong to H 5/2+s-n Ω 1 (Γ) at given η ∈ [0, 1]. Then for n = 0, 1, 2, the profile terms belong to E m,n ∈ C ∞ Ω 1 [0, 1], H 5/2+s-n Ω 1 (Γ) .

Convergence

Suppose that Hypothesis 2.2 holds, and let the source current density J belong to

H 3 Ω 1 O d0 e , with δJ = 0. It is convenient to define E e app = E e,0 + ε E e,1 , in O ε e , E c app = E c,0 + εE c,1 , in O c , ∀ x T , x 3 ∈ Γ × (0, ε), E m app • Φ(x T , x 3 ) = 2 n=0 ε n E m,n (x T , x 3 /ε),
and let

E app equal to E e app in O ε e , E c app in O c and to E m app in O ε m .
According to the construction of the coefficients (E m,n ) n=0,1,2 and using Proposition 6.2, there exists a

1-form G ∈ C ∞ Ω 1 [0, 1], H 1/2 Ω 1 (Γ) , such that δdE m app -µ m q m E m app = εG • Φ -1 , in O ε m , and for an ε-independent constant C > 0, sup η∈[0,1] G(., η) H 1/2 Ω 1 (Γ) C, sup η∈[0,1]
δG(., η) H 3/2 (Γ) C.

i Since E m,2 vanishes in x 3 = 0, it is not the third coefficient of the profile in Γ × (0, 1).

Define W by W = E-E app and denote by W e , W m and W c the respective restrictions of W to O ε e , O ε m and O c . In local coordinates, W e = W e i dx i , W m = W m i dx i and W c = W c i dx i . Theorem 2.9 is a straightforward corollary of the following result.

Theorem 6.3. There exists an ε-independent constant C > 0 such that

W e HΩ 1 (d,δ,O ε e ) + √ ε W m HΩ 1 (d,δ,O ε m ) + W c HΩ 1 (d,δ,Oc) Cε 2 .
Proof. The 1-form W satisfies

δdW -µqW = ε1 O ε m G, in O ε e ∪ O ε m ∪ O c , N ∂O ∧ W e | ∂O = 0, on ∂O, with the following transmission conditions for S ∈ {Γ ε , Γ} [N S ∧ W] S = -[N S ∧ E app ] S , (6.5a 
)

1 µ int(N S )dW S = - 1 µ int(N S )dE app S . (6.5b) 
Let E e app = E e,app i dx i . According to Proposition 6.1 E e app ∈ H 4 Ω 1 (O e ). Hence there exists f α ∈ H 1/2 (Γ) and g j ∈ H 3/2 (Γ) such that

(∂ 3 E e,app α -∂ α E e,app 3 ) | x3=ε = l=0,1 ε l ∂ l 3 (∂ 3 E e,app α -∂ α E e,app 3 
) | x3=0 + + ε 2 f α , E e,app j | x3=ε = E e,app j | x3=0 + + ε∂ 3 E e,app j | x3=0 + + ε 2 g j .
Moreover there exists a ε-independent constant C > 0 such that

|f α | H 1/2 (Γ) C, |g j | H 3/2 (Γ) C. (6.6) 
After simple calculations involving the explicit expressions of (E m,n ) n=0,1,2 in local coordinates, transmission conditions (6.5) are written

1 µ e (∂ 3 W e α -∂ α W e 3 ) | x3=ε + = 1 µ m (∂ 3 W m α -∂ α W m 3 ) | x3=ε -+ ε 2 µ e f α , 1 µ c (∂ 3 W c α -∂ α W c 3 ) | x3=0 -= 1 µ m (∂ 3 W m α -∂ α W m 3 ) | x3=0 + , W e α | x3=ε + = W m α | x3=ε -+ ε 2 g α , and W c α | x3=0 -= W m α | x3=0 + .
Observe that δW = -ε µ m q m 1 O ε m δG, and the following equalities hold

q e W e 3 | x3=ε + = q m W m 3 | x3=ε -+ q e ε 2 g 3 , q c W c 3 | x3=0 -= q m W m 3 | x3=0 + . We choose P = p i dx i in H 2 Ω 1 (O ε e ) such that N ∂O ∧ P| ∂O = 0, and P| x3=ε + = g i (x T )dx i . Since for ε ∈ (0, d 0 /2), the domain O ε e satisfies O e \ (V Γ ∩ O e ) ⊂ O ε e ⊂ O e
, and according to (6.6), there exists an ε-independent constant C > 0 such that

P H 2 Ω 1 (O ε e ) C.
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Defining W = W + ε 2 1 O ε e P, we infer δd W -µq W = ε 2 1 O ε e (δdP -µ e q e P) + ε1 O ε m G, in O, N ∂O ∧ W| ∂O = 0,
on ∂O, and the following transmission conditions hold

1 µ e ∂ 3 W e α -∂ α W e 3 | x3=ε + = 1 µ m ∂ 3 W m α -∂ α W m 3 | x3=ε -+ ε 2 µ e f α , 1 µ c ∂ 3 W c α -∂ α W c 3 | x3=0 -= 1 µ m ∂ 3 W m α -∂ α W m 3 | x3=0 + , W e α | x3=ε + = W m α | x3=ε -, W c α | x3=0 -= W m α | x3=0 + , where f α = f α -(∂ 3 p α -∂ α p 3 ) | x3=ε + . Moreover q e W e 3 | x3=ε + = q m W m 3 | x3=ε -, q c W c 3 | x3=0 -= q m W m 3 | x3=0 + . Since the functions f α are defined on Γ, it is convenient to define F α on Γ ε by ∀x T ∈ Γ, F α • Φ(x T , ε) = f α (x T ).
Denoting by G and F the following 1-forms defined by

G = ε1 O ε m G + ε 2 1 O ε e (δdP -µ e q e P) , F = F α dx α , there exists an ε-independent constant C > 0 such that G L 2 Ω 1 (O) Cε 3/2 , δ G L 2 (O) Cε 3/2 and F H -1/2 Ω 1 (Γε) C.
The 1-form W satisfies the following equalities

δd W -µq W = G, in O ε e ∪ O ε m ∪ O c , N ∂O ∧ W e | ∂O = 0, on ∂O, (6.7a) 
with the following transmission conditions on Γ ε and on Γ

1 µ e int(N Γε )d W e | Γ + ε = 1 µ m int(N Γε )d W m | Γ - ε + ε 2 µ e F, (6.7b 
) 1 µ m int(N Γ )d W m | Γ + = 1 µ c int(N Γ )d W c | Γ -, (6.7c 
)

N Γε ∧ W e | Γ + ε = N Γε ∧ W m | Γ - ε , and N Γ ∧ W m | Γ + = N Γ ∧ W c | Γ -. (6.7d) Moreover δ W = 1 µq δ G, in O ε e ∪ O ε m ∪ O c , (6.8) 
and G and F are such that

q e int(N Γε ) W e | Γ + ε = q m int(N Γε ) W m | Γ - ε , q c int(N Γ ) W c | Γ -= q m int(N Γ ) W m | Γ + .
Multiply (6.7) by W and integrate by parts with the help of (6.8) to infer

W e HΩ 1 (d,δ,O ε e ) + √ ε W m HΩ 1 (d,δ,O ε m ) + W c HΩ 1 (d,δ,Oc) Cε 2 , for an ε-independent constant C. Morever W = W + ε 2 1 O ε e P implies W e HΩ 1 (d,δ,O ε e ) + √ ε W m HΩ 1 (d,δ,O ε m ) + W c HΩ 1 (d,δ,Oc)
Cε 2 , (6.9) from which we infer Theorem 2.9.

Asymptotic expansion at any order

We may extend our derivation principle to obtain asymptotic transmission conditions at any order. Actually, there exists a recurrence formula, which is given in this section. The sketch of the proof of the expansion, which is similar to the proof of Theorem 6.3 is left to the reader. For (α, β, ι, κ) ∈ {1, 2} 4 define the following sequences (A l αβικ ) l∈N , (B l αβικ ) l∈N , (C l αβικ ) l∈N and (D l αβικ ) l∈N by

                       A l αβικ = ∂ l η ε l g m αι √ g m ∂ η ε g m βκ √ g m η=0 B l αβκ = ∂ l η ε l g m αβ √ g m ∂ κ 1 √ g m η=0 C l αβ = ∂ l η ε l g αβ g m η=0 ,            D l = ∂ l η ε l 1 √ g m ∂ η ε √ g m η=0 E l αβκ = ∂ l η ε l 1 √ g m ∂ α g βκ √ g m η=0 . Using (4.4)-(4.6), for k ≥ 1 we define ∂ 2 η E m,k+2 λ and ∂ η E m,k+1 3 
respectively by

∂ 2 η E m,k+2 λ = ∂ η ∂ λ E m,k+1 3 + ǫ αβ3 ǫ ικ3 A 0 λαικ ∂ η E m,k+1 β -µ m q m E m,k λ + ǫ αβ3 ǫ ικ3 k l=1 B l λικ ∂ α + C l λι ∂ κ ∂ α E m,k-l β + A l λαικ ∂ η E m,k+1-l β -∂ β E m,k-l 3 , ∂ η E m,k+1 3 = - k l=0 D l E m,k-l 3 + ǫ αβ3 ǫ ικ3 C l κβ ∂ α + E l αβκ E m,k-l ι
Define now the differential forms S k+1 and T k+1 by

S k+1 = 1 µ m 1 0 ∂ 2 η E m,k+2 λ -∂ λ ∂ η E m,k+1 3 dη - 1 µ e k l=0 ∂ l x3 ∂ 3 E e,k-l λ -∂ λ E e,k-l 3 x3=0 + dx λ , T k+1 = 1 0 ∂ η E m,k+1 λ dη - k l=0 ∂ l x3 E e,k-l λ dx λ .
The 1-forms E e,k+1 and E c,k+1 are therefore defined by δd E e,k+1 -µ e q e E e,k+1 = 0, in O e , δdE c,k+1 -µ c q c E c,k+1 = 0, in O c , N ∂O ∧ E e,k+1 | ∂O = 0, with the following transmission conditions on Γ 1

µ e int(N Γ )d E e,k+1 | Γ + - 1 µ c int(N Γ )dE c,k+1 | Γ -= S k+1 , N Γ ∧ E e,k+1 | Γ + -N Γ ∧ E c,k+1 | Γ -= N Γ ∧ T k+1 .
Since for n = 0, 1 the 1-forms (E 

= n k=0 ε k E k + O(ε n ).
C ∞ -diffeomrphism ψ such that ψ(y 1 , y 2 , y 3 ) = (x, y, z). The Euclidean metric in (y 1 , y 2 , y 3 )-coordinates is given by the matrix (g ij ) i,j=1,2,3 : g ij = ∂ yi ψ • ∂ yj ψ, where • denotes the Euclidean scalar product of R 3 . The inverse matrix of (g ij ) ij is denoted by (g ij ) ij and let g denote by its determinant g = det (g ij ) i,j=1,2,3 .

Denote by (dy 1 , dy 2 , dy 3 ) the basis of Ω 1 (M ) associated to (y 1 , y 2 , y 3 ). It is clear that 2-forms (dy 2 ∧ dy 3 , dy 3 ∧ dy 1 , dy 1 ∧ dy 2 ) is a basis of Ω 2 (M ). Since M is equipped with the Euclidean metric, we perform the change of coordinates ψ(y 1 , y 2 , y 3 ) = (x, y, z) to infer that the inner product ., . Ω k for k = 0, 1, 2, is determined in (y 1 , y 2 , y 3 )-coordinates by j the following equalities          F, G Ω 0 = F G , dy i , dy j Ω 1 = g ij , dy i dy k , dy j dy l Ω 2 = g ij g kl -g il g jk , F dy 1 dy 2 dy 3 , Gdy 1 dy 2 dy 3

Ω 3 = 1 g F G, (8.2) 
where F and G are smooth functions on M , and g is the determinant of (g ij ).

• Exterior products on R 3 . The exterior product between a k-form and a l-form equals zero as soon a k + l > 3. Moreover, for k ∈ {0, • • • , 3}, the exterior product between a 0-form and a k-form is the usual scalar multiplication between a function and a k-form. The following formulae hold (see Flanders [START_REF] Flanders | Differential forms wih applications to the physical sciences[END_REF]). ⊲ Exterior product of 1-forms. Let λ = λ i dy i and µ = µ i dy i be two 1-forms, then λ ∧ µ = λ i µ j dy i dy j = ǫ ijk 2 (ǫ klm λ l µ m ) dy i dy j .

⊲ Exterior product between a 2-form and a 1-form. Let λ = ǫ ijk 2 λ k dy i dy j and µ = µ i dy i , then λ ∧ µ = λ k µ k dy 1 dy 2 dy 3 .

• Expression of d. A straigthforward application of the reccurence formula for d given Schwarz [START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF] implies the following formulae. j To simplify notations, we omit the sign ∧ between the differential forms dy i and dy j , for i, j = 1, 2, 3.

Proposition 8.2 (Star Hodge operator). Star Hodge operator is defined in R 3 by the following formula.

• Hodge on functions and 3-forms. Let S be a 0-form and T = τ dy 1 dy 2 dy 3 be a 3-form. Then ⋆S = √ gS dy 1 dy 2 dy 3 , ⋆T = 1 √ g τ.

• Hodge on 1-forms. Let R = R i dy i be a 1-form. Then ⋆R is the 2-form defined by ⋆R = ǫ ijk 2 √ gg kl R l dy i dy j .

• Hodge on 2-forms. Let S = ǫ ijk 2 S k dy i dy j be a 2-form. Then ⋆S is the 1-form equal to

⋆S = 1 √ g g ik S k dy i .
Proof. If ω is a k-form in R 3 , then ⋆ω is the 3 -k form such that ∀η ∈ Ω k (M ), η ∧ ⋆ω = η, ω Ω k (M ) √ g dy 1 dy 2 dy 3 .

Applying the above formulae of the exterior products, and equalities (8.2), we infer the proposition.

Proposition 8.3 (The codifferential operator δ). According to the codifferential definition (see Schwarz [START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF]) the following formulae hold. Using duality between the interior and the exterior product [START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF], we infer the following proposition. Proposition 8.5 (Interior product). Let N be a vector-field identified with the corresponding 1-form N = N i dy i .

• Interior product of a vector-field on a 1-form. Let µ = µ i dy i . Then int(N )µ = g ij N j µ i .

(8.7)

• Interior product of a vector-field on a 2-form. Let µ = µ ij dy i dy j , then int(N )µ = g rl µ ij N k g ik g jl -g il g jk dy r . (8.8)

  4). Denote by O e the domain O e = O \ O c . Define μ and q by

Fig. 2 .
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 3 Fig. 3. Real part of the electric field (x-component) for E 0 (left) and E 1 (right).
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 4 Fig. 4. Relative error between the model and the exact solution.
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 5 Fig. 5. Relative error between the model and the exact solution versus frequency.

  µe)δd E e,1 | Γ + using (8.1) since dN Γ = 0 we inferint(N Γ ) (1/µe)δd E e,1 | Γ + = -δ (1/µe)int(N Γ )d E e,1 | Γ + , and similarly for E c,1 . Therefore according to (6.1a) we infer qeint(N Γ ) E e,1 | Γ + -qcint(N Γ )E c,1 | Γ -= -δS, hence(6.2) according to(5.14).

⊲∂µ j ∂y i dy i dy j = ǫ ijk 2 ǫ klm ∂µ m ∂y l dy i dy j . ⊲ d on 2 -

 2 d on 0-forms. Let λ be a 0-form, i.e. λ is a function. Then dλ = ∂λ ∂y i dy i . ⊲ d on 1-forms. Let µ = µ i dy i , then dµ equals dµ = forms. Let λ = ǫ ijk 2 λ k dy i d j be a 2-form, then we have dλ = ∂λ k ∂y k dy 1 dy 2 dy 3 .

  m,n , E c,n , E e,n ) n=0,1 are determined by (2.10)-(6.3)-(6.1)-(6.4), and since ∂ η E m,2 λ is also known according to Remark 5.2, the recurrence process is initialized. The reader could prove that outside a neighborhood of O ε

m the following estimate holds E

  • Codifferential of 1-forms. Let µ = µ i dy i , thenProof. Since the codifferential on k-forms in R 3 is defined by δ = (-1) 3k ⋆ d⋆, a straightforward application of the formulae of the differential operator d and the use of Proposition 8.2 lead to the formulae of the codifferential operator. Proposition 8.3 with the formulae of d differential operator implies the following corollary.• Let λ = λ i dy i be a 1-form, then δdλ = ǫ ijk ǫ lmn

	• Let f be a function. Then ∆f = -δdf =	1 √ g	∂ ∂y k	√ gg kl ∂ ∂y l	f .	(8.4)
	g ri √ g	∂ ∂y j	g kl √ g	∂ ∂y m	λ n dy r ,		(8.5)
	∆λ = -ǫ ijk ǫ lmn	g ri √ g	∂ ∂y j	g kl √ g	∂ ∂y m	λ n -	∂ ∂y r	1 √ g	∂ ∂y k	√ gg kl λ l	dy r . (8.6)
				δµ = -	1 √ g	∂ ∂y k	√ gg kl µ l .	(8.3)
	• Codifferential of 2-forms. Let λ =	ǫ ijk 2	λ k dy i dy j , then
			δλ = ǫ jkl	g ij √ g	∂ ∂y k	g lm √ g	λ m dy i .

Corollary 8.4 

(δd and ∆ operators on functions and on 1-forms). Recall that ∆ = -(δd + dδ).

f For a sufficiently smooth k-form φ defined in O, we denote by φ| Γ its restriction to Γ. In addition, if φ is regular in Oe and Oc but not in O, we denote by φ| Γ + (resp. φ| Γ -) the restriction to Γ of φ from the domain Oe (resp. Oc).
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△

Remark 5.3. Transmission condition (5.14) might be obtained straightforward from (5.3)-(5.9)- (5.16). Writing δd E e,1 = a e,1 i dx i and δdE c,1 = a c,1 i dx i we infer

, and similarly for a e,1 3 by replacing E c,1 by E e,1 . According to (5.16) we have

The divergence free property of E e,0 applied in

therefore, we infer

, which is exactly condition (5.14). △

Justification of the expansion

Let us rewrite the equations satisfied by the first two terms of the asymptotic expansion of E in terms of differential forms. Denote by S and T the following forms

The reader easily verifies that the definitions (2.13)-(2.14) coincide with the above expressions of S and T. The 1-form E 0 satisfies (2.10) in a weak sense and E 1 satisfy (5.3) with the following transmission conditions on Γ according to (5.9)-(5.14)

)

Appendix: Explicit formulae

We refer the reader to [START_REF] Flanders | Differential forms wih applications to the physical sciences[END_REF][START_REF] Schwarz | Hodge Decomposition-A method for solving boundary value problems[END_REF] for the basic notions of differential calculus for a general compact connected oriented Riemannian manifold (M, g) of R n with smooth compact boundary ∂M . The following property has been used throughout the paper.

Property 8.1 (Useful equality). Suppose that M is a compact connected oriented Riemanian manifold without boundary of R n , and let k be an integer smaller that n. Let ω is a k-form and Y is a smooth 1-form such that dY = 0. Then applying the above Green formula with the help of the definition of the inner product we infer that for ω ∈ HΩ k (δ, M )

Proof. Actually, for any η ∈ HΩ k-2 (d, M ), we have

We now present explicit formulae of the differential calculus for a manifold M ⊂ R 3 endowed with the Euclidean metric. Denote by (x, y, z) the usual Euclidean coordinates of M and let (y 1 , y 2 , y 3 ) another system of coordinates: there exists a