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Abstract

We derive a Hoare-Floyd logic for non-local jumps and mutdtiyher-order procedural variables
from a formulae-as-types notion of control for classicalitod he main contribution of this work is
the design of an imperative dependent type system for ncadjlomps which corresponds to classical
logic but where the famousonsequence rulis still derivable.

Hoare-Floyd logics for non-local jumps are notorioushfidiilt to obtain, especially in the presence
of local mutable variables [7]. As far as we know, the questibproving the correctness of imperative
programs which combine local mutatii@her-order procedural variableand non-local jumps has not
even been addressed. On the other hand, we know since Grjfforieering work [3] how to prove the
correctness of (higher-order) functional programs withtoal in direct style, thanks to the formulae-as-
types interpretation of classical logic.

In [1], Chapter 3, we have thus extended the formulee-asstppéion of control to imperative pro-
grams with higher-order procedural mutable variables amdlacal jumps. Our technique, which was
inspired by Landin’s seminal paper| [4], consists in definamgimperative dependent type systén
by translation into a functional dependent type system d¢iwlig actually Leivant'sM L 1P [5]). This
imperative language, calleddoP”, was defined by the authors [n [2].

Similarly to ML 1P, the imperative type system is parametrized by a first-osifgmature and an
equational systerd” which defines a set of functions in the style of Herbrand-&6dhe syntax of
imperative types ofD (with dependent procedure types and dependent recorde feltowing:

0,7 ::=nat(n) | procvi(in T;out ) | 31(01,...,0n) | N=m

Typing judgements of D have the formT";Q - e: ¢ if eis an expression and;Q s> Q' if sis a
sequence, where environmeiitsand Q corresponds respectively to immutable and mutable vasabl
Note that our type system seudo-dynami the sense that the type of mutable variables can change
in a sequence and the new types are give®byas in [8]). For instance, here is the typing rule of the
for loop:
;Q,X: 6[0/i] Fe:nat(n) ry:nat(i);X: 0+ s> X:0[s(i)/i
;Q,X: 8[0/i] Ffor y:=0until e{s}y > X: d[n/i]

Embedding a Hoare-Floyd logic

It is almost straightforward to embed a Hoare-Floyd logio ifD. Indeed, let us take a global mutable
variable, dubbedssert, and let us assume that this global variable is simulatelddrusuaktate-passing
style (the variable is passed as an explicitandout parameter to each procedure call). Consequently,
any sequence shall be typed with a sequent of the oy, assert : ¢ - s> Q' assert : . If we
now introduce the usual Hoare notation for triples (whictiesi the name of global variabéessert),

we obtain judgments of the forf; Q - {¢}s> Q'{Y}. Rules very similar to Hoare rules are then
derivable: for instance, the type a$sert corresponds to the invariant in a loop, and to the typpref
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andpostconditions in a procedure type. The only rule which is notclity derivable is the well-known
consequence rule

rQr¢' =¢ MQF{¢}s> Q{yY} rory=y
MQkF{¢'}s> Q{yY'}

This rule deserves a specific treatment since no proof-teraguired for the proof obligations. However,
it is well-known that in intuitionistic logic the proof of see formulas have no computational content
(they are calledlata-mutein [5]). The consequence rule is thus derivable if we resrigthout loss of
generality) the set of assertions to data-mute formulas.

Non-local jumps

The imperative language was then extendedlin [1] with laBetsnon-local jumps. At the (dependent)
type level, this extension (calldd®) corresponds to an extension from intuitionistic logic lassical
logic. For instance, the following typing rules for labetsgdgumps are derivable (where first-class labels
are typed by the negation):

rk:—-6;Z2:7+s>2:0 rQz:6-9>9Q rQz:7-k: -0 rQz:7-8:0
rQ,2:THk:{s}z; s>Q r;Q,z2:7+jump(k,z>2: 1

However, deriving a Hoare-Floyd logic for non-local jumpsiot straightforward since there is no ob-
vious notion ofdata-muteformula in classical logic (as noted also if [6]), and thus donsequence
rule is in general not derivable. The problem comes from dlog that, in presence of control operators,
the proof-terms corresponding to proof-obligations magriact with the program. We shall exhibit an
example of such program and we shall present a general @oligithis problem which relies on the
distinction between purely functional terms and impegmfwocedures (possibly containing non-local
jumps).
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