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Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control

We derive a Hoare-Floyd logic for non-local jumps and mutable higher-order procedural variables from a formulae-as-types notion of control for classical logic. The main contribution of this work is the design of an imperative dependent type system for non-local jumps which corresponds to classical logic but where the famous consequence rule is still derivable.

Hoare-Floyd logics for non-local jumps are notoriously difficult to obtain, especially in the presence of local mutable variables [START_REF] Tennent | Continuations in Possible-World Semantics[END_REF]. As far as we know, the question of proving the correctness of imperative programs which combine local mutable higher-order procedural variables and non-local jumps has not even been addressed. On the other hand, we know since Griffin's pioneering work [START_REF] Griffin | A formulae-as-types notion of control[END_REF] how to prove the correctness of (higher-order) functional programs with control in direct style, thanks to the formulae-astypes interpretation of classical logic.

In [START_REF] Crolard | Certification de programmes impératifs d'ordre supérieur avec mécanismes de contrôle[END_REF], Chapter 3, we have thus extended the formulae-as-types notion of control to imperative programs with higher-order procedural mutable variables and non-local jumps. Our technique, which was inspired by Landin's seminal paper [START_REF] Landin | A correspondence between ALGOL 60 and Church's lambda-notation: part I[END_REF], consists in defining an imperative dependent type system ID by translation into a functional dependent type system (which is actually Leivant's ML1P [START_REF] Leivant | Contracting proofs to programs[END_REF]). This imperative language, called LOOP ω , was defined by the authors in [START_REF] Crolard | Extending the Loop Language with Higher-Order Procedural Variables[END_REF].

Similarly to ML1P, the imperative type system is parametrized by a first-order signature and an equational system E which defines a set of functions in the style of Herbrand-Gödel. The syntax of imperative types of ID (with dependent procedure types and dependent records) is the following:

σ , τ : : = nat(n) | proc ∀ ı(in τ; out σ ) | ∃ ı(σ 1 , . . . , σ n ) | n = m
Typing judgements of ID have the form Γ; Ω ⊢ e : ψ if e is an expression and Γ; Ω ⊢ s ⊲ Ω ′ if s is a sequence, where environments Γ and Ω corresponds respectively to immutable and mutable variables. Note that our type system is pseudo-dynamic in the sense that the type of mutable variables can change in a sequence and the new types are given by Ω ′ (as in [START_REF] Xi | Imperative Programming with Dependent Types[END_REF]). For instance, here is the typing rule of the for loop:

Γ; Ω, x : σ[0/i] ⊢ e : nat(n) Γ, y : nat(i); x : σ ⊢ s ⊲ x : σ [s(i)/i] Γ; Ω, x : σ [0/i] ⊢ for y := 0 until e {s} x ⊲ x : σ [n/i]

Embedding a Hoare-Floyd logic

It is almost straightforward to embed a Hoare-Floyd logic into ID. Indeed, let us take a global mutable variable, dubbed assert, and let us assume that this global variable is simulated in the usual state-passing style (the variable is passed as an explicit in and out parameter to each procedure call). Consequently, any sequence shall be typed with a sequent of the form Γ; Ω, assert : ϕ ⊢ s ⊲ Ω ′ , assert : ψ. If we now introduce the usual Hoare notation for triples (which hides the name of global variable assert), we obtain judgments of the form Γ; Ω ⊢ {ϕ}s ⊲ Ω ′ {ψ}. Rules very similar to Hoare rules are then derivable: for instance, the type of assert corresponds to the invariant in a loop, and to the type of pre and post conditions in a procedure type. The only rule which is not directly derivable is the well-known consequence rule:

Γ, Ω ⊢ ϕ ′ ⇒ ϕ Γ; Ω ⊢ {ϕ}s ⊲ Ω ′ {ψ} Γ, Ω ⊢ ψ ⇒ ψ ′ Γ; Ω ⊢ {ϕ ′ }s ⊲ Ω ′ {ψ ′ }
This rule deserves a specific treatment since no proof-term is required for the proof obligations. However, it is well-known that in intuitionistic logic the proof of some formulas have no computational content (they are called data-mute in [START_REF] Leivant | Contracting proofs to programs[END_REF]). The consequence rule is thus derivable if we restrict (without loss of generality) the set of assertions to data-mute formulas.

Non-local jumps

The imperative language was then extended in [START_REF] Crolard | Certification de programmes impératifs d'ordre supérieur avec mécanismes de contrôle[END_REF] with labels and non-local jumps. At the (dependent) type level, this extension (called ID c ) corresponds to an extension from intuitionistic logic to classical logic. For instance, the following typing rules for labels and jumps are derivable (where first-class labels are typed by the negation):

Γ, k : ¬ σ; z : τ ⊢ s ⊲ z : σ Γ; Ω, z : σ ⊢ s ′ ⊲ Ω ′ Γ; Ω, z : τ ⊢ k : {s} z ; s ′ ⊲ Ω ′ Γ; Ω, z : τ ⊢ k : ¬ σ Γ; Ω, z : τ ⊢ e : σ Γ; Ω, z : τ ⊢ jump(k, e) z ⊲ z : τ ′
However, deriving a Hoare-Floyd logic for non-local jumps is not straightforward since there is no obvious notion of data-mute formula in classical logic (as noted also in [START_REF] Makarov | Practical Program Extraction from Classical Proofs[END_REF]), and thus the consequence rule is in general not derivable. The problem comes from the fact that, in presence of control operators, the proof-terms corresponding to proof-obligations may interact with the program. We shall exhibit an example of such program and we shall present a general solution to this problem which relies on the distinction between purely functional terms and imperative procedures (possibly containing non-local jumps).