Tristan Crolard
email: crolard@u-pec.fr

Emmanuel Polonowski
email: polonowski@u-pec.fr

Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control

We derive a Hoare-Floyd logic for non-local jumps and mutable higher-order procedural variables from a formulae-as-types notion of control for classical logic. The main contribution of this work is the design of an imperative dependent type system for non-local jumps which corresponds to classical logic but where the famous consequence rule is still derivable.

Hoare-Floyd logics for non-local jumps are notoriously difficult to obtain, especially in the presence of local mutable variables [START_REF] Tennent | Continuations in Possible-World Semantics[END_REF]. As far as we know, the question of proving the correctness of imperative programs which combine local mutable higher-order procedural variables and non-local jumps has not even been addressed. On the other hand, we know since Griffin's pioneering work [START_REF] Griffin | A formulae-as-types notion of control[END_REF] how to prove the correctness of (higher-order) functional programs with control in direct style, thanks to the formulae-astypes interpretation of classical logic.

In [START_REF] Crolard | Certification de programmes impératifs d'ordre supérieur avec mécanismes de contrôle[END_REF], Chapter 3, we have thus extended the formulae-as-types notion of control to imperative programs with higher-order procedural mutable variables and non-local jumps. Our technique, which was inspired by Landin's seminal paper [START_REF] Landin | A correspondence between ALGOL 60 and Church's lambda-notation: part I[END_REF], consists in defining an imperative dependent type system ID by translation into a functional dependent type system (which is actually Leivant's ML1P [START_REF] Leivant | Contracting proofs to programs[END_REF]). This imperative language, called LOOP ω , was defined by the authors in [START_REF] Crolard | Extending the Loop Language with Higher-Order Procedural Variables[END_REF].

Similarly to ML1P, the imperative type system is parametrized by a first-order signature and an equational system E which defines a set of functions in the style of Herbrand-Gödel. The syntax of imperative types of ID (with dependent procedure types and dependent records) is the following:

σ , τ : : = nat(n) | proc ∀ ı(in τ; out σ) | ∃ ı(σ 1 , . . . , σ n) | n = m
Typing judgements of ID have the form Γ; Ω ⊢ e : ψ if e is an expression and Γ; Ω ⊢ s ⊲ Ω ′ if s is a sequence, where environments Γ and Ω corresponds respectively to immutable and mutable variables. Note that our type system is pseudo-dynamic in the sense that the type of mutable variables can change in a sequence and the new types are given by Ω ′ (as in [START_REF] Xi | Imperative Programming with Dependent Types[END_REF]). For instance, here is the typing rule of the for loop:

Γ; Ω, x : σ[0/i] ⊢ e : nat(n) Γ, y : nat(i); x : σ ⊢ s ⊲ x : σ [s(i)/i] Γ; Ω, x : σ [0/i] ⊢ for y := 0 until e {s} x ⊲ x : σ [n/i]

Embedding a Hoare-Floyd logic

It is almost straightforward to embed a Hoare-Floyd logic into ID. Indeed, let us take a global mutable variable, dubbed assert, and let us assume that this global variable is simulated in the usual state-passing style (the variable is passed as an explicit in and out parameter to each procedure call). Consequently, any sequence shall be typed with a sequent of the form Γ; Ω, assert : ϕ ⊢ s ⊲ Ω ′ , assert : ψ. If we now introduce the usual Hoare notation for triples (which hides the name of global variable assert), we obtain judgments of the form Γ; Ω ⊢ {ϕ}s ⊲ Ω ′ {ψ}. Rules very similar to Hoare rules are then derivable: for instance, the type of assert corresponds to the invariant in a loop, and to the type of pre and post conditions in a procedure type. The only rule which is not directly derivable is the well-known consequence rule:

Γ, Ω ⊢ ϕ ′ ⇒ ϕ Γ; Ω ⊢ {ϕ}s ⊲ Ω ′ {ψ} Γ, Ω ⊢ ψ ⇒ ψ ′ Γ; Ω ⊢ {ϕ ′ }s ⊲ Ω ′ {ψ ′ }
This rule deserves a specific treatment since no proof-term is required for the proof obligations. However, it is well-known that in intuitionistic logic the proof of some formulas have no computational content (they are called data-mute in [START_REF] Leivant | Contracting proofs to programs[END_REF]). The consequence rule is thus derivable if we restrict (without loss of generality) the set of assertions to data-mute formulas.

Non-local jumps

The imperative language was then extended in [START_REF] Crolard | Certification de programmes impératifs d'ordre supérieur avec mécanismes de contrôle[END_REF] with labels and non-local jumps. At the (dependent) type level, this extension (called ID c) corresponds to an extension from intuitionistic logic to classical logic. For instance, the following typing rules for labels and jumps are derivable (where first-class labels are typed by the negation):

Γ, k : ¬ σ; z : τ ⊢ s ⊲ z : σ Γ; Ω, z : σ ⊢ s ′ ⊲ Ω ′ Γ; Ω, z : τ ⊢ k : {s} z ; s ′ ⊲ Ω ′ Γ; Ω, z : τ ⊢ k : ¬ σ Γ; Ω, z : τ ⊢ e : σ Γ; Ω, z : τ ⊢ jump(k, e) z ⊲ z : τ ′
However, deriving a Hoare-Floyd logic for non-local jumps is not straightforward since there is no obvious notion of data-mute formula in classical logic (as noted also in [START_REF] Makarov | Practical Program Extraction from Classical Proofs[END_REF]), and thus the consequence rule is in general not derivable. The problem comes from the fact that, in presence of control operators, the proof-terms corresponding to proof-obligations may interact with the program. We shall exhibit an example of such program and we shall present a general solution to this problem which relies on the distinction between purely functional terms and imperative procedures (possibly containing non-local jumps).