Laurent Gosse 
email: l.gosse@ba.iac.cnr.it
  
A well-balanced scheme for kinetic models of chemotaxis derived from one-dimensional local forward-backward problems

Keywords: Chemotaxis "run and tumble" models, Case's elementary solutions, One-dimensional kinetic equations, Slab geometry, Rank-one perturbation and Sherman-Morrison formula, Stabilization in large times, Well-balanced schemes 33E30, 65M06, 82D99, 92B05

Numerical approximation of one-dimensional kinetic models for directed motion of bacterial populations in response to a chemical gradient, usually called chemotaxis, is considered in the framework of well-balanced (WB) schemes. The validity of one-dimensional models have been shown to be relevant for the simulation of more general situations with symmetry in all but one direction along which appears the chemical attractant gradient. Two main categories are considered depending on whether or not the kinetic equation with specular boundary conditions admits non-constant macroscopic densities for large times. The WB schemes are endowed with the property of having zero artificial viscosity at steady-state; in particular they furnish numerical solutions for which the macroscopic flux vanishes, a feature that more conventional discretizations can miss. A class of equations which admit constant asymptotic states can be treated by a slight variation of the method of Case's elementary solutions originally developed for radiative transfer problems. More involved models which can display concentrations are handled through a different, but closely related, treatment of the tumbling term at the computational grid's interfaces. Both types of WB algorithms can be implemented efficiently relying on the Sherman-Morrison formula for computing interface values. Transient and stationary numerical results are displayed for several test-cases.

Introduction

Chemotaxis describes the directed movement of a large population of micro-organisms (cells, bacteria, ...) in response to a gradient of a chemical substance, usually referred to as the chemo-attractant. Indeed the swimming displacement of certain flagellated bacteria can be described by straight-line "runs" suddenly interrupted by "tumbles" of very short duration (see realistic time-scale measures in [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF], Table 1.1, and [START_REF] Perthame | Transport equations in biology[END_REF]). Usually, cell velocities are of the order of 10/20 µm/sec, run lengths can be of 10/20 cell diameters and tumbling lasts at most 0.1 sec. In the absence of chemo-attractant, their motion would be a random walk; however, its presence results in a decrease of tumbling frequency when cells move in the direction of increasing concentration, a process called chemokinesis which tends to increase run lengths in the favorable direction.

One-dimensional reduction of Alt-Stroock's model

The most general kinetic model for directed movement of bacterial populations is probably the "run and tumble" equation proposed by Alt [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF], which reads

∂ t f (t, x, v, τ ) + ∂ τ f + v • ∇ x f + γ(t, x, v, τ )f = 0, τ > 0,
in case the mean velocity of organisms is assumed to be constant in x ∈ R 3 . When τ = 0,

f (t, x, v, 0) = ∞ 0 R 3 γ(t, x, v , τ )f (t, x, v , τ )k(t; x, v , v)dv dτ .
The variables t > 0, x ∈ R 3 , v ∈ R 3 , τ ≥ 0 stand for the time, spatial position, velocity and run time. The kinetic density f ≥ 0 represents the statistical repartition of cells at time t, with velocity v at the position x with a run time τ . The function γ(t, x, v, τ ) is the probability per unit time that a cell moving in direction v located at x at time t with run time τ (counted starting from the beginning of the run) tumbles instantaneously; in such a case, the probability that this cell chooses the particular direction v afterwards is given by k(t; x, v, v). The first equation quantifies the rate of change in the population in t, x, v with run time τ by means of a convection term rendering the net motion of cells in the vicinity of x and a loss term due to tumbling process (with probability γ). The second equation states that the only initial (meaning that the run time τ is zero) distribution of cells moving in the direction v comes from the other cells which were moving with velocity v and tumbled at time t for any run time τ .

It can be considered reasonable, as a first set of simplifying hypotheses, to assume that γ is independent of τ and that the chemo-attractant presence doesn't affect turning probabilities, thus k becomes a function of v, v only [START_REF] Macnab | The gradient-sensing mechanism in bacterial chemotaxis[END_REF]. The resulting model is still generally too involved and a second simplification can be made by eliminating the dependence on the run time τ of the organisms. By defining the probability per unit time p(t; x, v , v) that a cell with velocity v tumbles in t, x ∈ R + × R 3 and changes direction to v, a more tractable kinetic equation is derived for a reduced kinetic density (still denoted by f ):

∂ t f (t, x, v) + v • ∇ x f = R 3 p(t; x, v , v)f (t, x, v )dv -f R 3 p(t; x, v, v )dv . ( 1 
)
This equation is referred to as the Stroock's model [START_REF] Stroock | Some stochastic processes which arise from a model of the motion of a bacterium[END_REF] (it appears also in [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF][START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF]), see also [START_REF] Inonu | Developments in transport theory[END_REF] without birth/death term in [START_REF] Othmer | Models of dispersal in biological systems[END_REF]; it can be deduced from Alt's model by assuming that the run times τ follow a Poisson distribution [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF]. This type of motion belongs to the class of velocity-jump processes because individuals run in given directions, but at random instants, they stop in order to choose a new velocity, and the time spent in the latter stage is small compared to the run length, thus this tumbling step can be considered instantaneous.

As the three-dimensional framework can be still considered too heavy for the development of efficient numerical strategies, a reduction to a more convenient one-dimensional setting can be performed following some computations in [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF] while maintaining some realistic features. Basically, the one-dimensional models we intend to study hereafter correspond to particular solutions of (1) which display rotational symmetry with respect to one axis (this is reminiscent to 1-D models studied in [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice III. From ab initio models to WKB for Schrödinger-Poisson[END_REF] being invariant by translation in 2 directions) and for which chemo-attractant gradients appear along the corresponding direction only. Denoting x = (x, y, z) ∈ R 3 and assuming that velocities are of unit length, v = (v x , v y , v z ) ∈ S 2 , this peculiar direction can be chosen as z and spherical coordinates yield in standard notation: v = (sin θ cos φ, sin θ sin φ, cos θ).

Symmetry about the z coordinate means that v is independent of φ thus by integrating the kinetic density in x, y and φ ∈ (0, 2π), one obtains a so-called "reduced distribution" (still denoted by f ) depending on t, z, cos θ. Computations displayed in pages 1436/1437 of [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF] show that this reduced kinetic density is solution of

∂ t f (t, z, cos θ) + cos θ∂ z f = π 0 γ(t, z, θ )K(θ, θ )f (t, z, cos θ ) sin θ dθ -γ(t, z, θ)f,
with γ depending on a reduced set of coordinates and K a reduced turning probability,

K(θ, θ ) = 1 2π 2π 0 2π 0 k(v , v)dφ dφ.
It remains to let the one-dimensional velocity in the z direction v ∈ [-1, 1] stand for cos θ in order to derive the linear equation which is the main topic of this paper:

∂ t f (t, z, v) + v∂ z f = 1 -1 γ(t, z, v )K(v, v )f (t, z, v )dv -γ(t, z, v)f. (2) 
Two representative cases of (2), already studied in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF][START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF], will be scrutinized in detail in the forthcoming sections. Numerical approximations will be derived and their largetime behavior will be studied. The kinetic equation ( 2) can be completed by another one governing the time evolution of the chemo-attractant substance: let S(t, z) stand for its concentration. Creation, adsorption and diffusion can be rendered through

∂ t S = D∂ zz S + αρ -βS, ρ(t, z) = 1 -1 f (t, z, v)dv, (D, α, β) ∈ (R + ) 3 . (3) 
Of course, since γ generally depends on t, z through ∂ z S the coupling of (3) with (2) leads to a weakly nonlinear one-dimensional problem; see also [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF][START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF][START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF].

Well-balanced techniques for 1-D linear kinetic equations

Now it becomes necessary to quickly recall the main topics about the so-called well-balanced numerical approximations of linear kinetic equations of the type (2), sometimes referred to as of Barbashin type [START_REF] Appell | Boundary value problems for integrodifferential equations of Barbashin type[END_REF]. Such methods have already been used in the context of solving radiative transfer problems [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF] and closely follow the classic method of Case's elementary solutions [START_REF] Aamodt | Useful identities for half-space problems in linear transport theory[END_REF][START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF][START_REF] Case | Linear transport theory[END_REF][START_REF] Klinc | On completeness of eigenfunctions of the one-speed transport equation[END_REF], further developed by Siewert and co-workers [START_REF] Barichello | Unified Solutions to Classical Flow Problems Based on the BGK Model[END_REF][START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF][START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF]. Another area of application is the treatment of linearized Boltzmann models [START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF]: in this case, one follows early papers of Cercignani [START_REF] Cercignani | Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem[END_REF][START_REF] Cercignani | The method of elementary solutions for kinetic models with velocity dependent collision frequency[END_REF].

Let's consider a uniform Cartesian computational grid determined by the positive parameters ∆z, ∆t such that z j = j∆z for j ∈ Z with a generic cell C j = [z j-1 2 , z j+ 1 2 ]. The Cauchy problem for the simple time-dependent kinetic equation reads:

∂ t f + v∂ z f = 1 2 1 -1 f (t, x, v )dv -f, x ∈ R, v ∈ [-1, 1], t > 0 (4) 
with initial data f (t = 0) = f 0 . Denoting the macroscopic density ρ(t, x) = 1 -1 f (t, x, v)dv, the main idea for deriving a well-balanced numerical scheme for (4) is to set up a classical Godunov scheme for the "localized" equation:

∂ t f + v∂ z f = ∆z j∈Z ρ 2 -f δ(z -z j-1 2 ), (5) 
where δ stands for the Dirac mass in z = 0. Consistency has been investigated for nonlinear problems in [START_REF] Amadori | Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws[END_REF]; formally, it is a consequence of the easy formula ∆z j∈Z δ(z -z j-1 2 ) 1 when ∆z → 0. Considering (5) instead of (4) allows to keep elementary Riemann problems homogeneous, hence self-similar, at the price of introducing a term on the right-hand side which can become ambiguous if f is discontinuous at locations z = z j-1 2 . However, such a non-conservative product [START_REF] Ph | Representation of weak limits and definition of nonconservative products[END_REF] can be rigorously defined within the theory of distributions; the resulting non-conservative Riemann problem contains one supplementary static wave (called "zero-wave" in [START_REF] Amadori | Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws[END_REF] and "standing wave" in [START_REF] Isaacson | Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law[END_REF]) which renders the effects of the relaxation term concentrated on the discrete lattice. It has been shown (see e.g. [START_REF] Gosse | Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes[END_REF]) that the correct jump relation across this "zero-wave" is obtained through solving the forwardbackward problem [START_REF] Bart | Linear integral equations of the third kind[END_REF][START_REF] Beals | An abstract treatment of some forward-backward problems of transport and scattering[END_REF] for the stationary equation of (4):

v∂ z f = 1 2 1 -1 f (x, v )dv -f , x ∈ [0, ∆z], v ∈ [-1, 1], (6) 
with inflow boundary conditions,

f (0, v > 0) = f lef t (v), f (∆z, v < 0) = f right (v).
We emphasize that this construction is very similar to the extension of the classical I'lin scheme for parabolic equations presented in [START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF]. From this perspective, well-balanced schemes are by no means restricted to hyperbolic of kinetic problems, but exist for nonlinear parabolic ones as well with the same type of building block, that is to say, the stationary equation. There are also deep connections with so-called Asymptotic-Preserving schemes as explained in [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF][START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF][START_REF] Gosse | Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes[END_REF]].

An essential feature for WB schemes for (4) is therefore that the boundary-value problem for (6) admits an explicit, or at least easily computable, solution. This is indeed the case, (as shown by Case and co-workers [START_REF] Aamodt | Useful identities for half-space problems in linear transport theory[END_REF][START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF][START_REF] Case | Linear transport theory[END_REF][START_REF] Inonu | Developments in transport theory[END_REF] and then by Cercignani [START_REF] Cercignani | Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem[END_REF][START_REF] Cercignani | The method of elementary solutions for kinetic models with velocity dependent collision frequency[END_REF]) because such a solution can be expressed by means of elementary solutions. Namely, under mild regularity assumptions the solution of ( 6) is derived by separation of variables [START_REF] Bart | Linear integral equations of the third kind[END_REF][START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF]:

f (z, v) = α + β(z -v) + 1 -1 A(ν)ϕ ν (v) exp(-z/ν)dν, (7) 
where ν are the proper modes satisfying of the equation [START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF][START_REF] Klinc | On completeness of eigenfunctions of the one-speed transport equation[END_REF],

1 - ν 2 log ν + 1 ν -1 = 0, ν ∈ (-1, 1), (8) 
ϕ ν are the "generalized eigenfunctions", α, β and A(ν) are determined by boundary conditions (see also [START_REF] Appell | Boundary value problems for integrodifferential equations of Barbashin type[END_REF][START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF][START_REF] Higgins | Completeness and basis properties of special functions[END_REF][START_REF] Klinc | On completeness of eigenfunctions of the one-speed transport equation[END_REF]). Later, this technique has been adapted to numerical computations by Siewert and co-workers who introduced the so-called Analytical Discrete-Ordinate (ADO) method [START_REF] Barichello | Unified Solutions to Classical Flow Problems Based on the BGK Model[END_REF][START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF][START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF]. Roughly speaking, it consists in discretizing the velocity variable v according to a Gaussian quadrature rule in order to be able to compute astutely a vector of normal modes ν to be used for computing approximately the integral term in [START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF]. Altogether, these elements allow to build an efficient Riemann solver for (5) and thus a WB scheme for (4): it has been shown in [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF][START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF] that this type of discretizations are feasible and moreover endowed with interesting stability properties.

Outline of the paper

This paper is organized as follows. Section 2 deals with the simplest kinetic model rendering "run and tumble" dynamics, as explained in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF] (see §4.1), for which it is rather easy to adapt the formalism of Case's elementary solutions. This unusual spectral technique allows for solving the forward-backward problem at each interface of the computational grid thus providing a reliable expression of well-balanced numerical fluxes. These fluxes, derived in §2.2 through the so-called Analytical Discrete Ordinates method [START_REF] Barichello | Unified Solutions to Classical Flow Problems Based on the BGK Model[END_REF][START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF][START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF], are endowed with the property that the free transport step and the relaxation process are not separated, thus allowing for improved performances when it comes to stabilization in large times (see also [START_REF] Sportisse | An analysis of operator splitting techniques in the stiff case[END_REF]). The resulting time-marching scheme is also less viscous than more conventional time-splitting schemes (see §2.3). A more challenging kinetic model from [START_REF] Othmer | Models of dispersal in biological systems[END_REF], which has been studied theoretically in [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF], is tackled in Section 3. It did not result possible to adapt Case's formalism to this problem hence the forward-backward integro-differential equation is discretized in such a way that the interface values which are needed to set up the well-balanced scheme can be obtained by solving a linear system derived in §3.1. Another advantage of this formulation is that the matrices involved are rank-one perturbations of diagonal matrices, thus allowing for the use of the Sherman-Morrison formula (see [START_REF] Hager | Updating the Inverse of a Matrix[END_REF] and §3.2). In §3.3, a challenging test-case is studied in some detail and the comparison between the new WB scheme and a more classical time-splitting algorithm is briefly displayed, for which it is interesting to notice that the same type of erroneous behavior than the one reported in [START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF] is still observed here (enormous macroscopic flow close to the border of the domain and stalling of residues). Finally some concluding remarks are given in §4.

Numerical simulation of mathematical models rendering chemotaxis dynamics is a topic attracting substantial interest from the research community. Let us quote first results dealing with the parabolic Patlak-Keller-Segel model [START_REF] Segel | A theoretical study of receptor mechanisms in bacterial chemotaxis[END_REF]: a very general convergence framework has been obtained by Filbet [START_REF] Filbet | A finite volume scheme for the Patlak-Keller-Segel chemotaxis model[END_REF]. However, the parabolic formulation has the drawback of inducing an infinite propagation speed of information, which can be fairly considered unphysical. Hyperbolic models eliminate this undesirable feature, see [START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms[END_REF][START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF][START_REF] Perthame | Transport equations in biology[END_REF]; discrete velocity kinetic models can be handled by means of similar techniques [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF][START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF][START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF]. Advances in numerical analysis allow to simulate efficiently much more detailed kinetic models [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF][START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF][START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF][START_REF] Othmer | Models of dispersal in biological systems[END_REF][START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF][START_REF] Stroock | Some stochastic processes which arise from a model of the motion of a bacterium[END_REF]: consult for instance [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF][START_REF] Vauchelet | Numerical simulation of a kinetic model for chemotaxis[END_REF]. Finally, we stress again the similarity between this class of distinguished numerical schemes and the ones derived for the nonlinear parabolic equations by extending the ideas of the classic Scharfetter-Gummel scheme [START_REF] Saito | An interpretation of the Scharfetter-Gummel finite difference scheme[END_REF] for which numerical fluxes are computed by solving a Dirichlet problem for the stationary equations, see [START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF].

Othmer-Hillen model: flat asymptotic regimes

The simplest model which is proposed in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF] (see also [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF]) in order to model a biased velocity redistribution resulting from the presence of a chemical attractant consists in rewriting (1) with p(t; x, v , v) ≡ T (v, v ) and in multiplying the right-hand side by λ ≥ 0. The quantity T (v, v ) gives the probability of a velocity jump from v to v and is supposed to satisfy:

T ≥ 0, T (v, v )dv = T (v, v )dv = 1, T ∈ L 2 (R 3 × R 3
). One way to obtain this framework is to take γ ≡ λ ∈ R + and k ≡ T in the original Alt's equations; the case of order-one perturbations of the turning kernel ( §4.1 in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF]) corresponds to

T (v, v ) = T 0 (v, v ) + T 1 (v, v , S), T 1 (v, v , S) = v • M (∇S)v ,
with M a 3×3 matrix-valued function of ∇S. Taking now into account for the fact that only ∂ z S = 0 and picking for M the diagonal matrix whose entries are precisely the components of ∇S allows for carrying out the one-dimensional reduction of [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF]. Suppose that T 0 stands for a uniform redistribution of velocities, the 1-D model ( 2) with λ = 1 reads:

∂ t f (t, z, v) + v∂ z f = 1 -1 1 2 + v(∂ z S.v ) f (t, z, v )dv -f. (9) 
In order to keep the positivity property T ≥ 0, one has to assume a sub-characteristic property: 1 2 + v(∂ z S.v ) ≥ 0, which is precisely the condition (T 1 1) on page 1233 of [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF]. Such a condition has been extensively used in order to prove stability results in the simpler context of a discrete 2-velocity model in [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF] in both hyperbolic and diffusive scalings.

Case's elementary solutions for biased velocity redistribution

The sub-characteristic property has already been encountered in [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF] in a simpler form corresponding to the case where v ∈ {-1, 1} only, that is to say, a 2 × 2 velocity model. In this section, it will be shown that the construction of [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF] can be extended to [START_REF] Beals | An abstract treatment of some forward-backward problems of transport and scattering[END_REF] in roughly the same manner than the numerical schemes of [START_REF] Gosse | Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes[END_REF] extend to those of [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF], i.e. by means of Case's elementary solutions.

Under the assumption that ∂ z S remains small enough to keep T ≥ 0 (which means that ρ, α are small and D, β are relatively big) the first step in building a well-balanced scheme for ( 9) is to compute the solution of the time-independent problem:

v∂ z f (z, v) = 1 -1 1 2 + v(σv ) f (z, v )dv -f z ∈ (0, ∆z), σ ∈ R, (10) 
with inflow boundary conditions. A simple way to ensure the sub-characteristic condition is to replace the term 2σ by tanh(σ) ∈ [-1, 1] for instance.

Lemma 1 Assume that the forward-backward problem for (6) admits a complete set of Case's generalized eigenfunctions depending on normal modes ν which are solutions of (8),

1, z -v, exp(-z/ν)ϕ ν (v),
then for σ = 0, a complete set of eigenfunctions for the equation ( 10) is:

1, 2 3 σ -1 z -v, exp(-z/ν)ϕ ν (v),
where ν denotes the same normal modes.

The conclusion of the Lemma is that the biasing term in [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF] involving a constant σ induces only a velocity shift in the linear diffusion solution (as it is called in [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF]).

Proof: The proof is divided in several steps for the sake of clarity:

• The first step is to establish that the macroscopic flux 10) is actually a constant. By integrating the equation in v ∈ [-1, 1], it comes:

J = 1 -1 v f (z, v )dv in (
∂ z 1 -1 v f (z, v)dv = 1 -1 1 -1 f (z, v )dv dv 2 +σ 1 -1 v 1 -1 v f (z, v )dv dv- 1 -1 f (z, v)dv.
The term

1 -1 v 1 -1 v f (z, v )dv dv vanishes because v is an odd function on [-1, 1]. Moreover, 1 -1 1 -1 f (z, v )dv dv 2 - 1 -1 f (z, v)dv = 0 too. Thus ∂ z 1 -1 v f (z, v
)dv = 0 and (10) rewrites as:

v∂ z f (z, v) = 1 2 1 -1 f (z, v )dv + σvJ -f .
If the set of generalized eigenfunctions 1, z -v, exp(-z/ν)ϕ ν (v) is complete for σ = 0, then one will get a complete set for [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF] by adding a linear function in v and keeping the same normal modes (computed in [START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF]). • By plugging the function az -v, a ∈ R, in [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF], one can find the correct value of a in order to obtain a particular solution:

v∂ z (az -v) = -av = az + σv 1 -1 v (az + v )dv -az + v = -σv 1 -1 (v ) 2 dv + v.
This simplifies into:

1 -1 (v ) 2 dv = 2 3 , a = 2 3 σ -1, v = 0,
which matches the conclusion of the Lemma. The general form of sufficiently smooth solutions of [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF] with inflow boundary conditions is given by the full-range expansion:

f (z, v) = α + β 2 3 σ -1 z -v + 1 -1 A(ν)ϕ ν (v) exp(-z/ν)dν 2 (11) 
Theorem I in [START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF] states that generalized eigenfunctions are orthogonal in the sense:

1 -1 vϕ ν (v)ϕ ν (v).dv = N ν δ ν,ν ,
where N ν is an explicit function of the proper mode ν.

Lemma 2 Generalized eigenfunctions for (10) ϕ ν (v) with ν the set of proper modes satisfy:

1 -1 vϕ ν (v).dv = 0.
Proof: It suffices to integrate the equation on ϕ ν in the v variable and divide by 2. Inserting the separated variables ansatz exp(-x/ν)ϕ ν (v) into (10) leads to

1 - v ν ϕ ν (v) = 1 2 1 -1 ϕ ν (v ).dv + σvJ, (12) 
which can be integrated in v in order to make the σvJ term disappear. This yields:

- 1 2 1 -1 v ν ϕ ν (v).dv = 1 2 1 -1 ϕ ν (v ).dv - 1 2 1 -1 ϕ ν (v).dv = 0.
2 Theorem 1 Let f (x, v) be a smooth solution to the forward-backward boundary-value problem [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF] written in the form [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF]; its macroscopic flux satisfies:

1 -1 v f (x, v)dv = - 2 3 β,
with β the coefficient of the so-called "linear diffusion solution" ( 2 3 σ -1)z -v in [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF].

Proof: Existence, uniqueness and regularity results for this type of forward-backward problems have been given in [START_REF] Beals | An abstract treatment of some forward-backward problems of transport and scattering[END_REF]. From Lemma 2 one deduces that the eigenfunctions 1, ϕ ν (v) have no contribution to the (constant) macroscopic flux induced by f (x, v). Moreover, Lemma 1 gives the explicit expression of the remaining eigenfunction, the linear diffusion solution. Multiplying ( 7) by v and integrating leads to the conclusion. 2.

The terminology linear diffusion solution is taken from [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF] where it is introduced in the context of steady Fokker-Planck equations. It is shown there that this particular solution (with variables separated in a sum instead of a product) emanates from the degeneracy of the 0-eigenvalue (corresponding here to ν → ∞). Results about this degeneracy in the context of BGK-type mass-preserving equations are given in [START_REF] Case | Linear transport theory[END_REF][START_REF] Van Der Mee | On unbounded eigenvalues in transport theory[END_REF].

Derivation of the corresponding well-balanced scheme

Based on the representation [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF], there are only small algorithmic changes to conduct with respect to [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF]. The first task is to derive the normal modes ν, but since the presence of σ has no effect on them, the procedure will follow the results by Siewert and co-authors published in [START_REF] Barichello | Unified Solutions to Classical Flow Problems Based on the BGK Model[END_REF][START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF][START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF] under the name "Analytical Discrete-Ordinate method".

It consists in first, introducing a 2N -point Gaussian quadrature on (-1, 1), zero is excluded, which is assumed to meet at least with the following requirements:

2N =1 ω v k = 2 for k = 0, 2 3 for k = 2.
By symmetry, it is more convenient to work with its restriction to the positive interval (0, 1), given by the N points and weights,

V := (v 1 , v 2 , ..., v N ) ∈ (0, 1) N , ω := (ω 1 , ..., ω N ) ∈ R + , (13) 
and obtained by retaining only the N last values in the original 2N quadrature. Then, it computes a vector of eigen-modes ν ∈ (R + ) N which is an approximation of the proper modes. Last, it determines the coefficients of the generalized eigenfunctions out of the given inflow boundary conditions. Let us consider [START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF] for σ = 0: its approximation by means of the aforementioned quadrature rule reads,

1 ∓ v k ν k ϕ(ν, ±v k ) = 1 2 N =1 ω ϕ(ν, v ) + ϕ(ν, -v ) , k ∈ {1, ..., N }.
At this level, a trick can be used in order to reduce the cost of this eigenvalue problem: let us denote Φ ± (ν) = (ϕ ν (±v k )) k∈{1,...,N } and Id the identity matrix of R N . By using the same notation for a vector in R N and its corresponding N × N diagonal matrix, it comes:

± 1 ν VΦ ± (ν) = Id - ω 2 Φ ± (ν) - ω 2 Φ ∓ (ν) (14) 
Barichello, Siewert and Wright [START_REF] Barichello | A discrete-ordinates solution for a non-grey model with complete frequency redistribution[END_REF][START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF] define

S(ν) = V(Φ + (ν) + Φ -(ν)) ∈ R N in order to reduce (14) into: V -1 (Id -ω)V -1 S(ν) = 1 ν 2 S(ν)
. By multiplying by the diagonal N × N matrix T = diag( √ ω k ), this eigenvalue problem boils down to:

V -2 -ww T X(ν) = 1 ν 2 X(ν), w = diag √ ω k v k = √ ωV -1 , X(ν) = T S(ν). ( 15 
)
The eigenvalue problem is known to possess numerous "good properties" [START_REF] Siewert | Efficient eigenvalue calculations in radiative transfer[END_REF]; in particular, since the components of w never vanish, the interlacing repartition holds,

0 < v 1 < ν 1 < v 2 < ν 2 < ... < v N < ν N ∈ (0, 1].
The biggest value ν N stands for the discrete part of the spectrum [START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF] and since equation ( 10) is mass-preserving, it displays a degeneracy at infinity which leads to the particular solutions 1 and z -v of [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF]. Finally, the usual normalization of the N eigenvectors is:

N =1 ω ϕ(ν k , v ) + ϕ(ν k , -v ) = 1, k ∈ {1, ..., N }. ( 16 
)
The last step is to derive the WB Godunov scheme for the "localized problem" [START_REF] Arnold | Large-time behavior of discrete equations with non-symmetric interactions[END_REF]; this proceeds according to the roadmap presented in [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF][START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF]. Such a scheme aims at computing a piecewise-constant approximation of f (t, z, v), solution of the Cauchy problem for (9):

∀j, n ∈ Z × N, f n j (±v k ) f (t n = n∆t, z j = j∆z, ±v k ), v k ∈ V.
The standard finite-volume approach [START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF] proceeds by integrating the localized equation ( 5) on C j × [t n , t n+1 ] and invoke the divergence theorem: the method is completely determined once the numerical flux function is known. In the Godunov setting, the numerical flux consists in computing the exact solution of elementary Riemann problems located at each interface separating adjacent control cells C j and C j+1 : see Figure 3 in [START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF].

Following again [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF], one derives the 2 matrices which allow to compute the interface values to be inserted in the upwind discretization. The main difference with the preceding setting is that these "transfer matrices" now depend on position and time through the piecewise approximation of ∂ z S. Define a piecewise constant approximation of S(t, z) solution of (3),

∀j, n ∈ Z × N, S n j S(t n = n∆t, z j = j∆z),
the natural piecewise constant approximation of ∂ z S is defined on the staggered grid:

∀j, n ∈ Z × N, (∂ z S) n j+ 1 2 := 1 ∆z (S n j+1 -S n j ) ∂ z S(t n , z j+ 1 2 ).
Clearly, the value (∂ z S) n j+ 1 2 is to be inserted in place of σ at each interface where a forwardbackward problem for (10) must be solved in order to compute the WB interface values: the following notation is therefore convenient,

∀j, n ∈ Z × N, σ n j+ 1 2 = 1 ∆z (S n j+1 -S n j ) = (∂ z S) n j+ 1 2 , ( 17 
)
and one is led to compute transfer matrices which depend on σ n j+ 1 2 at each interface. The representation [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF] suggests the following approximation of f denoted by f , for z ∈ [0, ∆z]:

∀k ∈ {1, ..., N }, f (z, ±v k ) α + β ( 2 3 σ -1)z ∓ v k + E(z, ±v k , ν),
where E stand for a finite superposition of the exponentially damped modes,

E(z, v, ν) = N -1 =1 A exp(-z/ν ) 1 -v/ν + B exp(z/ν ) 1 + v/ν . (18) 
Since the convection terms are linear, the Godunov scheme for (9) reads:

     f n+1 j (v k ) = f n j (v k ) -v k ∆t ∆z f n j (v k ) -fR,j-1 2 (v k ) , f n+1 j (-v k ) = f n j (-v k ) + v k ∆t ∆z fL,j+ 1 2 (-v k ) -f n j (-v k ) , (19) 
where the left/right states fL,j+ 1 2 (-V)/ fR,j-1 2 (V) are deduced from the previous numerical approximation of the steady-state curves [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF]. For the left-side state located at z j+ 1 2 , fL,j+

1 2 (-v k ) = α + βv k + E(0, -v k , ν),
with the corresponding set of coefficients α, β, A= {A 1 , A 2 , ...A N -1 } and B= {B 1 , B 2 , ...B N -1 } as written in (18) computed at z j+ 1 2 , and the right-side state located at

z j-1 2 , fR,j-1 2 (v k ) = α + β ( 2 3 σ -1)∆z -v k + E(∆z, v k , ν).
In order not to have to treat with a matrix containing both exp(∆z/ν ) > 1 and exp(-∆z/ν ) < 1 terms, the N -1 coefficients B are rescaled like: B → B exp(∆z/ν ). This leads to:

M n j+ 1 2        A α B β        = f n j (V) f n j+1 (-V) ∈ R 2N , (20) 
where the 2N × 2N matrix M n j+ 1 2 reads for ν := {ν 1 , ν 2 , ..., ν N -1 } ∈ (0, 1) N -1 ,

M n j+ 1 2 =   1 -V ⊗ ν -1 -1 1 R N 1 + V ⊗ ν -1 -1 exp(-∆z ν ) -V 1 + V ⊗ ν -1 -1 exp(-∆z ν ) 1 R N 1 -V ⊗ ν -1 -1 ( 2 3 σ n j+ 1 2 -1)∆z + V   .
Completeness properties established at the continuous level [START_REF] Bart | Linear integral equations of the third kind[END_REF][START_REF] Case | Elementary solutions of the transport equation and their applications[END_REF][START_REF] Cercignani | Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem[END_REF][START_REF] Klinc | On completeness of eigenfunctions of the one-speed transport equation[END_REF] suggest that each matrix M n j+ 1 2 is invertible. By defining the complementary matrix,

M n j+ 1 2 =   1 -V ⊗ ν -1 -1 exp(-∆z ν ) 1 R N 1 + V ⊗ ν -1 -1 ( 2 3 σ n j+ 1 2 -1)∆z -V 1 + V ⊗ ν -1 -1 1 R N 1 -V ⊗ ν -1 -1 exp(-∆z ν ) V   ,
one observes that, for any j ∈ Z, the interface values in [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF] are given by:

fR,j+ 1 2 (V) fL,j+ 1 2 (-V) = M n j+ 1 2 (M n j+ 1 2 ) -1 f n j (V) f n j+1 (-V) . (21) 
A big difference with the schemes formerly studied in [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF][START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF] lies in the fact that here, both matrices M n (see [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF][START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF] for the analogous situation in the special case where v ∈ {-1, 1} only). Consequently, it isn't possible to compute the product M n

) -1 once for all as a pre-processing step before starting the time-marching iterations. The easiest way out is to invert a linear system [START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF] at each interface in order to obtain the set of coefficients (α, A, β, B) ∈ R 2N . However, there exists a cheap way of computing each inverse matrix (M n j+ 1 2 ) -1 , based on the Sherman-Morrison formula [START_REF] Hager | Updating the Inverse of a Matrix[END_REF]: see especially Remark 3 in the forthcoming §3.2.

Remark 1 (well-balanced boundary conditions) Usually the kinetic model ( 9) is set in a bounded domain, say z ∈ [0, L], with specular boundary boundary conditions on each border of the computational interval. Therefore, in a well-balanced framework, one must implement both the specular reflexion and the localized source term on these boundaries: see Figure 2.1 in [START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF] for an illustration in the simpler context of a 2 × 2 discrete model. However, since the parabolic equation governing the chemo-attractant concentration (3) is supplemented by Neumann conditions ∂ z S = 0 in z = 0, z = L, the implementation of boundary data is somewhat simplified. Let's compute the left boundary condition in z = 0: at each time step t n , one is given outcoming kinetic densities f n j=1 (-V) by means of the upwind/Godunov scheme [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF]; from these N values, one deduces the specularly reflected ones denoted by

f n j=0 (V) = f n j=1 (-V).
Observe that, in order to take fully into account for the source term located in j = 1 2 , one has to use the modified vector

f n R,j= 1 2 (V) which satisfies: fR, 1 2 (V) fL, 1 2 (-V) = M n j+ 1 2 (M n j+ 1 2 ) -1 f n 0 (V) f n 1 (-V) = M M -1 f n 1 (-V) f n 1 (-V)
.

To pass from the first to the second equality, one should use the specular reflexion on f and the Neumann condition on S: this last property makes both matrices M and M independent of space and time because ∂ z S vanishes identically on the borders z = 0 and z = L. The product M M -1 can still be computed as a pre-processing step. The values fL, 1 2 (-V) are useless. Numerically, there is no net flux through the boundary:

∀n > 0, N =1 ω f n 1 (V) -f n 1 (-V) = 0.

Numerical results: comparison with time-splitting

In order to test the new algorithm ( 19), ( 21), the standard time-splitting scheme is now quickly recalled: it consists in implementing a differently localized equation, (see [START_REF] Gosse | Time-splitting schemes and measure source terms for a quasilinear relaxing system[END_REF])

∂ t f (t, z, v) + v∂ z f = ∆t n∈N 1 -1 1 2 + v(∂ z S.v ) f (t, z, v )dv -f δ(t -t n ).
Since the source term is ignited only at discrete instants t n = n∆t, this "time-localization" yields the well-known algorithm:

     f n+ 1 2 j (v k ) = f n j (v k ) -v k ∆t ∆z f n j (v k ) -f j-1 (v k ) , f n+ 1 2 j (-v k ) = f n j (-v k ) + v k ∆t ∆z f j+1 (-v k ) -f n j (-v k ) ,
for the transport step and, with obvious notation,

f n+1 j (±V) = exp(-∆t)f n+ 1 2 j (±V) + (1 -exp(-∆t))   ρ n+ 1 2 j 2 ± V(∂ z S) n j J n+ 1 2 j   ,
for the tumbling step. Observe that one weakness of such a method is that, in the present context, there is no natural definition of the centered approximation (∂ z S) n j : one choice can be to work with a mean value of σ n j± 1 2 (see [START_REF] Sportisse | An analysis of operator splitting techniques in the stiff case[END_REF] for other issues with time-splitting algorithms). The second step is exact in case ∂ z S ≡ 0 by mass conservation. The numerical test consists in evolving in time an initial kinetic density of the following form:

f 0 (z, v) = 10 exp -30(v ± 0.25) 2 -10(z ∓ 0.65) 2 , (z, v) ∈ (-1, 1) 2 . ( 22 
)
The grid parameters have been chosen as N = 15 for the Gaussian quadrature (so as to have 30 points in the velocity variable) and 2 6 points in the z variable. The time-step is deduced by the standard CFL condition, that is 0.95∆t ≤ ∆z. Numerical results at time t = 2.95 are displayed on Fig. 1 for macroscopic quantities and on Fig. 2 for a precise comparison between kinetic densities obtained by means of [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF] and by the standard time-splitting method. The WB scheme ( 19) is clearly less viscous that the more conventional algorithm; its computational cost is higher too. According to Remark 4.2 in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF], there is no taxis (i.e 3) and no aggregation phenomenon can occur. From Theorem 1, one deduces that β = 0 at each interface of the computational grid when numerical steady-state is reached.

Remark 2 (stabilization in time) The time-splitting scheme stabilizes when the 2 steps are stationary, that is to say, for piecewise-constant kinetic densities for which both the free transport and the tumbling steps are invariant. Clearly, this requirement asks for a density which is constant in z for the first step and constant in v for the relaxation. This is precisely the kind of asymptotic states one expects for (9) according to Remark 4.2 in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF] and this is the reason why few differences appear between both numerical methods. In particular, they admit very similar time-asymptotic (constant) states, see also [START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms[END_REF]. Since there is no strong gain in setting up well-balanced methods in case the kinetic model stabilizes asymptoticly onto constant states, this section will deal with different equations leading to more involved (non-constant) asymptotic regimes. Similar studies for simpler 2 × 2 discrete velocities models have been conducted in e.g. [START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF][START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF] (see also [START_REF] José | An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis[END_REF][START_REF] Vauchelet | Numerical simulation of a kinetic model for chemotaxis[END_REF]).

Approximation of a local forward-backward stationary equation

The scope of this section will therefore be the construction of a well-balanced scheme of the type [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF] for the mass-conservative model studied in [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF], which is of the form originally introduced by Othmer-Dunbar-Alt [START_REF] Othmer | Models of dispersal in biological systems[END_REF],

∂ t f (t, z, v) + v∂ z f = χ(v∂ z S) 1 -1 f (t, z, v )dv -f 1 -1 χ(v ∂ z S)dv , (23) 
and corresponds to the turning probability p(t, x, v , v) = χ(v•∇S(t, x)) in ( 1). The equation ( 23) is again obtained by assuming that only ∂ z S = 0 and following the Ford-Cummings reduction [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF] (recalled in the introduction). In [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF], there holds χ(x) = Θ(x), the Heaviside function; however, here a smooth χ can be preferred,

χ(x) = 1 2 (1 + tanh(10x)) ∈ [0, 1].
The equation on the chemo-attractant substance is again (3) supplemented with Neumann boundary conditions; similarly ( 23) is endowed with specular reflexion conditions too.

It is possible to adapt the construction of Case's elementary solutions to one-dimensional kinetic models with a velocity-dependent frequency [START_REF] Aamodt | Useful identities for half-space problems in linear transport theory[END_REF][START_REF] Cercignani | The method of elementary solutions for kinetic models with velocity dependent collision frequency[END_REF]; however, in these calculations, it is customary to assume that the collision frequency is even in the v variable. This requirement is generally not met by the model ( 23) thus another method is proposed hereafter.

Following what has been formerly done in §2.2, the same Gaussian quadrature is used on the interval v ∈ (-1, 1) together with the notation [START_REF] Case | Linear transport theory[END_REF]. In order to solve the local forwardbackward stationary problem for (23) without the Case's "generalized eigenfunctions",

v∂ z f = χ(v∂ z S) 1 -1 f (z, v )dv -f 1 -1 χ(v ∂ z S)dv , z ∈ (0, ∆z),
with inflow boundary conditions, a second-order approximation can be considered as follows:

v k f (∆z, v k ) -f (0, v k ) ∆z = χ(v k σ) N =1 ω f (∆z, v ) + f (0, v ) + f (∆z, -v ) + f (0, -v ) 2 - f (∆z, v k ) + f (0, v k ) 2 N =1 ω χ(v σ) + χ(-v σ) .
For the set of values 0 < v k ∈ V, a linear system has to be solved at each interface z j+ 1 2 :

P n j+ 1 2 f (0, -V) f (∆z, V) = P n j+ 1 2 f n j+1 (-V) f n j (V) . ( 24 
)
Introducing the notation Ω, W ∈ R 2N + × (-1, 1) 2N as the set of weights and points of the Gaussian quadrature introduced at the beginning of §2.2,

Ω = {ω N , ω N -1 , . . . , ω 2 , ω 1 , ω 1 , ω 2 , . . . , ω N },
with a similar expression for W simplifies the expression of the matrices P n j+ 1 2 , P n j+ 1 2 :

P n j+ 1 2 = ∆z 2 diag( 2|W| ∆z + χ) -χ(σ n j+ 1 2 W) ⊗ Ω , χ = N =1 ω χ(v σ) + χ(-v σ) .
and:

P n j+ 1 2 = ∆z 2 diag( 2|W| ∆z -χ) + χ(σ n j+ 1 2 W) ⊗ Ω , σ n j+ 1 2 = 1 ∆z (S n j+1 -S n j ).
The well-balanced Godunov scheme for ( 23) is therefore made of the upwind discretization [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF] supplemented by [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF] with the inflow boundary data f (0,

V) = f n j (V), f (∆z, -V) = f n j+1 (-V) at each interface z j+ 1 2 .
Of course, one can also set up the same kind of numerical method involving a second-order approximation of the local stationary problem for the model ( 9) studied in the preceding section by means of Case's elementary solutions.

Rank-one perturbations and Sherman-Morrison formula

The first result states that matrices P n j+ 1 2 are invertible under a mild condition on ∆z: Lemma 3 Let T V (χ) stand for the total variation of χ on R: under the restriction,

v 1 > T V (χ)∆z, (25) 
the matrix P n j+ 1 2 is strictly diagonal-dominant and invertible.

This is somewhat a non-resonance condition [START_REF] Amadori | Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws[END_REF][START_REF] Isaacson | Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law[END_REF] for the semilinear hyperbolic system obtained by approximating by means of the Discrete-Ordinates method a kinetic equation endowed with a continuous velocity variable; roughly speaking [START_REF] Gosse | Time-splitting schemes and measure source terms for a quasilinear relaxing system[END_REF] forbids the inclusion in the Gaussian quadrature of particles with too small velocities [START_REF] Arnold | Large-time behavior of discrete equations with non-symmetric interactions[END_REF].

Proof: It consists in proving the positivity for any k ∈ {1, .., N } of the expression:

2 |v k | ∆z + χ -ω k χ(σ n j+ 1 2 v k ) -(2 -ω k )|χ(σ n j+ 1 2 v k )|, σ n j+ 1 2 = (∂ z S) n j+ 1 2 .
One sees easily that, since χ ≥ 0:

χ -ω k χ(σ n j+ 1 2 v k ) = Ω\ω k ω χ(σ n j+ 1 2 v ) ≥ 0.
This allows to remove the moduli in the former expression:

2 |v k | ∆z + Ω ω χ(σ n j+ 1 2 v ) -2χ(σ n j+ 1 2 v k ) = 2 |v k | ∆z + Ω ω χ(σ n j+ 1 2 v ) -χ(σ n j+ 1 2 v k ) = 2 |v k | ∆z + Ω ω σ n j+ 1 2 v k σ n j+ 1 2 v χ (s)ds ≥ 2 |v k | ∆z -T V (χ) .
By the Hadamard Lemma, a strictly diagonal-dominant real matrix is invertible. 2

Theorem 2 Under the non-resonance restriction [START_REF] Gosse | Time-splitting schemes and measure source terms for a quasilinear relaxing system[END_REF] and with the shorthand notation D ± = diag( 2|W| ∆z ± χ), the matrix product (P n j+ 1

2

) -1 P n j+ 1 2
has the explicit expression:

(P n j+ 1 2 ) -1 P n j+ 1 2 =   D -1 + + D -1 + [χ(σ n j+ 1 2 W) ⊗ Ω]D -1 + 1 -Ω • D -1 + χ(σ n j+ 1 2 W)   D -+ χ(σ n j+ 1 2 W) ⊗ Ω (26) 
Proof: By Lemma 3, (25) ensures invertibility of P n j+ 1

2

; the classical "determinant lemma" yields that:

det(D + -χ(σ n j+ 1 2 W) ⊗ Ω) = det(D + )[1 -Ω • D -1 + χ(σ n j+ 1 2 W)] = 0.
Since v k = 0 for any k ∈ {1, 2, . . . , N } and χ ≥ 0, the determinant of the diagonal matrix det(D + ) = 0. By the same calculations, one has the scalar product

Ω • D -1 + χ(σ n j+ 1 2 W) = 1.
One can therefore apply the well-known Sherman-Morrison formula [START_REF] Hager | Updating the Inverse of a Matrix[END_REF] for the explicit computation of the inverse of a rank-one perturbation of any diagonal matrix D:

(D + u ⊗ v) -1 = D -1 - D -1 u ⊗ vD -1 1 + v • D -1 u . ( 27 
)
The conclusion of the theorem is reached by inserting Theorem 2 allows for a sensible reduction of the computational cost for the well-balanced scheme [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF], [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF]. Indeed, the computation of the interface values [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF] asks only for a matrix product, and not for an inversion of a linear system. Remark 3 One can take advantage of the Sherman-Morrison formula [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF] when setting up the well-balanced Godunov scheme [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF], ( 21) involving Case's elementary solutions for the Othmer-Hillen model ( 9) too. Indeed, by observing that:

D = D + , u = -χ(σ n j+ 1 2 W), v = Ω
M n j+ 1 2 = 1 -V ⊗ ν -1 -1 1 R N 1 + V ⊗ ν -1 -1 exp(-∆z ν ) -V 1 + V ⊗ ν -1 -1 exp(-∆z ν ) 1 R N 1 -V ⊗ ν -1 -1 -∆z + V + 2 3 ∆zσ n j+ 1 2 a ⊗ b,
with a = (0, 0, ..., 0, 1) ∈ R 2N and b = (0, ...0,

1 R N ) ∈ R 2N . Hence M n j+ 1 2
is a rank-one perturbation of the M matrix written in [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF] (p. 1999): thus assuming that the inverse M -1 can be computed before starting the time-marching scheme [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF], the formula (27) yields,

(M n j+ 1 
2

) -1 = M -1 - M -1 a ⊗ bM -1 3 2∆zσ n j+ 1 2 -b • M -1 a ,
and then it remains only to multiply by M n j+ 1 2 in order to be able to compute efficiently the interface values [START_REF] Filbet | A finite volume scheme for the Patlak-Keller-Segel chemotaxis model[END_REF] without inverting any 2N × 2N linear system.

Obviously, the treatment of the specular boundary conditions still follows Remark 1: the effects of the localized tumble term have to be included in the interfaces on both the borders of the computational domain. Indeed, thanks to Neumann conditions ∂ z S(t, z = 0) = 0, there holds χ(v∂ z S) = 1 2 on the borders and there is no biasing mechanism involved.

Numerical results: a strongly non-monotonic decay of residues

In this section, the WB scheme ( 19), ( 24) will be tested on the equation ( 23) posed in z, v ∈ (-1, 1) 2 with specular reflexion on the borders, similar initial data than ( 22 can set up the time-marching scheme ( 19), [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF]. The computational grid is determined by 2 7 points griding uniformly z ∈ (-1, 1) and the time-step is given by the CFL number, here 0.95. It will prove interesting to study the residues r n , n ∈ N, which are defined by:

r n := Ω ω k |f n+1 j (v k ) -f n j (v k )| 2 .
Numerical results for the numerical approximation of the kinetic density f (t, z, v) generated by the WB Godunov scheme [START_REF] Erban | From signal transduction to spatial pattern formation in E. Coli: a paradigm for multiscale modeling in biology[END_REF], [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF] are shown on Fig. 3. One can see that the time evolution of the system is quite interesting because it reveals 4 clearly different steps:

(1) a first concentration of cells in z = ± 1 2 , close to the centers of the initial Gaussian repartitions, makes the residues decay in a monotonic manner (up to time t 2).

(2) this first aggregation is unstable, residues grow and cells move to accumulate on both the borders z = ±1 of the computational domain. This process seems to be more stable as residues decayed very strongly (up to time t 16). (3) surprisingly, residues start to increase again albeit very slowly despite the changes in the kinetic density are nearly invisible. However, the important quantity to be scrutinized during this phase is the macroscopic flow, which has a positive sign despite its smallness. (4) residues grew up again to values of the order of those around t 2; the positive macroscopic flow pushed all the cells onto the right border (z = 1) of the computational domain (at time t 280). The system has finally reached steady-state around t 320 and the residues are now stalling at a global minimum level. The macroscopic flow oscillates very close to the zero-machine level without having a definite sign (contrary to the former step). This type of evolution, suggesting that the time-dependent problem seeks to equilibrate the differential and integral terms in the kinetic equation with vanishing macroscopic flow, is quite reminiscent of what has been found in [START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF] (see Section 5.3) for a simpler Greenberg-Alt discrete velocity model: the well-balanced scheme seeks possible stationary regimes, more and more distant from the initial kinetic density f 0 , which make the macroscopic flux decrease. Clearly, conventional time-splitting schemes cannot stabilize correctly in long time on such delicate problems because of their excessive numerical viscosity. On Fig. 4, Fig. 4. Macroscopic density (top, left), chemo-attractant (top, right), flux (bottom, left) and residues (bottom, right) at time t = 320) for the WB scheme ( 19), [START_REF] Frisch | Separating variables in two-way diffusion equations[END_REF]. the stationary numerical macroscopic quantities ρ and J are displayed. It is actually challenging to reach a steady-state with such a big space derivative on the first moment ρ while maintaining the second moment J this close to the zero-machine level after so many itera-tions in time. Hence it is necessary to be very careful when seeking to compute stationary aggregation patterns for chemotaxis kinetic models by iterating conventional schemes up to convergence. A similar conclusion has been reached independently by Natalini and Ribot [START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF] when trying to stabilize in large time a 2-velocity kinetic model. For completeness, a comparison between the results of the new WB scheme and the ones generated by means of a classical time-splitting scheme at time t = 10 are shown on Fig. 5: cells accumulate on the wrong side of the domain, the macroscopic flux is quite big with a shape similar to what has been reported earlier in [START_REF] Natalini | An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis[END_REF] and residues stall. The WB scheme shows a neat superiority. Fig. 5. Kinetic density (left), macroscopic flux (middle) and residues (bottom, right) at time t 10 for the time-splitting scheme (blue curves, WB scheme is in black).

Conclusion and outlook

A general methodology for the construction of well-balanced schemes for the numerical approximation of one-dimensional kinetic models of chemotaxis dynamics has been presented. It relies either on the formalism of Case's elementary solutions (especially the simplest models presented in [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF]), or on a second-order approximation of the forward-backward problem for the steady-state equation (for more sophisticated models like for instance the ones in [START_REF] Bournaveas | Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[END_REF][START_REF] Othmer | Models of dispersal in biological systems[END_REF]). Both approaches can be implemented efficiently (e.g. without inverting matrices inside the time-marching process) by taking advantage of the classical Sherman-Morrison formula which gives an analytic expression of the inverse of a rank-one perturbation. This method can be extended in a direct manner at least in 2 directions:

(1) General kinetic models of chemotaxis [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF][START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms[END_REF]: another widely used mass-preserving model, different from [START_REF] Ford | On the relationship between cell balance equations for chemotactic cell populations[END_REF], reads

∂ t f (t, z, v) + v∂ z f = 1 -1 φ(v ∂ z S)f (t, z, v )dv -2φ(v∂ z S)f,
with φ a smooth function related to γ in [START_REF] Alt | Biased random walk models for chemotaxis and related diffusion approximations[END_REF]. By following carefully the calculation in §3.1, one arrives to a 2N × 2N transfer matrix of the type,

Q n j+ 1 2 = ∆z 2 diag( 2|W| ∆z + 2φ(Wσ n j+ 1 2 )) -(Ωφ(σ n j+ 1 2 W)) ⊗ 1 R 2N ,
which is still a rank-one perturbation of an easily invertible diagonal matrix. Observe that a rescaling of the "tumbling term" by a factor 1 reduces to a multiplication of φ by the same factor thus the invertibility of Q n j+ 1 2 asks for a more restrictive condition on v 1 instead of [START_REF] Gosse | Time-splitting schemes and measure source terms for a quasilinear relaxing system[END_REF]. In this case, the Sherman-Morrison formula [START_REF] Hager | Updating the Inverse of a Matrix[END_REF] will provide again a result like Theorem 2. The general models studied in [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF][START_REF] Perthame | Transport equations in biology[END_REF] read:

∂ t f (t, z, v) + v∂ z f (t, z, v) = 1 2 -1 2 T (v, v )f (t, z, v ) -T (v , v)f (t, z, v)dv . (28) 
They don't lead to transfer matrices which are rank-one perturbations; however, their inverse may be computed by means of the Woodbury formula (see again [START_REF] Hager | Updating the Inverse of a Matrix[END_REF]). ( 2) Inclusion of the time-derivative ∂ t S: it can be considered interesting to include inside the kinetic model an information about the time-evolution of the chemo-attractant substance at the location z. This is explained for instance on pages 1241/1243 of [START_REF] Othmer | The diffusion limit of transport equations II: Chemotaxis equations[END_REF],

where the following expression of the turning rate in (2) is studied:

γ(t, x, v) = exp - ab (b + S) 2 (∂ t S + v∂ z S) , a, b ∈ R + .
The equality exp(a + b) = exp(a) exp(b) allows to separate the effects of the time and space derivative of S(t, z). Hence, it is possible to factorize the term exp(-ab∂tS (b+S) 2 ) in front of a right-hand side written like the one in [START_REF] Gosse | Maxwellian decay for well-balanced approximations of a supercharacteristic chemotaxis model[END_REF], to which the method of §3 can be applied. The exponential term related to ∂ t S is therefore a stiffness coefficient which can be handled exactly like the variable opacity coefficient in §3.3 of [START_REF] Gosse | Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case's elementary solutions[END_REF] (see also the variable Knudsen numbers in [START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF]). However, one real issue is that there is no natural definition of the numerical approximation of ∂ t S at the interfaces z j+ 1 2 of the computational grid thus only mean values can be used.

Lastly, the extension to a multi-dimensional framework can be performed by following the guidelines already used for nonlinear parabolic equations in [START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF] (see also the conclusion in [START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models[END_REF]) because a finite volumes scheme stems on the computation of one-dimensional numerical fluxes in the normal directions of the borders of each computational cell.
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 21 depend on space and time through the value of (∂ z S) n j+ 1 2
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 1 Fig. 1. Comparison of well-balanced (black squares) and time-splitting (white ones) schemes: macroscopic density (top, left), flux (top, right), chemo-attractant (bottom, left), space derivative of chemo-attractant (bottom, right) at time t = 2.95).drift) component in the diffusion approximation of (9). Hence only constant solutions should remain asymptoticly in time when specifying Neumann boundary conditions in complement of (3) and no aggregation phenomenon can occur. From Theorem 1, one deduces that β = 0 at each interface of the computational grid when numerical steady-state is reached.
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 2 Fig. 2. Kinetic densities for well-balanced (top) and time-splitting (bottom) schemes.
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 22 in the Sherman-Morrison expression[START_REF] Gosse | Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxisnext term movement in both hyperbolic and diffusive regimes[END_REF] and then writing P n j+ 1 D -+ χ(σ n j+ 1 ) ⊗ Ω as another rank-one perturbation of the diagonal matrix D -. 2
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 3 Fig. 3. Kinetic densities in the plane z, v at times t = 1, 2, 6, 9, 252, 310.
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